HemoSphere Alta uzlabotā monitoringa platforma

Lietotāja rokasgrāmata

Edwards HemoSphere Alta uzlabotās monitoringa platformas lietotāja rokasgrāmata

Tā kā pastāvīgi tiek veikti izstrādājuma uzlabojumi, cenas, specifikācijas un modeļa pieejamība var mainīties bez iepriekšēja brīdinājuma. Lietotāju ierosinātas vai nepārtrauktu izstrādājumu uzlabojumu izraisītas izmaiņas rokasgrāmatā tiek ieviestas ar atkārtotu izdevumu palīdzību. Ja šīs rokasgrāmatas normālas lietošanas laikā konstatējat tajā kļūdas, izlaidumus vai datu neprecizitātes, lūdzu, sazinieties ar Edwards tehniskā atbalsta dienestu vai vietējo Edwards pārstāvi.

Edwards tehniskā atbalsta dienests

ASV un Kanāda (24 stundas)	800.822.9837 vai tech_support@edwards.com
Ārpus ASV un Kanādas (24 stundas)	949.250.2222
Eiropa	+8001.8001.801 vai techserv_europe@edwards.com
Apvienotā Karaliste	0870 606 2040 — 4. opcija
Īrija	01 8211012 — 4. opcija

Rx only

Ražotājs	Edwards Lifesciences LLC One Edwards Way Irvine, CA 92614
Preču zīmes	Edwards, Edwards Lifesciences un stilizētais E logotips ir korporācijas Edwards Lifesciences preču zīmes. Acumen, Acumen AFM, Acumen HPI, Acumen IQ, AFM, CCOmbo, CCOmbo V, ClearSight, ClearSight Jr, CO-Set, CO-Set+, FloTrac, FloTrac Jr, ForeSight, ForeSight IQ, ForeSight Jr, HemoSphere, HemoSphere Alta, HPI, PediaSat, Physiocal, Swan, Swan-Ganz, Swan-Ganz IQ, Swan-Ganz Jr, Time-In-Target un TruWave ir uzņēmuma Becton, Dickinson and Company preču zīmes. Visas citas preču zīmes pieder to attiecīgajiem īpašniekiem.
	lzstrādājums ir izgatavots un izplatīts saskaņā ar vienu vai vairākiem no šiem ASV patentiem: 7,220,230; 7,422,562; 7,452,333; 7,785,263; 7,967,757; 10,434,255; 11,684,717; un atbilstošajiem ārzemju patentiem.

©2024 Becton, Dickinson and Company. Visas tiesības paturētas.

Rokasgrāmatas versija 2.1; rokasgrāmatas izlaišanas datums: 2024. GADA DECEMBRIS; programmatūras versija: 2.0.XX Sākotnējās izlaišanas datums: 15.11.2023.

EC REP

Edwards Lifesciences Services GmbH Parkring 30 85748 Garching bei München, Germany

Edwards Lifesciences B.V. Verlengde Poolseweg 16 4818 CL Breda, Netherlands

Rokasgrāmatas lietošana	22
1 levads	
1.1 Šīs rokasgrāmatas mērkis	24
1.2 Lietošanas indikācijas	24
1.2.1 HemoSphere Alta uzlabotā monitoringa platforma ar Swan-Ganz tehnoloģiju	24
1.2.2 HemoSphere Alta uzlabotā monitoringa platforma ar HemoSphere oksimetrijas kabeli.	25
1.2.3 HemoSphere Alta uzlabotā monitoringa platforma ar HemoSphere spiedienkabeli vai	
HemoSphere Alta monitoru — spiedienkabeli	
1.2.4 HemoSphere Alta uzlabotā monitoringa platforma ar ForeSight oksimetra kabeli	26
1.2.5 HemoSphere Alta uzlabotā monitoringa platforma ar ClearSight tehnoloģiju	26
1.2.6 HemoSphere Alta uzlabotā monitoringa platforma ar Acumen atbalstītas šķidrumu	
pārvaldības funkciju un Acumen IQ sensoru	27
1.3 Lietošanas kontrindikācijas	27
1.3.1 HemoSphere Alta uzlabotā monitoringa platforma ar ForeSight oksimetra kabeli	27
1.3.2 HemoSphere Alta uzlabotā monitoringa platforma ar ClearSight tehnoloģiju	27
1.4 Paziņojums par paredzēto lietošanu	27
1.5 Paredzētais klīniskais ieguvums	34
1.6 HemoSphere Alta uzlabotās monitoringa platformas hemodinamisko tehnoloģiju savienojumi	34
1.6.1 HemoSphere Alta Swan-Ganz tehnoloģija	35
1.6.2 HemoSphere spiedienkabelis	36
1.6.3 HemoSphere oksimetrijas kabelis	38
1.6.4 ForeSight oksimetra kabelis	39
1.6.5 HemoSphere ClearSight tehnoloģija	39
1.6.6 HemoSphere Alta AFM kabelis	41
1.6.7 Dokumentācija un apmācība	41
1.7 Rokasgrāmatas formatējums	41
1.8 Rokasgrāmatā lietotie saīsinājumi	42
2 Dročiha un simboli	16
2 1 Drošības signālvārdi un definīcijas	0 ب 46
2.1 Diosidas signavaran an actinicijas	 46
2.1.1 Dianajanis	 46
	 46
2.1.3 Hezime	 46
2.2 Diuliiajuilli	4 0 52
2.4 Lietotāja interfeisa simboli	50 50
2.5 Simboli uz izstrādājumu markējuma	66
2.5 Simbon dz izstradajuma marķējuma. 2.6 Piemērojamie standarti	60
2.5 HemoSphere Alta uzlabotās monitoringa platformas pamata veiktspēja	70
3 Uzstādīšana un iestatīšana	71
3.1 Izpakošana	71
3.1.1 lepakojuma saturs	71
3.1.2 Nepieciešamie piederumi platformas kabeļiem	72
3.2 HemoSphere Alta uzlabotās monitoringa platformas savienojumu pieslēgvietas	74
3.2.1 Monitora priekšpuse	74
3.2.2 Monitora aizmugure	75
3.2.3 Monitora apakšējais panelis	76
3.2.4 Monitora kreisais panelis	77
3.3 HemoSphere Alta uzlabotās monitoringa platformas uzstādīšana	77
3.3.1 Montāžas opcijas un ieteikumi	77
3.3.2 Akumulators	78
3.3.3 Barošanas kabeļa pievienošana	79
3.3.4 Hemodinamiskā stāvokla pārraudzības kabela pievienošana un atvienošana	80

3.3.5 Ārējo ierīču kabelu pievienošana	80
3.4 Sākotnējā palaišana	
3.4.1 Palaišanas procedūra	
3.4.2 lerīces ID atlase	
3.5 Izslēgšana un enerģijas taupīšanas režīms	
Allema Cabera Alta uzlabatās monitoringa platformas novigāsija	02
4 HemoSphere Alta uzlabotas monitoringa platformas navigacija	83
4.1 HemoSphere Alta uzlabota monitora ekrana izskats	
4.2 Navigacijas josia	
4.3 Parraudzidas skati	
4.3.1 Tendencu parraudzipas skats	
4.3.2 Parametru elementi — parametru konfiguracijas izveine	
4.3.3 EKrans Dalit	
4.3.4 Kontroipuits ekrans	
4.4 HemoSphere Alta uziabotas monitoringa platformas zestu komandas	
4.5 HemoSphere Alta uziabotas monitoringa platformas baiss komandas	100
4.6.1 HPI sekundarais ekrans	
4.6.2 Atbaistita skidrumu parvaidiba	
4.6.3 Merktieciga terapija	
4.6.4 Sķidruma reakcijas tests	
4.6.5 Atvasinatas vertibas apreķinašana	
4.6.6 Notikumi un lejaukšanās	
4.7 Vairāku sensoru uzlabotās pārraudzības režīms	
4.8 Statusa josla	
4.8.1 lerices ID	
4.8.2 Statusa joslas ātro iestatījumu izvēlne	
4.8.3 Akumulators	
4.8.4 Ekrāna tveršana	
4.9 Statusa josla — paziņojumi	
4.10 Monitora ekrāna navigācija	121
4.10.1 Vertikālā ritināšana	121
4.10.2 Navigācijas ikonas	
5 Lietotāja interfeisa iestatījumi	
5.1 lestatījumu izvēlnes navigācija un paroles aizsardzība	
5.1.1 Parolu maina	
5.2 Pacienta dati	127
5.2.1 Jauns pacients	
5.2.2 Pacienta uzraudzības turpināšana	
5.2.3 Pacienta datu skatīšana.	
5.3 Monitora vispārīgie iestatījumi	
5.4 Demonstrācijas režīms	
5.4.1 Beigt demonstrācijas režīmu	
5.5 Delta intervāli/vidējošana	
5.5.1 Parametru vērtību izmaiņu attēlošana.	
5.5.2 CO/spiediena vidējošanas laiks — izvēlne tikai FloTrac sensoram un ClearSigh	t manšetei. 131
	100
6 Papilou lestatijumi	
6.1 Trauksmes stavokį/merķi	
6.1.1 Trauksmes signalu izsiegsana	134
6.1.2 Trauksmes stavokja skaņas signala skajuma iestatīsana	135 125
o. I.3 Merķu iestatīsana	
6. I.4 Pacienta un pielagotu trauksmes/merķa iestatījumu ekrans	
6. I.5 VISU merķu kontīguresana	
6. I.6 Merku un trauksmju konfiguresana vienam parametram	
6.2 CVP iestatijumi	
6.3 Parametru iestatijumi	
6.3.1 20 sekunzu plusmas parametru iestatijumi	140

6.3.2 Vairāku sensoru uzlabotās pārraudzības režīms	140
7 Datu eksportēšana un savienojamības iestatījumi	
7.1 Datu eksportēšana	141
7.1.1 Pārraudzības dati	142
7.1.2 Izmeklējuma pārskats	
7.1.3 GDT pārskats	
7.1.4 Diagnostikas rādītāju eksportēšana	
7.2 Bezvadu iestatījumi	
7.3 HemoSphere attālā savienojamība	144
7.3.1 HemoSphere Remote tīmekļa lietotne	144
7.3.2 HemoSphere Remote pāra savienojuma izveide	
7.3.3 Fizioloģiskās trauksmes un ierīces kļūmes	146
7.4 Kiberdrošība	146
7.4.1 Kiberdrošības atjauninājumi	
7.4.2 levainojamibas pārvaldība	
7.4.3 Reakcija uz kiberdrosības incidentu	
7.4.4 HIPAA	147
8 HemoSphere Alta Swan-Ganz pārraudzība	
8.1 HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana	148
8.2 Nepārtraukta sirds izsviede	150
8.2.1 Pacienta kabeļu pievienošana	150
8.2.2 Monitoringa sākšana	151
8.2.3 Termiskā signāla stāvokļi	152
8.2.4 CO atskaites taimeris	153
8.2.5 STAT CO	
8.2.6 20 sekunžu plūsmas parametri	
8.2.7 Labā sirds kambara izsviedes algoritms	154
8.3 Intermitējoša sirds izsviede	
8.3.1 Pacienta kabeļu pievienošana	
8.3.2 Konfigurācijas iestatījumi	
8.3.3 Bolus mērījumu režīmu norādījumi	
8.3.4 Termodilūcijas kopsavilkuma ekrāns	
8.4 EDV/RVEF monitorings	
8.4.1 Pacienta kabeju pievienosana	
8.4.2 EKG Interfeisa kabeja pievienosana	
8.4.3 Merijumu saksana	
8.4.4 AKUVA EDV parraudzida	
0.4.3 STATEDV UITRVEF	104 164
0.5 SVR	
8.0 Globalas hipopertuzijas indeksa (GHI) algontina funkcija	
9 Pārraudzība, izmantojot HemoSphere spiedienkabeli	165
9.1 Pārskats par spiedienkabeli	
9.2 FloTrac sensora, FloTrac Jr sensora un Acumen IQ sensora pārraudzība	
9.2.1 FloTrac, FloTrac Jr vai Acumen IQ sensora pievienošana	
9.2.2 Vidējošanas laika iestatīšana — tikai Flo I rac sensoram	
9.2.3 Arteriala spiediena nullesana	
9.2.4 SVR parraudziba	
9.3 Spiedienkabeja monitorings, izmantojot Truwave spiediena deveju	
9.5.1 Truwave vienteiziletojama spiediena deveja pievienosana	1/2 170
9.5.2 IIItidvaskulata spieuletta tiullesättä 9.4 Spiodiopkabola pärraudziba ar Alta Swap Gapz pasienta kaboli	2 / ا
אום אונם אונים אונט אישטור אונט אישטור אונט אישטור אונט אישטור אונט אישטור אונט אישטור אישטער אישטער אישטער איש 1 א 1 Viedā kila algoritms	
2.4.1 vicua șija algurilitis 9 5 Ekrâns Nulle un sniediene likne	1/4 101
9.5 Entaris Mulie un spieuleria intrie	
9.5.1 Spiediena liknes anstinrināšana	ו02 197
9.6 Sniediena signāla izvade	182 182

10 HemoSphere Alta ClearSight tehnoloģija	184
10.1 HemoSphere Alta ClearSight sistēmas metodika	184
10.1.1 Tilpuma spaiļu metode	184
10.1.2 Physiocal metode	184
10.1.3 Spiediena līknes rekonstrukcija un hemodinamiskā analīze (ClearSight tehnoloģija)	185
10.1.4 Sirds kontrolsensors	185
10.1.5 Krāsas izmaiņas, nejutība vai durstīšana pirksta galā	185
10.1.6 Pārraudzība ar vienu pirksta manšeti	185
10.1.7 Uzraudzība ar divām manšetēm	186
10.1.8 Metodikas atsauces	186
10.2 HemoSphere Alta neinvazīvās sistēmas savienošana	186
10.2.1 Spiediena kontrollera uzlikšana	188
10.2.2 Pirksta manšetes izmēra izvēle	189
10.2.3 Pirkstu manšetes(-šu) uzlikšana	190
10.2.4 Sirds kontrolsensora izmantošana	190
10.2.5 ClearSight tehnoloģijas asinsspiediena mērījumu precizitāte.	
10.2.6 HemoSphere neinvazīvās sistēmas monitoringa problēmu novēršana.	
10 3 Izvēles HRS	193
10 3 1 Nobīdes vērtības atjaunināšana monitoringa laikā	195
10.3.2 HRS lietojuma jestatījuma maina	195
	195
10.5 Physiocal metodes rādīšana	196
10.6 ClearSight sistēmas iestatījumi un manšetes oncijas	106
10.6 1 Mančatos spiediona samazināšanas rožīms	190
10.7 Sirds kontrolsonsora kalibrõšana	197
10.9 Asinsspiediona kalibročana	100
10.0 Asinsspiediena kalibiesana	190
10.9 izejas signais uz pacienta monitoru	
11 Venozās oksimetrijas monitorings	202
11.1 Pārskats par oksimetrijas kabeli	202
11.2 Venozās oksimetrijas uzstādīšana	202
11.3 ln vitro kalibrācija	204
11.3.1 ln vitro kalibrācijas kļūda	205
11.4 ln vivo kalibrācija	205
11.5 Globālā hipoperfūzijas indeksa (GHI) algoritma funkcija	206
11.6 Signāla kvalitātes indikators	206
11.7 Atsaukt venozās oksimetrijas datus	207
11.8 HGB atjaunināšana	208
11.9 HemoSphere oksimetrijas kabeļa atiestatīšana	209
11.10 Jauns katetrs	209
12 HemoSphere Alta audu oksimetrijas pārraudzība	210
12 1 HomoSphere Alta audu Oksimetrijas pārraudzība.	210
12.2 Pärskats par EoroSight oksimetra kaboli	210
12.2 Taiskais pai Tolesigni oksimetra kabela montāžas risinājumi	211
12.2.1 Tolesigni oksimetra kabeja montazas hsinajumi	
12.2.2 Montažas fiksatora popomčana	214
12.2.5 Montazas nesatora nonjenisana.	214
12.5 FOIESIGITE OKSITTETTA KADEja pievietiosatta	213
12.3.1 Sensoru piestiprinasana pacientari	220
12.3.2 Selisolu alvienosalia pec parlauuzidas	
12.3.5 Montolinga apsverunni. 12.3.4 Ādas pārbaudos taimoris	/
12.3.4 Auds parbauues laimeris 12.3.5 Vidājā laika iestatīčana	۵۷۷
12.3.5 VIUEJA IAIKA IESIAIISANA	228
I 2.3.0 Signala kvalitates indikators.	229
12.3.7 Kelativas izmaiņas kopeja nemoglobina — Δ ctHb	229
I 2.3.8 Audu oksimetrijas fiziologijas datu ekrans	
12.4 Edwards algoritms asins hemoglobina merisanai (tHb algoritms)	231
12.4.1 Lietosanas indikacijas	231

12.4.2 Paredzētais lietojums	232
12.4.3 Edwards algoritms asins hemoglobīna mērīšanai: ievades un izvades	232
12.4.4 Kopējā asins hemoglobīna (tHb) parametra rādījums	233
12.4.5 Kalibrēšanas un atkārtotas kalibrēšanas darbības	
12.4.6 Algoritma veiktspējas apstiprināšana	235
12.4.7 Veiktspējas apstiprināšanas rezultāti	237
12.4.8 Problēmu novēršana	238
13 Papildu funkcijas	230
131 Acumen Hypotension Prediction Index (HPI) programmatūras funkcija	239
13.1 Acument hypotension Frediction Index (IFFI) programmaturas functija	
invazīvajā režīmā	230
13 1 2 levads par Acumen Hypotension Prediction Index (HDI) programmatūru peinvazīvaiā	
rožīmā	240
1313 Acumen Hypotension Prediction Index parametru pārskats	240
13.1.4 Acumen Hypotension Prediction Index (HPI) parametru displeis	241
13.1.5 HPI kā galvenais parametrs	242
13.1.5 Hi i ka gaivenais parametis	244
13.1.7 HDI informācijas ioslā	245
13.1.2 Informācijas josla	240
13.1.0 HDI algoritma augstas prioritātes trauksmes paziņojums	240
13.1.2 fili raigoninia augstas phontates trauksinės paziņojunis	240
13.1.10 Hipoterisijas tobezvertibas testatījums	247
13.1.1.2 Klipickā izmantočana	240
13.1.12 Nilliska izitiantosalia	252
13.1.13 rapidu parametri	
naciontiem	256
13 1 15 Klīpiskā validācija ar hipotensijas robežvērtību neinvazīvi nārraudzītiem nacientiem	250
13.1.15 Killiska valuacija al hipotensijas tobezvertibu helitvazivi parraduziteni pacientien 13.1.16 Papildu kliniskie dati	205
	280
13.2 Globālās hipoperfūzijas indeksa (GHI) algoritma funkcija	280
13.2 Globalas hipopertazijas indeksa (Grin) algoritina tarikelja	
13.2.1 Globālās hipoperfūzijas indeksa (GHI) parametra rādījums	287
13.2.2 Giobaldo inpoperiazijas indeksa (Grin) parametra radijariis	282
13.2.5 GHI ka galvenais parametris	283
13.2.4 Gli tradisine	284
13.2.5 Kliniska iziridiriosaria	204
13 3 Smadzenu automātiskās regulācijas indeksa (CAI) algoritms	286
13 3 1 Lietošanas indikācijas	287
13.3.2 Paredzētais lietojums	287
13.3.3 Smadzenu adantīvā indeksa (CAI) parametra rādījums	287
13 3 4 Klīniskā validācija	288
13 3 5 Klīniskās validācijas rezultāti	289
13.4 Atbalstīta šķidrumu pārvaldība.	
13.4.1 levads	
13 4 2 Darbības princips	291
13.4.3 AFM programmatūras funkcijas palīdzības ekrāni	
13.4.4 AFM programmatūras funkcijas sākšana vai restartēšana.	
13.4.5 AFM informācijas panela attēlojums.	
13.4.6 Atbalstītas šķidrumu pārvaldības iestatījumi	
13.4.7 Škidrumu pārvaldība, izmantojot AFM programmatūras funkciju	
13.4.8 Uznirstošais logs ar informāciju par škidruma bolus iniekcijas	
13.4.9 AFM algoritma sesiias pauzēšana vai izbeigšana	
13.4.10 GDT trasēšana AFM algoritma sesijas laikā	
13.4.11 Klīniskā validācija	311
13.4.12 Tikai škidruma mērītāja režīms	
13.5 Labā sirds kambara izsviedes algoritms	318
13.5.1 Lietošanas indikācijas.	
•	

13.5.2 Pacienta kabelu pievienošana	
13.5.3 RVCO kalibrācija (pēc izvēles)	
13.5.4 RVCO klīniskā validācija	
13.5.5 RVCO klīniskās validācijas pētījuma rezultāti	320
13.6 Transpulmonālas termodilūcijas algoritms	
13.6.1 Savienojuma pārskats	
13.6.2 TPTD procedura	
13.6.3 TPTD kopsavilkuma ekrāns	
13.7 Uzlabota parametru trasēšana	
13.7.1 GDT trasēšana	
13.7.2 SV optimizācija	
13.7.3 GDT pārskata lejupielāde	
13.8 Šķidruma reakcijas tests	
13.8.1 Pasīvas kājas pacelšanas tests	
13.8.2 Šķidruma bolus tests	
13.8.3 Vesturiskie testa rezultāti	
14 Problámu povárčana	220
14 Floblemu noversana	
14.1 Ekialia reuzaltia palluziba	
14.2 Moliliola statusa iliukatoli	240
14.5 Spieulenkabeja lauljumi	
14.4 FOTESIGITI OKSITTELIA KADEja SETISOTU GAISITIAS ITIDIKALOTI	
14.5 Spieuleila kontrolleila sakan	
14.6 1 Sictāmas / pārraudzības klūmos / trauksmos	2/12
14.6.2 Dārraudzības problāmu povāršana — ciparu papildtastatūras klūdas	245
14.6.2 Farraduzidas problemu noversana — ciparu papilutastaturas kjudas	246
14.7 HomoSphere Alta Swap Ganz pacienta kabola klūdu zinojumi	
14.7 Tieriosphere Alta Swan-Ganz pacienta kabeja kjudu zirjojurni	
14.7.1 CO Kjulies/Itauksilies	
14.7.3 iCO klūmes/trauksmes	350
14.7.4.20 sekunžu parametru klūdas /brīdinājumi	
14.7.5 Vispārīgo problēmu povēršana	
14.7.5 Visparigo problemu noversana	
14.7.7. Labā sirds kambara izvades (BVCO) algoritma klūmes/trauksmes	255
14.8 Spiedienkabela klūdu zinojumi	
14.0 Spiedienkabeja kjudu zirjojumi	
14.8.2 Arteriālā un sirds labā kambara spiediena klūmes/trauksmes	
14.8.3 Transpulmonālā termodilūcijas algoritma (TPTD) klūmes/trauksmes signāli up	
hidinājumi	361
14 8 4 Athalstītas šķidrumu pārvaldības klūmes/trauksmes	
14.8.5 Smadzenu automātiskās regulācijas indeksa (CAI) algoritma klūmes/trauksmes	364
14.8.6 Vispārīdo problēmu povēršana	365
14 9 ClearSight pārraudzības klūdu ziņojumi	366
1491 Klūmes/trauksmes	366
14 10 Venozās oksimetrijas klūdu zinojumi	372
14 10 1 Venozās oksimetrijas klūmes/trauksmes	372
14 10 2 Venozās oksimetrijas vispārīgo problēmu povēršana	375
14.11 Audu oksimetrijas klūdu zinojumi	
14 11 1 Audu oksimetrijas klūmes/trauksmes	375
14.11.2 Audu oksimetrijas vispārīgo problēmu novēršana.	378
14.11.3 Kopējā hemoglobīna klūmes/trauksmes	378
Pielikums A: Specifikacijas un ierices raksturlielumi	
A. I Pamata veiktspejas parametri	
A.2 HemoSphere Alta uzlabotas monitoringa platformas parametri un specifikacijas	
A.3 HemoSphere Alta monitora akumulatora parametri un specifikacijas	
A.4 memosphere Alta Swan-Ganz pacienta Kabeja parametri un specifikacijas	
A.5 nemosphere spiedienkabėja parametri un specifikacijas	

A 7 HemoSphere Alta ClearSight tehnoloģijas parametri un specifikācijas	A.6 HemoSphere oksimetrijas kabeļa parametri un specifikācijas	388
A.8 HemoSphere Alta ClearSight tehnoloģijas parametri un specifikācijas. 390 A.9 HemoSphere Alta AFM kabeļa parametri un specifikācijas. 391 Pielikums B: Piederumi. 393 B.1 Piederumu araksts. 393 B.2 Papildpiederumu araksts. 394 B.2.1 Stativs uz ritenšiem. 394 B.2.2 Oksimetrijas plaukts. 395 B.2.3 Spiediena kontrollera váks. 395 Pielikums C: Aprēķināto pacienta parametru vienādojumi. 396 Pielikums C: Monitora iestatījumi un noklusējuma iestatījumi. 403 D.1 Pacienta datu ievades diapazons. 403 D.2 Tendenču mēroga noklusējuma robežvērtības. 403 D.3 Parametru rādijums un konfigurējamie trauksmes/mērķa diapazoni. 405 D.4 Trauksmes un mērķa noklusējuma vērtības. 406 D.5 Trauksmju prioritātes limeņi. 407 Pielikums F: Sistēmas apkope, remonts un atbalsts. 410 F.1 Vispārigā apkope. 410 F.3 Platformas kabeļu tirīšana. 411 F.3.1 HemoSphere Alta pacienta kabeļa tīrīšana. 412 F.3.3 HemoSphere Ripa pacienta kabeļa tīrīšana. 412 F.3.4 ForeŠipher oklas pakope. 416 F.3 HemoSphere Ripa pa	A.7 HemoSphere audu oksimetrijas parametri un specifikācijas	388
A.9 HemoSphere Alta AFM kabeļa parametri un specifikācijas	A.8 HemoSphere Alta ClearSight tehnoloģijas parametri un specifikācijas	390
Pielikums B: Piederumi. 393 B.1 Piederumu saraksts. 393 B.2 Papildpiederumu apraksts. 394 B.2.1 Statīvs uz ritenīšiem. 394 B.2.2 Oksimetrijas plaukts. 395 B.2.3 Spiediena kontrollera vāks. 395 Pielikums C: Aprēķināto pacienta parametru vienādojumi. 396 Pielikums D: Monitora iestatījumi un noklusējuma iestatījumi. 403 D.1 Pacienta datu ievades diapazons. 403 D.2 Tendenču mēroga noklusējuma robežvērtības. 403 D.3 Parametru rādījums un konfigurējamie trauksmes/mērķa diapazoni. 405 D.4 Trauksmes un mērķa noklusējuma vertības. 406 D.5 Trauksmju prioritātes līmeņi. 407 Pielikums F: Sistēmas apkope, remonts un atbalsts. 409 Fi.1 Aprēķina konstantes. 409 Pielikums F: Sistēmas apkope, remonts un atbalsts. 410 F.3 Platformas kabeļu tīrīšana. 410 F.3 Platformas kabeļu tīrīšana. 412 F.3.3 HemoSphere okimetrijas kabeļa tīrīšana. 412 F.3.4 Foreštijch toksimetra kabeļa tīrīšana. 413 F.3.4 Foreštijch toksimetra kabeļa tīrīšana. 414 F.5 Zhreģina konstonesora un spiediena kontrollera tīrīš	A.9 HemoSphere Alta AFM kabeļa parametri un specifikācijas	391
B.1 Piederumu saraksts 393 B.2 Papildpiederumu apraksts 394 B.2.1 Stativs uz ritenišem 394 B.2.2 Oksimetrijas plaukts 395 B.2.3 Spiediena kontrollera väks 395 B.2.3 Spiediena kontrollera väks 395 Pielikums C: Aprēķināto pacienta parametru vienādojumi 403 D.1 Pacienta datu ievades diapazons 403 D.2 Tendenču mēroga noklusējuma vebrāvērtības 403 D.3 Parametru rādījums un konfigurējamie trauksmes/mērķa diapazoni 405 D.4 Trauksmes un mērķa noklusējuma vērtības 406 D.5 Trauksmju prioritātes līmeņi 407 Pielikums E: Aprēķina konstantes 409 E.1 Aprēķina konstantes 409 F.1 Vispārīgā apkope, remonts un atbalsts 410 F.2 Monitora un kabeļu tīrīšana 411 F.3.1 HemoSphere spiedienkabeļa tīrīšana 412 F.3.2 HemoSphere spiedienkabeļa tīrīšana 412 F.3.4 HoreSight oksimetri kabeļa un savienotājā tīrīšana 412 F.3.4 HoreSight oksimetra kabeļa tīrīšana 412 F.3.4 ForeSight oksimetra kabeļa tīrīšana 412 F.3.4 ForeSight oksimetra kabeļa tīrīšana 412	Pielikums B: Piederumi	393
B.2 Papildpiederumu apraksts. 394 B.2.1 Statīvs uz ritenīšiem. 394 B.2.2 Oksimetrijas plaukts. 395 B.2.3 Spiediena kontrollera vāks. 395 Pielikums C: Aprēķināto pacienta parametru vienādojumi. 396 Pielikums D: Monitora iestatījumi un noklusējuma iestatījumi. 403 D.1 Pacienta datu ievades diapazons. 403 D.2 Tendenču mēroga noklusējuma robežvērtības. 403 D.3 Parametru rādījums un konfigurējamie trauksmes/mērķa diapazoni. 405 D.4 Trauksmes un mērķa noklusējuma vērtības. 406 D.5 Trauksmju prioritātes līmeņi. 407 Pielikums F: Aprēķina konstantes. 409 E.1 Aprēķina konstanšu vērtības. 409 F.1 Vispārīgā apkope, remonts un atbalsts. 410 F.1 Vispārīgā apkope, remonts un atbalsts. 410 F.3 Platformas kabeļu tirīšana. 412 F.3.2 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.3 HemoSphere spiedienkabeļa tīrīšana. 412 F.3.4 HoroSphere spiedienkabeļa tīrīšana. 413 F.4 Apkope un atbalts. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.7 Profilaktiskā apkope. 415 <td>B.1 Piederumu saraksts</td> <td></td>	B.1 Piederumu saraksts	
B.2.1 Statīvs uz ritenišiem	B.2 Papildpiederumu apraksts	
B.2.2 Oksimetrijas plaukts	B.2.1 Statīvs uz ritenīšiem	394
B.2.3 Spiediená kontrollera väks	B.2.2 Oksimetrijas plaukts	
Pielikums C: Aprēķināto pacienta parametru vienādojumi. 396 Pielikums D: Monitora iestatījumi un noklusējuma iestatījumi. 403 D.1 Pacienta datu ievades diapazons. 403 D.2 Tendenču mēroga noklusējuma robežvērtības. 403 D.3 Parametru rādījums un konfigurējamie trauksmes/mērķa diapazoni. 405 D.4 Trauksmes un mērķa noklusējuma vērtības. 406 D.5 Trauksmju prioritātes līmeņi. 407 Pielikums E: Aprēķina konstantes. 409 E.1 Aprēķina konstanšu vērtības. 406 D.5 Trauksmju prioritātes līmeņi. 407 Pielikums F: Sistēmas apkope, remonts un atbalsts. 409 F.1 Vispārīgā apkope. 410 F.2 Monitora un kabeļu tīrīšana. 411 F.3.1 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.2 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.3 HemoSphere oksimetri kabeļa tīrīšana. 413 F.3.4 ForoSight oksimetra kabeļa tīrīšana. 413 F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrīšana. 413 F.3.4 ForoSight oksimetra kabeļa tīrīšana. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.6 Monitora iznicināšana. 415 <tr< td=""><td>B.2.3 Spiediena kontrollera vāks</td><td>395</td></tr<>	B.2.3 Spiediena kontrollera vāks	395
Pielikums D: Monitora iestatījumi un noklusējuma iestatījumi	Pielikums C: Aprēķināto pacienta parametru vienādojumi	396
D.1 Pacienta datu ievades diapazons. 403 D.2 Tendenču měroga noklusějuma robežvěrtibas. 403 D.3 Parametru rådijums un konfigurějamie trauksmes/měrka diapazoni. 405 D.4 Trauksmes un měrka noklusějuma věrtibas. 406 D.5 Trauksmju prioritátes līmeņi. 407 Pielikums E: Aprēķina konstantes. 409 E.1 Aprēķina konstantsu věrtibas. 409 Pielikums F: Sistēmas apkope, remonts un atbalsts. 410 F.1 Vispärigă apkope, remonts un atbalsts. 410 F.2 Monitora un kabelu tirišana. 410 F.3.2 HemoSphere oksimetrijas kabela tirišana. 412 F.3.2 HemoSphere spiedienkabela tirišana. 412 F.3.3 HemoSphere spiedienkabela tirišana. 413 F.3.4 ForeSight oksimetra kabela tirišana. 414 F.5 Edwards Lifesciences reģionālais birojs. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.7.1 Akumulatoru utilizācija. 415 F.7.2 HRS profilaktiškā apkope. 416 F.7.2 HRS profilaktiškā apkope. 416 F.7.1 Akumulatora apkope. 416 F.7.2 HRS profilaktiškā apkope. 416 F.7.4 Ikumulatora apkope. 417	Pielikums D: Monitora iestatījumi un noklusējuma iestatījumi	403
D.2 Tendenču měroga noklusějuma robežvěrtibas. 403 D.3 Parametru rádřijums un konfigurějamie trauksmes/měrka diapazoni. 405 D.4 Trauksmes un měrka noklusějuma věrtibas. 406 D.5 Trauksmju prioritätes limeņi. 407 Pielikums E: Aprěkina konstantes. 409 E.1 Aprěkina konstanšu vértibas. 409 Pielikums F: Sistēmas apkope, remonts un atbalsts. 410 F.1 Vispärigā apkope. 410 F.2 Monitora un kabeļu tirīšana. 410 F.3 Platformas kabeļu tirīšana. 411 F.3.1 HemoSphere oksimetrijas kabeļa tirīšana. 412 F.3.2 HemoSphere oksimetrijas kabeļa tirīšana. 412 F.3.3 HemoSphere oksimetrijas kabeļa tirīšana. 413 F.4 Apkope un atbalsts. 413 F.4 ForeSight oksimetra kabeļa tirīšana. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.7 Profilaktiskā apkope. 415 F.7.2 HRS profilaktiskā apkope. 416 F.7.3 Heroma iz prope. 416 F.7.4 Hokumulatora upkope. 416 F.7.4 Inkumulatora apkope. 416 F.7.4 Forofilaktiskā apkope. 416 F.7.4 Inkumulatora apkope.	D.1 Pacienta datu ievades diapazons	403
D.3 Parametru rādījums un konfīgurējamie trauksmes/mērķa diapazoni	D.2 Tendenču mēroga noklusējuma robežvērtības	403
D.4 Trauksmes un mērķa noklusējuma vērtības. 406 D.5 Trauksmju prioritātes līmeņi. 407 Pielikums E: Aprēķina konstantes. 409 E.1 Aprēķina konstanšu vērtības. 409 Pielikums F: Sistēmas apkope, remonts un atbalsts. 410 F.1 Vispārīgā apkope. 410 F.2 Monitora un kabeļu tīrīšana. 410 F.3 Platformas kabeļu tīrīšana. 411 F.3.1 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.2 HemoSphere Alta pacienta kabeļa tīrīšana. 413 F.3.3 HemoSphere spiedienkabeļa tīrīšana. 413 F.3.4 ForeSight oksimetra kabeļa tīrīšana. 413 F.3.4 ForeSight oksimetra kabeļa tīrīšana. 413 F.3.4 ForeSight oksimetra kabeļa tīrīšana. 413 F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrīšana. 413 F.4 Apkope un atbalsts. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.7 Profilaktiskā apkope. 416 F.7.2 HRS profilaktiskā apkope. 416 F.7.2 HRS profilaktiskā apkope. 416 F.8 Trauksmes signālu pārbaude. 417 F.9 Garantija. 418 G.3 I Bezvadu u natu tehnoloģij	D.3 Parametru rādījums un konfigurējamie trauksmes/mērka diapazoni	405
D.5 Trauksmju prioritätes līmeņi	D.4 Trauksmes un mērka noklusējuma vērtības	406
Pielikums E: Aprēķina konstantes. 409 E.1 Aprēķina konstanšu vērtības. 409 Pielikums F: Sistēmas apkope, remonts un atbalsts. 410 F.1 Vispārīgā apkope. 410 F.2 Monitora un kabeļu tīrīšana. 410 F.3 Platformas kabeļu tīrīšana. 411 F.3.1 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.2 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.3 HemoSphere spiedienkabeļa tīrīšana. 412 F.3.4 ForeSight oksimetra kabeļa tīrīšana. 413 F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrīšana. 413 F.4 Apkope un atbalsts. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.6 Monitora iznīcināšana. 415 F.7 Profilaktiskā apkope. 416 F.7.2 HRS profilaktiskā apkope. 416 F.8 Trauksmes signālu pārbaude. 417 F.9 Garantija 418 G.1 Ielektromagnētiskā saderība. 418 G.2 Lietošanas instrukcija 418 G.3 Informācija par bezvadu tehnoloģijas pakalpojuma kvalitāte. 423 G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte. 424 G.3.2 Bezvadu du up p	D.5 Trauksmju prioritātes līmeņi	407
E.1 Aprēķina konstanšu vērtības.409Pielikums F: Sistēmas apkope, remonts un atbalsts.410F.1 Vispārīgā apkope.410F.2 Monitora un kabeļu tīrīšana.410F.3 Platformas kabeļu tīrīšana.411F.3.1 HemoSphere oksimetrijas kabeļa tīrīšana.412F.3.2 HemoSphere oksimetrijas kabeļa tīrīšana.412F.3.3 HemoSphere spiedienkabeļa tīrīšana.412F.3.4 ForeSight oksimetra kabeļa tīrīšana.413F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrīšana.413F.4 Apkope un atbalsts.414F.5 Edwards Lifesciences reģionālais birojs.415F.6 Monitora iznīcināšana.415F.7 Profilaktiskā apkope.416F.7.2 HRS profilaktiskā apkope.416F.7.2 HRS profilaktiskā apkope.417Pielikums G: Norādījumi un ražotāja deklarācija.418G.1 Elektromagnētiskā saderība.418G.3 Informācija par bezvadu tehnoloģiju.423G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte.427G.3.2 Bezvadu datu pārraides aizsardzības pasākumi.428G.2 2 Proklomu parkina.428G.2 2 Proklomu parkina.428G.3 2 Bezvadu un vadu tehnoloģiju.428G.3 2 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte.428G.3.2 Bezvadu un vadu tehnoloģiju.428G.3.3 Dromācija par bezvadu tehnoloģiju.428<	Pielikums F: Aprēkina konstantes	
Pielikums F. Sistemas apkope, remonts un atbalsts. 410 F.1 Vispärigä apkope. 410 F.2 Monitora un kabeļu tīrīšana. 410 F.3 Platformas kabeļu tīrīšana. 410 F.3.1 HemoSphere oksimetrijas kabeļa tīrīšana. 411 F.3.2 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.3 HemoSphere oksimetrijas kabeļa tīrīšana. 412 F.3.4 ForeSight oksimetra kabeļa tīrīšana. 413 F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrīšana. 413 F.4 Apkope un atbalsts. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.6 Monitora iznīcināšana. 415 F.7 Profilaktiskā apkope. 416 F.7.2 HRS profilaktiskā apkope. 416 F.7.2 HRS profilaktiskā apkope. 417 F.9 Garantija. 418 G.1 Elektromagnētiskā saderība. 418 G.2 Lietošanas instrukcija. 418 G.3 Informācija par bezvadu tehnoloģiju. 423 G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte. 427 G.3.2 Bezvadu datu pārraides aizsardzības pasākumi. 428	E.1 Aprēkina konstanšu vērtības	409
Pielikums F: Sistemas apkope, remonts un atbalsts		410
F.1 Vispariga apköpe	Pielikums F: Sistemas apkope, remonts un atbaists	410
F.2 Monitora un kabeju tirisana. 410 F.3 Platformas kabeju tirisana. 411 F.3.1 HemoSphere oksimetrijas kabeja tirišana. 412 F.3.2 HemoSphere Alta pacienta kabeja un savienotāja tīrišana. 412 F.3.3 HemoSphere spiedienkabeja tīrišana. 412 F.3.4 ForeSight oksimetra kabeja tīrišana. 413 F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrišana. 413 F.4 Apkope un atbalsts. 414 F.5 Edwards Lifesciences reģionālais birojs. 415 F.6 Monitora iznīcināšana. 415 F.7 Profilaktiskā apkope. 416 F.7.2 HRS profilaktiskā apkope. 416 F.7.2 HRS profilaktiskā apkope. 416 F.8 Trauksmes signālu pārbaude. 417 F.9 Garantija. 418 G.1 Elektromagnētiskā saderība. 418 G.2 Lietošanas instrukcija. 418 G.3.1 Bezvadu un vadu tehnoloģiju. 423 G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte. 427 G.3.2 Bezvadu datu pārraides aizsardzības pasākumi. 428	F. I Vispariga apkope	410
F.3 Platformas kabeju tirisana	F.2 Monitora un Kabeju tirisana.	410
F.3.1 Hemosphere oksimetrijas kabėja tinšana	F.3 Platiormas Kabeju tirisana	411
F.3.2 Hemosphere Alta pacienta kabeja tirišana 412 F.3.3 Hemosphere spiedienkabeja tirišana 412 F.3.4 ForeSight oksimetra kabeja tirišana 413 F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrīšana 413 F.4 Apkope un atbalsts 414 F.5 Edwards Lifesciences reģionālais birojs 415 F.6 Monitora iznīcināšana 415 F.7 Profilaktiskā apkope 416 F.7.1 Akumulatoru utilizācija 416 F.7.2 HRS profilaktiskā apkope 416 F.8 Trauksmes signālu pārbaude 417 F.9 Garantija 417 Pielikums G: Norādījumi un ražotāja deklarācija 418 G.3 Informācija par bezvadu tehnoloģiju 423 G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte 427 G.3.2 Bezvadu datu pārraides aizsardzības pasākumi 428 G.3.2 Bezvadu datu pārraides aizsardzības pasākumi 428	F.3.1 Hemosphere oksimetrijas kabeja unsana	412
F.3.3 Hemosphere spiedienkabeja tirisäna	F.3.2 Hemosphere Alla pacienta kabeja un savienotaja tinsana	412
F.3.4 Föresigni öksimetra kabeja tinsana	F.S.S Hemosphere spiedienkabeja unsana	41Z
F.3.5 Sirds kontrolsensora un spiediena kontrollera unsana	F.3.4 FOIESIGII OKSIIIIelid Kabeja liiisalia	413
F.4 Apköpe un atbansts	F.5.5 Sirus kontroisensora un spiediena kontroilera tinsana	415
F.3 Edwards Enerciences regionalais birojs. 413 F.6 Monitora iznīcināšana. 415 F.6 Monitora iznīcināšana. 415 F.6.1 Akumulatoru utilizācija. 415 F.7 Profilaktiskā apkope. 416 F.7.1 Akumulatora apkope. 416 F.7.2 HRS profilaktiskā apkope. 416 F.8 Trauksmes signālu pārbaude. 417 F.9 Garantija. 417 Pielikums G: Norādījumi un ražotāja deklarācija. 418 G.1 Elektromagnētiskā saderība. 418 G.2 Lietošanas instrukcija. 418 G.3 Informācija par bezvadu tehnoloģiju. 423 G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte. 427 G.3.2 Bezvadu datu pārraides aizsardzības pasākumi. 428 G.3 2 Broblāmu povāršana caitībā ar vajišāku bozvadu caviopojumu līdzāpactāvāčanu. 428	F.4 Aprope un albaists	414 115
F.6.1 Akumulatoru utilizācija	F.5 Edwards Ellesciences regionalais birojs	415
F.7 Profilaktiskā apkope	F 6 1 Akumulatoru utilizācija	/115
F.7.1 Akumulatora apkope	F 7 Profilaktiskā apkopo	415 /15
F.7.2 HRS profilaktiskā apkope	F 7 1 Akumulatora ankone	416
F.8 Trauksmes signālu pārbaude	F 7 2 HRS profilaktiskā apkope	416
F.9 Garantija	F 8 Trauksmes signālu nārbaude	417
Pielikums G: Norādījumi un ražotāja deklarācija	E 9 Garantija	
Pleikums G: Noradijumi un razotaja deklaracija		410
G. 1 Elektromagnetiska saderiba	Pielikums G: Noradijumi un razotaja deklaracija	418
G.3 Problému pověrčana spirtika a svejšku bozvadu savionojumu lidzženastávěčanu 428 G.3. Problému pověrčana spirtiká a svejšku bozvadu savionojumu lidzženastávěčanu 428 G.3. Problému pověrčana spirtiká a svejšku bozvadu savionojumu lidzženastávěčanu 428 G.3. Problému pověrčana spirtiká a svejšku bozvadu savionojumu lidzženastávěčanu 428	G. 1 Elektromagnetiska saderida	418
G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte	G.2 Lietosanas instrukcija	418
G.3.2 Bezvadu un vadu tennologijas pakaipojuma kvalitate	G.3 Informacija par bezvadu tennologiju	423
G.3.2 Dezvadu udlu palialues aizsaluzibās pasākumi	G.S. I bezvadu uli vadu terinologijas pakaipojunia kvalitate	/1204
	G.S.Z Bezvadu ualu partalues alzsaruzibas pasakurni	420 420
G.3.4 Federālās sakaru komisijas (Federal Communication Commission — ECC) paziņojumi	G.3.4 Federālās sakaru komisijas (Federal Communication Commission — ECC) paziņojumi	420
0.5.4 Federalas sakaru konnisijas (Federal Communication Commission — FCC) paziņojumi par traucējumiem 428	o. 5.4 receitaias sakaru kornisijas (receitai Corninunication Corninission — PCC) paziņojumi par traucējumiem	478
G.3.5 Industry Canada pazinoiumi	G.3.5 Industry Canada pazinojumi	
G.3.6 Eiropas Savienības Radioiekārtu direktīvas paziņojumi	G.3.6 Eiropas Savienības Radioiekārtu direktīvas paziņojumi	430

Attēlu saraksts

1-1. attēls. HemoSphere Alta uzlabotās monitoringa platformas hemodinamisko tehnoloģiju savienojumi	34
3-1. attēls. HemoSphere Alta uzlabotā monitora priekšpuses skats	74
3-2. attēls. HemoSphere Alta uzlabotā monitora aizmugures skats	75
3-3. attēls. HemoSphere Alta uzlabotā monitora apakšējais panelis	76
3-4. attēls. HemoSphere Alta uzlabotā monitora kreisais panelis	77
3-5. attēls. HemoSphere Alta uzlabotā monitora strāvas pievades vāks — uzlikšanas darbības	80
3-6. attēls. Palaišanas ekrāns	81
3-7. attēls. Ierīces ID ekrāns	82
4-1. attēls. HemoSphere Alta uzlabotā monitora ekrāna funkcijas	84
4-2. attēls. Navigācijas josla un ikonas	85
4-3. attēls. Grafisko tendenču ekrāns	88
4-4. attēls. Tabulāro tendenču ekrāns	89
4-5. attēls. Galveno parametru atlases elementu konfigurēšanas izvēlnes piemērs	92
4-6. attēls. Parametra elements	93
4-7. attēls. Dalīts ekrāns ar liela mēroga fizioloģijas atlasi	95
4-8. attēls. Dalīts ekrāns ar palielinātu fizioloģijas atlasi	96
4-9. attēls. Mērķa pozicionēšanas ekrāns	98
4-10. attēls. Kontrolpults uzraudzības ekrāns	99
4-11. attēls. Balss klausīšanās stāvoklis (tikai angļu valodā)	101
4-12. attēls. Klīniskie rīki — izvēlne lejaukšanās	115
4-13. attēls. Statusa joslas — ikonas	119
4-14. attēls. Statusa joslas ātro iestatījumu izvēlne	120
4-15. attēls. Statusa josla	121
5-1. attēls. Primāro iestatījumu ekrāns	125
5-2. attēls. Jauna vai iepriekšējā pacienta ekrāns	127
5-3. attēls. Jauna pacienta datu ekrāns	128
6-1. attēls. Pielāgotu trauksmes/mērķa iestatījumu ekrāns	137
6-2. attēls. Atsevišķu parametru trauksmju un mērķa rādītāju iestatīšana	139
8-1. attēls. Pārskats par HemoSphere Alta Swan-Ganz pacienta kabeļa savienojumiem	149

8-2. attēls. Pārskats par CO savienojumu	. 151
8-3. attēls. Pārskats par iCO savienojumu	. 155
8-4. attēls. iCO sānu panelis — jauna kopas konfigurācijas izvēlne	156
8-5. attēls. Termodilūcijas kopsavilkuma ekrāns	160
8-6. attēls. Pārskats par EDV/RVEF savienošanu	161
9-1. attēls. HemoSphere spiedienkabelis	166
9-2. attēls. PAOP mērījuma ilustrācija	175
9-3. attēls. Viedā ķīļa PAOP mērījuma piemērs ar spontānās elpošanas (A) un mehāniskās ventilācijas (B) ievades datiem	175
9-4. attēls. Rediģēt ķīli	. 179
9-5. attēls. Nulles ekrāns — kabeļa kanālu spiediena nullēšana	182
10-1. attēls. HemoSphere neinvazīvās sistēmas savienojumu apskats	187
10-2. attēls. Spiediena kontrollera uzlikšana	189
10-3. attēls. Manšetes izmēra izvēle	190
10-4. attēls. Sirds kontrolsensora izmantošana	191
10-5. attēls. Vertikālās nobīdes ievades ekrāns	194
10-6. attēls. BP kalibrēšanas sānu panelis	. 198
10-7. attēls. Spiediena izvade uz ārējo monitoru	. 200
11-1. attēls. Pārskats par venozās oksimetrijas savienojumu	203
12-1. attēls. ForeSight oksimetra kabeļa skats no priekšpuses	. 211
12-2. attēls. ForeSight oksimetra kabeļa skats no mugurpuses	211
12-3. attēls. Montāžas fiksatora stiprinājuma punkti	212
12-4. attēls. Kabeļa korpuss — montāžas fiksatora stiprinājuma punkti	212
12-5. attēls. Montāžas fiksatora vertikāla piestiprināšana	213
12-6. attēls. Montāžas fiksatora piestiprināšana horizontāli	214
12-7. attēls. Montāžas fiksatora noņemšana	215
12-8. attēls. Audu oksimetrijas pārraudzības savienojuma pārskats	216
12-9. attēls. ForeSight oksimetra kabeļa statusa LED indikators	218
12-10. attēls. Aizsargpārklājuma noņemšana no sensora	222
12-11. attēls. Sensoru novietojums (smadzenēm)	222
12-12. attēls. Sensoru novietojums (citiem audiem, nevis smadzenēm)	224
12-13. attēls. Sensora pievienošana sensora kabeļa savienotājam	. 226

12-14. attēls. Sensora pievienošana ForeSight oksimetra kabelim — kanāla statusa LED indikators	226
12-15. attēls. Audu oksimetrijas fizioloģijas datu ekrāni	230
12-16. attēls. Edwards algoritms asins hemoglobīna mērīšanai (tHb algoritms): bloku diagrammas	232
12-17. attēls. tHb parametra rādījums	233
12-18. attēls. tHb parametra rādījums pārraudzības sākumā	234
12-19. attēls. tHb parametra atkārtotas kalibrācijas brīdinājums	234
12-20. attēls. Bland-Altman diagrammas parametram tHb, salīdzinot ar asins gāzu analizatoru parametram tHb	237
13-1. attēls. HPI galvenā rādītāja elements	245
13-2. attēls. HPI galvenais parametrs kontrolpults ekrānā	245
13-3. attēls. Informācijas josla ar HPI	246
13-4. attēls. HPI augstas prioritātes trauksmes paziņojums	247
13-5. attēls. HPI parametra hipotensijas robežvērtības iestatījumu ekrāns	248
13-6. attēls. HPI algoritma sānu panelis — relāciju skats	250
13-7. attēls. HPI viedo tendenču trauksmes paziņojums	251
13-8. attēls. HPI algoritma iestatījumu izvēlne	252
13-9. attēls. Bland-Altman diagrammas SVV, PPV un Eadyn	256
13-10. attēls. GHI galvenā parametra elements	283
13-11. attēls. GHI galvenā parametra kontrolpults ekrāns	283
13-12. attēls. CAI galvenā parametra tendenču rādījums un parametra elements	288
13-13. attēls. AFM algoritma informācijas panelis — sesijas inicializācija	295
13-14. attēls. Acumen IQ šķidruma mērītāja un HemoSphere Alta AFM kabeļa savienojuma pārskats	299
13-15. attēls. Swan-Ganz IQ katetra savienojuma pārskats	319
13-16. attēls. RVCO kalibrēto galveno parametru elements	319
13-17. attēls. Transpulmonālās termodilūcijas (TPTD) algoritma pacienta kabeļa savienojumu pārskat	s 323
13-18. attēls. TPTD procedūra	325
13-19. attēls. Pārskatiet TPTD kopu un skatiet rezultātus	326
13-20. attēls. GDT izvēlnes ekrāns — parametru atlase	328
13-21. attēls. GDT izvēlnes ekrāns — mērķa atlase	328
13-22. attēls. GDT — aktīvās trasēšanas sākšana	329
13-23. attēls. GDT — aktīvā trasēšana	329
13-24. attēls. Sānu panelis Šķidruma reakcijas tests — galvenās izvēlnes ekrāns	332

13-25. attēls. Šķidruma reakcijas tests — ekrāns Rezultāti	335
14-1. attēls. HemoSphere Alta uzlabotā monitoringa platforma LED indikatori	339
14-2. attēls. Spiedienkabeļa LED indikators (tikai HEMPSC100)	340
14-3. attēls. ForeSight oksimetra kabeļa LED indikatori	341
14-4. attēls. Spiediena kontrollera LED indikatori	342
A-1. attēls. Spektrālais izstarojums un gaismas emisijas atveres atrašanās vieta	391
B-1. attēls. Spiediena kontrollera vāka uzlikšana	395
F-1. attēls. Spiediena kontrollera noņemšana no joslas	414

Tabulu saraksts

1-1. tabula. HemoSphere Alta Swan-Ganz pacienta kabelim pieejamo parametru saraksts	28
1-2. tabula. HemoSphere oksimetrijas kabelim pieejamo parametru saraksts	28
1-3. tabula. HemoSphere Alta Swan-Ganz pacienta kabelim ar oksimetrijas kabeli pieejamo parametru saraksts	29
1-4. tabula. HemoSphere Alta Swan-Ganz pacienta kabelim ar HemoSphere spiedienkabeli vai HemoSphere Alta monitoru — spiedienkabeli pieejamo parametru saraksts	29
1-5. tabula. HemoSphere Alta Swan-Ganz pacienta kabelim ar diviem HemoSphere spiedienkabeļiem vai HemoSphere Alta monitoru — spiedienkabeļiem pieejamo parametru saraksts	30
1-6. tabula. HemoSphere spiedienkabelim/HemoSphere Alta monitoram — spiedienkabelim pieejamo parametru saraksts	30
1-7. tabula. HemoSphere spiedienkabelim/HemoSphere Alta monitoram — spiedienkabelim pieejamo AFM izvadīto datu saraksts	31
1-8. tabula. HemoSphere spiedienkabelim vai HemoSphere Alta monitoram — spiedienkabelim ar oksimetrijas kabeli pieejamo parametru saraksts	32
1-9. tabula. ForeSight oksimetrijas kabelim pieejamo parametru saraksts	32
1-10. tabula. HemoSphere spiedienkabelim vai HemoSphere Alta monitoram — spiedienkabelim ar ForeSight oksimetrijas kabeli pieejamo parametru saraksts	32
1-11. tabula. HemoSphere ClearSight tehnoloģijai pieejamo parametru saraksts	33
1-12. tabula. HemoSphere ClearSight tehnoloģijai ar oksimetrijas kabeli pieejamo parametru saraksts	33
1-13. tabula. HemoSphere Alta pārraudzības platformas konfigurācijās pieejamie tehnoloģiju savienojumi	34
1-14. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa parametru aprakstsa	35
1-15. tabula. HemoSphere spiedienkabeļa galveno parametru aprakstsapraksts	37
1-16. tabula. HemoSphere oksimetrijas kabeļa parametru apraksts	39
1-17. tabula. ForeSight oksimetra kabeļa parametru apraksts	39
1-18. tabula. HemoSphere ClearSight tehnoloģijas galveno parametru apraksts	40
1-19. tabula. Operatora rokasgrāmatas formatējums	41
1-20. tabula. Akronīmi, saīsinājumi	42
2-1. tabula. Monitora ekrāna simboli	59
2-2. tabula. Simboli uz izstrādājumu marķējuma	66
2-3. tabula. Piemērojamie standarti	69
3-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas konfigurācijas	71
3-2. tabula. Kabeļi un katetri, kas ir nepieciešami parametru monitoringam, izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli	72

HemoSphere Alta uzlabotā monitoringa platforma

3-3. tabula. Pieejamie sensori parametru pārraudzībai, izmantojot HemoSphere spiedienkabeli/ HemoSphere Alta monitoru — spiedienkabeli	73
3-4. tabula. Pirksta manšetes opcijas pārraudzības parametriem, izmantojot neinvazīvu ClearSight tehnoloģiju	73
3-5. tabula. Katetri, kas ir nepieciešami parametru pārraudzībai, izmantojot HemoSphere oksimetrijas kabeli	73
3-6. tabula. Nepieciešamie piederumi parametru pārraudzībai ar ForeSight oksimetra kabeli	73
4-1. tabula. CVP vērtības prioritātes noteikšana	94
4-2. tabula. HemoSphere Alta uzlabotās monitoringa platformas rokas žestu komandas	100
4-3. tabula. HemoSphere Alta uzlabotās monitoringa platformas balss komandas (tikai angļu valodā)	102
4-4. tabula. Pārskatītie notikumi	106
4-5. tabula. lejaukšanās veidi	116
4-6. tabula. Akumulatora statuss	120
5-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas paroles līmeņi	125
5-2. tabula. Papildu iestatījumu izvēlnes navigācija un paroles aizsardzība	125
5-3. tabula. Datu eksportēšanas izvēlnes navigācija un paroles aizsardzība	126
5-4. tabula. CO/spiediena vidējais laiks un rādījuma atjaunināšanas ātrums	131
6-1. tabula. Vizuālā trauksmes stāvokļa indikatora krāsas	133
6-2. tabula. Mērķa statusa indikatoru krāsas	135
6-3. tabula. Pacienta/pielāgotu trauksmes/mērķa iestatījumu ekrāns	136
6-4. tabula. Mērķa noklusējuma vērtības	136
7-1. tabula. Wi-Fi savienojuma statuss	144
7-2. tabula. HemoSphere Remote lietotnes savienojamības statuss	146
8-1. tabula. Pieejamie HemoSphere Alta Swan-Ganz pacienta kabeļa parametri un nepieciešamie savienojumi	149
8-2. tabula. Nestabilu termisko signālu laika intervāli CO trauksmju un kļūmju ziņojumiem	152
9-1. tabula. HemoSphere spiedienkabeļa konfigurācijas un pieejamie galvenie parametri	166
9-2. tabula. Ķīļa indekss	179
9-3. tabula. PAOP identifikācijas veiktspējas rezultāti*	180
9-4. tabula. PAOP mērījumu veiktspējas rezultāti*	180
9-5. tabula. PAOP identifikācijas veiktspējas rezultāti pacientiem ar vārstuļu darbības traucējumiem, HCP apstiprinātu aritmiju, katetra kustību un sirds mazspēju*	180
9-6. tabula. PAOP mērījumu veiktspējas rezultāti pacientiem ar vārstuļu darbības traucējumiem, HCP apstiprinātu aritmiju, katetra kustību un sirds mazspēju*	181

10-1. tabula. 95% ticamības intervāls (TI) atkārtotiem asinsspiediena mērījumiem no tā paša pacienta (atkārtota paraugu ņemšana saskaņā ar butstrapa metodi)	192
10-2. tabula. Arteriālā spiediena līknes SQI līmeņi	195
10-3. tabula. Physiocal metodes intervāla statuss	196
10-4. tabula. BP kalibrēšanas veiktspējas dati	199
10-5. tabula. Pacienta monitora savienojumu simboli	200
11-1. tabula. In vitro kalibrācijas opcijas	204
11-2. tabula. In vivo kalibrēšanas opcijas	206
11-3. tabula. Signāla kvalitātes indikatora līmeņi	206
12-1. tabula. Audu oksimetrijas sensoru atrašanās vietas	218
12-2. tabula. Sensora izvēles matrica	221
12-3. tabula. StO ₂ validācijas metodika	228
12-4. tabula. tHb parametra rādījums	233
12-5. tabula. Pacientu demogrāfiskie dati, kas izmantoti verifikācijas testēšanai	235
12-6. tabula. RMSE un Bland-Altman analīzes rezultāti, salīdzinot tHb ar atsauces asins gāzu analizatora mērījumiem	237
12-7. tabula. Statistiskā analīze atkārtotas kalibrācijas atzīmes biežuma novērtēšanai	237
12-8. tabula. tHb kalibrācijas un atkārtotas kalibrācijas problēmu novēršanas ziņojumi	238
13-1. tabula. HPI displeja konfigurācijas	242
13-2. tabula. HPI vērtības grafiskie un skaņas displeja elementi	243
13-3. tabula. HPI salīdzinājumā ar citiem galvenajiem parametriem: līdzības un atšķirības	244
13-4. tabula. HPI parametru statusa krāsas	245
13-5. tabula. HPI viedo trauksmju parametru noklusējuma robežvērtības	251
13-6. tabula. dP/dt precizitātes salīdzinājums attiecībā uz minimāli invazīvi un neinvazīvi uzraudzītiem ķirurģiskajiem pacientiem	254
13-7. tabula. 95% ticamības intervāla (TI) rezultāti nobīdei un vienošanās robežai (LoA)	255
13-8. tabula. Pacientu demogrāfiskā informācija (minimāli invazīvi pārraudzīti ķirurģiski pacienti, N=1141)	257
13-9. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (minimāli invazīvi pārraudzīti ķirurģiskie pacienti)	257
13-10. tabula. Ķirurģisku pacientu raksturlielumi (minimāli invazīvi, N=1141)	257
13-11. tabula. Pacientu demogrāfijas informācija (minimāli invazīvi pārraudzīti neķirurģiski pacienti, N=672)	258
13-12. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (minimāli invazīvi pārraudzīti nekirurģiskie pacienti)	258

13-13. tabula. Neķirurģisku pacientu raksturlielumi (minimāli invazīvi, N=672)	258
13-14. tabula. Klīniskā validācijas pētījuma rezultāti* (minimāli invazīvi pārraudzīti ķirurģiskie pacienti).	259
13-15. tabula. Klīniskā validācijas pētījuma rezultāti* (minimāli invazīvi pārraudzīti neķirurģiskie pacienti)	260
13-16. tabula. Notikumu rādītāju analīze (ķirurģiskie, minimāli invazīvi, N=1141)	261
13-17. tabula. Notikumu rādītāju analīze (neķirurģiskie, minimāli invazīvi, N=672)	262
13-18. tabula. Pacientu demogrāfiskā informācija (neinvazīvi pārraudzīti neķirurģiski pacienti, N=927)	264
13-19. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (neinvazīvi pārraudzīti ķirurģiskie pacienti)	264
13-20. tabula. Ķirurģisku pacientu raksturlielumi (neinvazīvi, N=927)	264
13-21. tabula. Pacientu demogrāfijas informācija (neinvazīvi pārraudzīti neķirurģiski pacienti, N=424)	265
13-22. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (neinvazīvi pārraudzīti neķirurģiskie pacienti)	265
13-23. tabula. Neķirurģisku pacientu raksturlielumi (neinvazīvi, N=424)	265
13-24. tabula. Klīniskā validācijas pētījuma rezultāti* (neinvazīvi pārraudzīti ķirurģiskie pacienti)	267
13-25. tabula. Klīniskā validācijas pētījuma rezultāti* (neinvazīvi pārraudzīti neķirurģiskie pacienti)	267
13-26. tabula. Notikumu rādītāju analīze (ķirurģiskie, neinvazīvi, N=927)	268
13-27. tabula. Notikumu rādītāju analīze (neķirurģiskie, neinvazīvi, N=424)	270
13-28. tabula. HPI prospektīvo pacientu atlases kritēriji	272
13-29. tabula. MPOG vēsturiskās kontroles pacientu atlases kritēriji	273
13-30. tabula. Pacienta demogrāfiskie dati (MPOG pētījums)	273
13-31. tabula. Procedūras tips (HPI)	274
13-32. tabula. Operācijas tips pēc CPT grupēšanas	275
13-33. tabula. Uztvērēja operatora raksturlīkne (ROC) HPI pacientiem (N = 482)*	276
13-34. tabula. Vidējais IOH ilgums — primārais efektivitātes mērķa kritērijs	276
13-35. tabula. Hipotensijas operācijas laikā AUC — ITT, pivotālie pacienti	276
13-36. tabula. Efektivitāte, iedalot pēc MAP līmeņa, HPI pētījums pret MPOG vēsturisko kontroli	277
13-37. tabula. Pacientu un iejaukšanās gadījumu biežuma modelis pēc HPI robežvērtības	278
13-38. tabula. HPI pētījums — 30 dienu pēcoperācijas salikto mērķa kritēriju komponenti — CC analīzes populācija (pivotālie pacienti, n = 400)	278
13-39. tabula. Uzturēšanās ilgums	279
13-40. tabula. GHI displeja konfigurācijas	281
13-41. tabula. GHI vērtības grafiskie un skaņas displeja elementi	282

13-42. tabula. GHI parametra statusa krāsas	283
13-43. tabula. Pacientu numuri GHI algoritma klīniskās validācijas datu kopās	284
13-44. tabula. Pacienta demogrāfiskie dati un ICU diagnoze (ICU pacienti, N=108)	285
13-45. tabula. Pacientu demogrāfijas informācija un operācijas veidi (ķirurģiski pacienti, N=189)	285
13-46. tabula. Klīniskās validācijas pētījuma rezultāti — visi pacienti*	286
13-47. tabula. Vispārīgās interpretācijas un ieteiktās darbības attiecībā uz CAI vērtībām	288
13-48. tabula. Pacienta demogrāfiskie dati	288
13-49. tabula. ROC analīzes rezultāti klīniskajiem datiem (N=50)	289
13-50. tabula. CAI kļūdu matrica norādītajai robežvērtībai 45	289
13-51. tabula. Klīnisko datu laiks procentuālā izteiksmē, kad CAI < 45 un CAI ≥ 45	290
13-52. tabula. ROC analīzes rezultāti UC Davis klīniskajiem datiem (N=9)	290
13-53. tabula. ROC analīzes rezultāti Northwestern University klīniskajiem datiem (N=18)	290
13-54. tabula. ROC analīzes rezultāti Amsterdam UMC klīniskajiem datiem (N=23)	290
13-55. tabula. AFM algoritma stāvokļi	291
13-56. tabula. AFM algoritma šķidruma statusa ikonas	297
13-57. tabula. Pacientu demogrāfija	312
13-58. tabula. AFM algoritma reakcijas ātrums pēc bolus tipa	312
13-59. tabula. AFM veiktspēja pēc bolus injekcijas tilpuma (ml)	313
13-60. tabula. AFM funkcijas precizitātes rezultāti (bolus līmenis)	314
13-61. tabula. AFM algoritmu ieteikumu biežums stundā**	314
13-62. tabula. Šķidruma bolus injekciju pilnīga uzskaite	315
13-63. tabula. Iemesli bolus injekciju atmešanai (analīze noraidīta) galvenajā protokola grupā	315
13-64. tabula. lemesli ieteikumu noraidīšanai galvenajā protokola grupā	315
13-65. tabula. Pacientu numuri RVCO algoritma klīniskās apstiprināšanas datu kopās	320
13-66. tabula. Pacientu parametri (validācijas datu kopa, N=370)	320
13-67. tabula. Klīniskās validācijas pētījuma rezultāti (nekalibrēts stāvoklis)*	321
13-68. tabula. Klīniskās validācijas pētījuma rezultāti (kalibrēts ar iCO)*	321
13-69. tabula. leteicamie injektāta tilpumi	324
13-70. tabula. Transpulmonālās termodilūcijas intermitējošie parametri	327
13-71. tabula. GDT mērķa statusa indikatoru krāsas	330
14-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas vizuālais trauksmes indikators	339
14-2. tabula. HemoSphere Alta uzlabotās monitoringa platformas barošanas indikators	340

14-3. tabula. Spiedienkabeļa gaismas indikators (tikai HEMPSC100)	340
14-4. tabula. ForeSight oksimetra kabeļa LED sakaru indikatori	341
14-5. tabula. Spiediena kontrollera sakaru indikatori*	342
14-6. tabula. Pārraudzības kļūmes/trauksmes	343
14-7. tabula. Ciparu papildtastatūras kļūdas	345
14-8. tabula. HemoSphere Remote lietotnes savienojamības kļūdas	346
14-9. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa CO kļūmes/trauksmes	347
14-10. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa EDV un SV kļūmes/trauksmes	349
14-11. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa iCO kļūmes/trauksmes	350
14-12. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa 20 s parametru kļūdas/brīdinājumi	352
14-13. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa vispārīgo problēmu novēršana	353
14-14. tabula. Viedā ķīļa kļūmes/trauksmes	354
14-15. tabula. RVCO kļūmes/trauksmes	355
14-16. tabula. RVCO brīdinājums	357
14-17. tabula. Vispārīgās spiedienkabeļa kļūmes/trauksmes	357
14-18. tabula. HemoSphere spiedienkabeļa ART un RVP kļūmes/trauksmes	359
14-19. tabula. HemoSphere spiediena kabeļa TPTD kļūmes/trauksmes	361
14-20. tabula. HemoSphere spiedienkabeļa TPTD brīdinājumi	362
14-21. tabula. HemoSphere spiedienkabeļa AFM kļūmes/trauksmes	362
14-22. tabula. HemoSphere spiedienkabeļa AFM brīdinājumi	364
14-23. tabula. HemoSphere spiediena kabeļa CAI kļūmes/trauksmes	364
14-24. tabula. HemoSphere spiedienkabeļa CAI brīdinājumi	365
14-25. tabula. HemoSphere spiedienkabeļa vispārīgo problēmu novēršana	365
14-26. tabula. ClearSight pārraudzības kļūmes/trauksmes	366
14-27. tabula. ClearSight pārraudzības brīdinājumi	370
14-28. tabula. ClearSight pārraudzības vispārīga problēmu novēršana	371
14-29. tabula. Venozās oksimetrijas kļūmes/trauksmes	372
14-30. tabula. Venozās oksimetrijas vispārīgo problēmu novēršana	375
14-31. tabula. Audu oksimetrijas kļūmes/trauksmes	375
14-32. tabula. Audu oksimetrijas vispārīgo problēmu novēršana	378
14-33. tabula. Kopējā hemoglobīna kļūmes/trauksmes	378

HemoSphere Alta uzlabotā monitoringa platforma

A-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas pamata veiktspēja — pastāvīga un īslaicīga elektromagnētiskā parādība	380
A-2. tabula. HemoSphere Alta uzlabotā monitora fizikālie un mehāniskie parametri	382
A-3. tabula. HemoSphere Alta uzlabotās monitoringa platformas vides specifikācijas	382
A-4. tabula. HemoSphere Alta uzlabotās monitoringa platformas transportēšanas vides specifikācijas	383
A-5. tabula. HemoSphere Alta uzlabotās monitoringa platformas tehniskie parametri	383
A-6. tabula. HemoSphere Alta monitora akumulatora tehniskie parametri	384
A-7. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa fizikālie parametri	385
A-8. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa parametru mērījumu specifikācijas	385
A-9. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa 20 sekunžu plūsmas parametra mērījumu specifikācijas*	386
A-10. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa RVCO algoritma parametra mērījumu specifikācijas	386
A-11. tabula. Transpulmonālas termodolūcijas algoritma parametru mērījumu specifikācijas	386
A-12. tabula. HemoSphere un HemoSphere Alta spiedienkabeļa fizikālie parametri	386
A-13. tabula. HemoSphere un HemoSphere Alta spiedienkabeļa parametru mērījumu specifikācijas	387
A-14. tabula. HemoSphere oksimetrijas kabeļa fizikālie parametri	388
A-15. tabula. HemoSphere oksimetrijas kabeļa parametru mērījumu specifikācijas	388
A-16. tabula. ForeSight oksimetra kabeļa fizikālie parametri	388
A-17. tabula. ForeSight oksimetra kabeļa parametru mērījumu specifikācijas	389
A-18. tabula. HemoSphere Alta ClearSight tehnoloģijas parametru mērījumu specifikācijas	390
A-19. tabula. Edwards pirksta manšetes parametri	390
A-20. tabula. HemoSphere Alta AFM kabeļa fizikālie parametri	391
A-21. tabula. HemoSphere Alta AFM kabeļa ekspluatācijas vides specifikācijas	391
A-22. tabula. HemoSphere Alta AFM kabeļa transportēšanas vides specifikācijas	391
A-23. tabula. HemoSphere Alta AFM kabeļa parametru mērījumu specifikācijas	392
B-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas elementi	393
C-1. tabula. Sirds un oksigenācijas profila vienādojumi	396
D-1. tabula. Informācija par pacientu	403
D-2. tabula. Grafisko tendenču parametru mēroga noklusējuma vērtības	403
D-3. tabula. Konfigurējamie parametru trauksmes un rādīšanas diapazoni	405
D-4. tabula. Parametru sarkanā līmeņa trauksmes un mērķa noklusējuma vērtības	406
D-5. tabula. Parametru trauksmes signāli, kļūmes un trauksmes prioritātes	407

E-1. tabula. Vannas temperatūras zondes aprēķina konstantes	.409
G-1. tabula. Elektromagnētiskās emisijas	.419
G-2. tabula. Norādījumi un ražotāja deklarācija — noturīgums pret RF bezvadu sakaru aprīkojuma iespaidu	.419
G-3. tabula. leteicamie atstatumi starp portatīvajām un mobilajām RF sakaru iekārtām un HemoSphere Alta uzlaboto monitoringa platformu	.420
G-4. tabula. Vairāku bezvadu savienojumu līdzāspastāvēšana, apstarotās bezatbalss kameras (RAC) rezultāti — normālas darbības režīms (2,4, 5 un 6 GHz WiFi) HemoSphere Alta uzlabotajam monitoram (EUT) ar neparedzēta signāla klātbūtni	. 421
G-5. tabula. Vairāku bezvadu savienojumu līdzāspastāvēšana, apstarotās bezatbalss kameras (RAC) rezultāti — normālas darbības režīms (2,4, 5 un 6 GHz Wi-Fi) palīgierīcei (maršrutētājam) ar neparedzēta signāla klātbūtni	.421
G-6. tabula. Elektromagnētiskais noturīgums (ESD, EFT, pārspriegums, kritumi un magnētiskais lauks)	.422
G-7. tabula. Elektromagnētiskais noturīgums (izstarotās un vadītās RF)	.423
G-8. tabula. Informācija par HemoSphere Alta monitora bezvadu tehnoloģiju	.424

Rokasgrāmatas lietošana

Lietotājiem un/vai pacientiem par jebkādiem nopietniem incidentiem ir jāziņo ražotājam un atbildīgajai iestādei dalībvalstī, kurā atrodas lietotājs un/vai pacients.

Edwards HemoSphere Alta uzlabotās monitoringa platformas lietotāja rokasgrāmatai ir 14 nodaļas un 7 pielikumi. Šīs rokasgrāmatas attēli ir paredzēti tikai atsaucei, un pastāvīgas programmatūras uzlabošanas dēļ, iespējams, ka tie nav precīzs ekrāna atainojums.

Uzmanīgi izlasiet šo lietošanas instrukciju, kurā ir ietverta informācija par brīdinājumiem, piesardzības pasākumiem un atlikušajiem riskiem, kas attiecas uz šo medicīnisko ierīci.

BRĪDINĀJUMS

Pirms Edwards HemoSphere Alta uzlabotās monitoringa platformas lietošanas mēģinājuma uzmanīgi izlasiet šo lietotāja rokasgrāmatu.

Skatiet katram saderīgajam piederumam pievienotās lietošanas instrukcijas, pirms lietojat šos piederumus kopā ar HemoSphere Alta uzlaboto monitoringa platformu.

UZMANĪBU

Pirms lietošanas pārbaudiet HemoSphere Alta uzlaboto monitoringa platformu un visus kopā ar to lietotos piederumus un aprīkojumu, lai pārliecinātos, ka tie nav bojāti. Bojājumi var būt plaisas, skrāpējumi, iespiedumi, atklāti elektriskie kontakti vai jebkādas iespējamu korpusa bojājumu pazīmes.

BRĪDINĀJUMS

Lai nepieļautu traumas pacientam vai lietotājam, platformas bojājumus vai mērījumu neprecizitātes, nelietojiet bojātus vai nesaderīgus platformas piederumus, komponentus vai kabeļus.

Nodaļa	Apraksts
1	levads: sniedz pārskatu par HemoSphere Alta uzlaboto monitoringa platformu.
2	Drošība un simboli : ietver BRĪDINĀJUMUS, PIESARDZĪBAS PASĀKUMUS un PIEZĪMES, kas atrodamas rokasgrāmatā, kā arī uz HemoSphere Alta uzlabotās monitoringa platformas un piederumiem atrodamo etiķešu attēlus.
3	Uzstādīšana un iestatīšana : sniedz informāciju par pirmreizējo HemoSphere Alta uzlabotās monito- ringa platformas un savienojumu uzstādīšanu.
4	<i>HemoSphere Alta uzlabotās monitoringa platformas navigācija</i> : sniedz informāciju par pārraudzī- bas ekrāna skatiem.
5	<i>Lietotāja interfeisa iestatījumi</i> : sniedz informāciju par dažādiem displeja iestatījumiem, tostarp paci- enta informāciju, valodu un starptautiskajām mērvienībām, brīdinājuma signālu skaļumu, sistēmas laiku un sistēmas datumu. Turklāt tajā sniegti norādījumi par ekrāna izskata atlasi.
6	Papildu iestatījumi : nodrošina informāciju par papildu iestatījumiem, tostarp trauksmes mērķiem, grafiskajiem mērogiem, seriālā porta uzstādīšanu un opciju Demonstrācijas režīms.
7	Datu eksportēšana un savienojamība : sniedz informāciju par monitora savienojamību pacientu un klīnisko datu pārsūtīšanai.
8	Swan-Ganz tehnoloģijas pārraudzība : sniedz aprakstu par nepārtrauktas sirds izsviedes, intermitējo- šas sirds izsviedes un labā kambara beigu diastoliskā tilpuma pārraudzības, iestatīšanas un lietošanas procedūrām, lietojot Swan-Ganz tehnoloģiju.
9	Spiedienkabeļa pārraudzība : ir aprakstītas asinsvadu spiediena monitoringa aprīkojuma iestatīšanas un lietošanas procedūras.

Nodaļa	Apraksts
10	ClearSight tehnoloģijas pārraudzība : apraksta ClearSight tehnoloģijas metodiku un sniedz instrukcijas par pacientu pārraudzības aprīkojuma iestatīšanu un izmantošanu, kā arī par neinvazīvā asinsspiediena, sirds izsviedes, sistoles tilpuma, sistoles tilpuma variācijas un sistēmiskās asinsvadu pretestības mērīšanu.
11	Venozās oksimetrijas monitorings : ir aprakstīts oksimetrijas (skābekļa piesātinājuma) mērījumu aprī- kojuma kalibrācijas un lietošanas procedūras
12	Audu oksimetrijas monitorings : ir aprakstītas ForeSight audu oksimetrijas monitoringa iestatīšanas un lietošanas procedūras
13	<i>Klīniskie rīki</i> : apraksta HemoSphere Alta uzlabotās monitoringa platformas klīniskos rīkus un algorit- mus
14	Palīdzība un problēmu novēršana : ir aprakstīta Palīdzība izvēlne un sniegts kļūmju, trauksmju un ziņojumu saraksts, kurā ir norādīti iemesli un ieteicamās darbības

Pielikums	Apraksts
Α	Specifikācijas un ierīces raksturlielumi
В	Piederumi
С	Aprēķināto pacienta parametru vienādojumi
D	Monitora iestatījumi un noklusējuma iestatījumi
E	Aprēķina konstantes
F	Sistēmas apkope, remonts un atbalsts
G	Norādījumi un ražotāja deklarācija

levads

Saturs

Šīs rokasgrāmatas mērķis	24
Lietošanas indikācijas	24
Lietošanas kontrindikācijas	27
Paziņojums par paredzēto lietošanu	
Paredzētais klīniskais ieguvums	34
HemoSphere Alta uzlabotās monitoringa platformas hemodinamisko tehnoloģiju savienojumi	34
Rokasgrāmatas formatējums	41
Rokasgrāmatā lietotie saīsinājumi	42

1.1 Šīs rokasgrāmatas mērķis

Šajā rokasgrāmatā ir aprakstītas Edwards HemoSphere Alta uzlabotās monitoringa platformas funkcijas un monitoringa opcijas. HemoSphere Alta uzlabotā monitoringa platforma ir modulāra ierīce, kurā tiek attēloti monitorētie dati, kas iegūti, izmantojot Edwards hemodinamiskās tehnoloģijas.

Šī rokasgrāmata ir sagatavota lietošanai ar Edwards HemoSphere Alta uzlaboto monitoringa platformu un ir paredzēta apmācītiem intensīvās aprūpes speciālistiem, medmāsām un ārstiem ikvienā slimnīcā, kurā tiek nodrošināta intensīvā aprūpe.

Šajā rokasgrāmatā HemoSphere Alta uzlabotās monitoringa platformas operatoram ir ietvertas uzstādīšanas un lietošanas instrukcijas, ierīces interfeisa procedūras un ierobežojumi.

1.2 Lietošanas indikācijas

1.2.1 HemoSphere Alta uzlabotā monitoringa platforma ar Swan-Ganz tehnoloģiju

Ja HemoSphere Alta uzlabotais monitors tiek izmantots kopā ar HemoSphere Alta Swan-Ganz pacienta kabeli un Edwards Swan-Ganz katetriem, tas ir indicēts lietošanai pieaugušo un pediatrijas pacientu intensīvajā aprūpē, kad ir nepieciešama sirds izsviedes uzraudzība (nepārtraukta [CO] un intermitējoša [iCO]) un atvasināto hemodinamisko parametru pārraudzība slimnīcā. Plaušu artērijas asins temperatūras pārraudzību izmanto, lai aprēķinātu nepārtraukto un intermitējošo CO, izmantojot termodilūcijas tehnoloģijas. To var izmantot slimnīcas vidē hemodinamisko parametru pārraudzībai apvienojumā ar mērķtiecīgas terapijas protokolā noteikto perioperatīvo mērķi. Informāciju par katetra mērķa pacientu populāciju, kurā paredzēts to lietot, skatiet Edwards Swan-Ganz katetru un Swan-Ganz Jr katetru lietošanas indikāciju sadaļā.

Globālās hipoperfūzijas indeksa (GHI) algoritms sniedz ārstam fizioloģiskos datus par iespējamību, ka pacientam varētu izveidoties hemodinamiska nestabilitāte. GHI algoritmu ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kam tiek nodrošināta uzlabota hemodinamiskā stāvokļa pārraudzība ar Swan-Ganz katetra palīdzību. Tiek uzskatīts, ka GHI algoritms nodrošina papildinformāciju par pacienta prognozētu risku turpmāk piedzīvot klīniskā stāvokļa pasliktināšanos, kā arī palīdz identificēt pacientus, kuriem klīniskā stāvokļa pasliktināšanās risks ir zems. Izstrādājumu prognozes ir paredzētas tikai atsaucei, un nedrīkst pieņemt lēmumus par ārstēšanu, kuru pamatā ir tikai GHI algoritma prognozes.

Lietojot kombinācijā ar Swan-Ganz katetru, kas pievienots spiedienkabelim un spiediena devējam, Edwards Lifesciences viedā ķīļa algoritms mēra plaušu artērijas oklūzijas spiedienu, nodrošina tā rādījumu un novērtē plaušu artērijas oklūzijas spiediena mērījuma kvalitāti. Viedā ķīļa algoritms ir paredzēts lietošanai intensīvās aprūpes pacientiem, kuru vecums ir vairāk nekā 18 gadi un kuriem tiek veikta uzlabota hemodinamiskā stāvokļa pārraudzība. Viedā ķīļa algoritms tiek uzskatīts par papildu kvantitatīvo informāciju saistībā ar pacienta fizioloģisko stāvokli, un tā tiek nodrošināta tikai kā atsauce. Terapeitiskus lēmumus nedrīkst pieņemt, pamatojoties tikai uz viedā ķīļa algoritma parametriem.

Pilnīgu katrai pacientu grupai pieejamo mērīto un atvasināto parametru sarakstu skatiet paredzētā lietojuma sadaļā.

1.2.2 HemoSphere Alta uzlabotā monitoringa platforma ar HemoSphere oksimetrijas kabeli

Ja HemoSphere Alta uzlabotais monitors tiek izmantots kopā ar HemoSphere oksimetrijas kabeli un Edwards oksimetrijas katetriem, tas ir indicēts lietošanai pieaugušo un pediatrijas pacientu intensīvajā aprūpē, kad ir nepieciešama venozo asiņu skābekļa saturācijas (SvO₂ un ScvO₂) un atvasināto hemodinamisko parametru pārraudzība slimnīcā. Informāciju par Edwards oksimetrijas katetra mērķa pacientu populāciju, kurā paredzēts to lietot, skatiet lietošanas indikāciju sadaļā.

Pilnīgu katrai pacientu grupai pieejamo mērīto un atvasināto parametru sarakstu skatiet paziņojumā par paredzēto lietošanu.

1.2.3 HemoSphere Alta uzlabotā monitoringa platforma ar HemoSphere spiedienkabeli vai HemoSphere Alta monitoru — spiedienkabeli

HemoSphere Alta uzlabotais monitors, kad izmantots kopā ar HemoSphere spiedienkabeli vai HemoSphere Alta monitoru — spiedienkabeli, ir indicēts lietošanai pieaugušo un pediatrijas pacientu intensīvajā aprūpē, kuriem nepārtraukti jānovērtē līdzsvars starp sirds funkcionalitāti, šķidrumu statusu, asinsvadu pretestību un spiedienu. To var izmantot hemodinamisko parametru uzraudzībai apvienojumā ar mērķtiecīgas terapijas protokolā noteikto perioperatīvo mērķi slimnīcas vidē. Informāciju par sensora/devēja mērķa pacientu populāciju, kurā paredzēts to lietot, skatiet Edwards FloTrac sensora, FloTracJr sensora, Acumen IQ sensora un TruWave vienreizlietojamā spiediena devēja lietošanas indikāciju sadaļā.

Edwards Acumen Hypotension Prediction Index programmatūras funkcija nodrošina ārstam fizioloģiskus datus par pacientam iespējamiem hipotensijas notikumiem un saistītajiem hemodinamikas rādītājiem. Acumen HPI funkciju ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kam tiek nodrošināts papildu hemodinamiskā stāvokļa pārraudzība. Acumen HPI funkcija tiek uzskatīta par papildu kvantitatīvo informāciju saistībā ar pacienta fizioloģisko stāvokli, un tā tiek nodrošināta tikai kā atsauce. Terapeitiskus lēmumus nedrīkst pieņemt, pamatojoties tikai uz Acumen Hypotension Prediction Index (HPI) parametru.

Izmantojot kopā ar HemoSphere spiedienkabeli vai HemoSphere Alta monitoru — spiedienkabeli, kas pievienots saderīgam Swan-Ganz katetram, Edward Lifesciences labā sirds kambara spiediena (RVP) algoritms nodrošina ārstam fizioloģiskos datus par sirds labā kambara hemodinamisko statusu. RVP algoritms ir paredzēts lietošanai kritiski slimiem pacientiem, kuru vecums ir vairāk nekā 18 gadi un kuriem tiek veikta uzlabota hemodinamiskā stāvokļa pārraudzība operāciju zālē (OR) vai intensīvās aprūpes nodaļā (ICU). RVP algoritms tiek uzskatīts par papildu kvantitatīvo informāciju saistībā ar pacienta fizioloģisko stāvokli, un tā tiek nodrošināta tikai kā atsauce. Terapeitiskus lēmumus nedrīkst pieņemt, pamatojoties tikai uz labā sirds kambara spiediena (RVP) parametriem.

Izmantojot kopā ar HemoSphere spiedienkabeli vai HemoSphere Alta monitoru — spiedienkabeli, kas pievienots saderīgam Swan-Ganz katetram, sirds labā kambara sirds izsviedes (RVCO) funkcija nodrošina ārstam fizioloģiskos datus par sirds labā kambara hemodinamisko statusu. RVCO algoritmu ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kuru vecums ir vairāk nekā 18 gadi un kuriem nepieciešama uzlabota hemodinamiskā stāvokļa pārraudzība. Labā sirds kambara izsviede nodrošina nepārtrauktus sirds izsviedes un atvasinātos parametrus.

Galvas smadzeņu automātiskās regulācijas indeksa (CAI) algoritms ir informatīvs indekss, kas paredzēts kā surogātmērījums, lai noskaidrotu, vai galvas smadzeņu automātiskā regulācija varētu būt neskarta vai traucēta, un to izsaka saskaņotības līmenis vai tās trūkums, salīdzinot vidējo arteriālo spiedienu (MAP) un absolūto asins skābekļa piesātinājuma līmeni (StO₂) pacienta galvas smadzeņu audos. MAP iegūst HemoSphere spiedienkabelis, un parametra StO₂ vērtību iegūst ForeSight oksimetra kabelis. CAI ir paredzēts lietošanai

levads

lēmumus par terapiju, izmantojot tikai galvas smadzeņu automātiskās regulācijas indeksa (CAI) algoritmu. Izmantojot kopā ar diviem HemoSphere spiedienkabeļiem vai HemoSphere Alta monitoru — spiedienkabeļiem, no kuriem vienam ir Acumen IQ sensors, kas savienots ar Edwards Lifesciences femorālo arteriālo katetru, un otram ir TruWave vienreizlietojamais spiediena devējs, kas savienots ar centrālo venozo katetru, transpulmonālās termodilūcijas algoritms izmanto transpulmonālo termodilūciju (TPTD), lai mērītu ar asins plūsmu, šķidruma tilpumu un ar orgānu funkcijām saistītos parametrus. TPTD mērīšana notiek, izmantojot HemoSphere Alta Swan-Ganz pacienta kabeļa savienojumus, ja centrālajā venozajā asinsritē tiek ievadīts indikatoršķīdums ar zināmu temperatūru un tilpumu. Tas tiek izvadīts caur plaušu asinsvadu sistēmu, sirds kreiso pusi līdz arteriālajai sistēmai. Termālā izskalošanas līkne tiek mērīta, izmantojot termistoru Edwards Lifesciences augšstilba artērijas katetrā. Arī pacienta arteriālā spiediena līkne kopā ar zināmu sirds izsviedes vērtību, kas iegūta no transpulmonālās termodilūcijas algoritma, ļauj radīt nepārtrauktās sirds izsviedes kalibrētu rādījumu.

Pilnīgu katrai pacientu grupai pieejamo mērīto un atvasināto parametru sarakstu skatiet paredzētā lietojuma sadaļā.

1.2.4 HemoSphere Alta uzlabotā monitoringa platforma ar ForeSight oksimetra kabeli

Neinvazīvo ForeSight oksimetra kabeli ir paredzēts izmantot kā papildu pārraudzības rīku absolūtā reģionālā hemoglobīna skābekļa piesātinājuma noteikšanai asinīs, izmantojot sensorus, pacientiem ar samazinātas plūsmas vai pārtrauktas plūsmas izraisītas šēmijas risku. ForeSight oksimetra kabelis ir arī paredzēts, lai pārraudzītu relatīvās izmaiņas kopējā hemoglobīna koncentrācijā, izmantojot sensorus. ForeSight oksimetra kabelis ir paredzēts detem ar samazinātas plūsmas platformā.

- Izmantojot ar lielajiem sensoriem, ForeSight oksimetra kabeli ir paredzēts izmantot pieaugušajiem un pusaudžiem pārejas vecumā, kuru svars ir ≥ 40 kg.
- Izmantojot ar vidējiem sensoriem, ForeSight oksimetra kabeli ir paredzēts izmantot pediatrijas pacientiem, kuru svars ir ≥ 3 kg.
- Izmantojot ar mazajiem sensoriem, ForeSight oksimetra kabeli ir paredzēts izmantot lietošanai smadzeņu
 rajonā pediatrijas pacientiem, kuru svars ir < 8 kg, kā arī izmantot lietošanai vietās, kas nav smadzeņu
 rajons, pediatrijas pacientiem, kuru svars ir < 5 kg.

Edwards algoritms asins hemoglobīna mērīšanai ir indicēts nepārtrauktai hemoglobīna koncentrācijas izmaiņu pārraudzībai pieaugušo ≥ 40 kg asinsritē, kuriem tiek veikta uzlabota hemodinamiskā stāvokļa pārraudzība, izmantojot HemoSphere ForeSight oksimetrijas kabeli un neinvazīvus ForeSight IQ sensorus galvas smadzeņu vietās.

Pilnīgu katrai pacientu grupai pieejamo mērīto un atvasināto parametru sarakstu skatiet paredzētā lietojuma sadaļā.

1.2.5 HemoSphere Alta uzlabotā monitoringa platforma ar ClearSight tehnoloģiju

HemoSphere Alta monitors, izmantojot to kopā ar spiediena kontrolleru un saderīgu Edwards pirksta manšeti, ir indicēts pieaugušajiem un pediatrijas pacientiem, kuriem nepieciešama pastāvīga sirdsdarbības, šķidrumu statusa un asinsvadu pretestības līdzsvara novērtēšana. To var izmantot slimnīcas vidē hemodinamisko parametru pārraudzībai apvienojumā ar mērķtiecīgas terapijas protokolā noteikto perioperatīvo mērķi. Turklāt šī neinvazīvā sistēma ir piemērota pacientiem ar komorbiditāti, kuriem vēlams optimizēt hemodinamiskos parametrus un kuriem ir grūti veikt invazīvus mērījumus. Ar HemoSphere Alta uzlaboto monitoru un saderīgām Edwards pirksta manšetēm var neinvazīvi noteikt asinsspiedienu un citus saistītos hemodinamiskos parametrus. Informāciju par konkrētās pirksta manšetes mērķa pacientu populāciju, kurā paredzēts to lietot, skatiet ClearSight pirksta manšetes, ClearSight Jr pirksta manšetes un Acumen IQ pirksta manšetes lietošanas indikāciju sadaļā. Edwards Acumen Hypotension Prediction Index (HPI) programmatūras funkcija nodrošina ārstam fizioloģiskus datus par pacientam iespējamiem hipotensijas notikumiem un saistītajiem hemodinamikas rādītājiem. Acumen HPI funkciju ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kam tiek nodrošināts papildu hemodinamiskā stāvokļa pārraudzība. Acumen HPI funkcija tiek uzskatīta par papildu kvantitatīvo informāciju saistībā ar pacienta fizioloģisko stāvokli, un tā tiek nodrošināta tikai kā atsauce. Terapeitiskus lēmumus nedrīkst pieņemt, pamatojoties tikai uz Acumen Hypotension Prediction Index (HPI) parametru.

Pilnīgu katrai pacientu grupai pieejamo mērīto un atvasināto parametru sarakstu skatiet paredzētā lietojuma sadaļā.

1.2.6 HemoSphere Alta uzlabotā monitoringa platforma ar Acumen atbalstītas šķidrumu pārvaldības funkciju un Acumen IQ sensoru

Acumen atbalstītās šķidrumu pārvaldības (AFM) programmatūras funkcija ārstiem sniedz fizioloģiskus datus par pacienta paredzamo reakciju uz šķidrumu terapiju un saistītos hemodinamikos parametrus. Acumen AFM programmatūras funkciju ir paredzēts izmantot ķirurģiskiem pacientiem ≥ 18 gadu vecumā, kam ir nepieciešama paplašinātā hemodinamiskā stāvokļa pārraudzība. Acumen AFM programmatūras funkcija sniedz ieteikumus par pacienta fizioloģisko stāvokli un paredzamo reakciju uz šķidrumu terapiju. Ārstam tiek sniegti Acumen AFM šķidrumu ievadīšanas ieteikumi; lēmums par bolus injekcijas šķidruma ievadīšanu ir jāpieņem ārstam pēc pacienta hemodinamikas rādītāju pārskatīšanas. Nevienu ārstēšanas lēmumu nedrīkst pieņemt, balstoties tikai uz atbalstītās šķidrumu pārvaldības ieteikumiem.

Acumen atbalstītās šķidruma pārvaldības programmatūras funkciju var izmantot kopā ar HemoSphere Alta AFM kabeli un Acumen IQ šķidruma mērītāju.

1.3 Lietošanas kontrindikācijas

HemoSphere Alta uzlabotajai monitoringa platformai, kamēr to izmanto kopā ar Swan-Ganz tehnoloģiju, oksimetrijas kabeli vai spiedienkabeli, nav kontrindikāciju.

1.3.1 HemoSphere Alta uzlabotā monitoringa platforma ar ForeSight oksimetra kabeli

ForeSight/ForeSight IQ/ForeSight Jr sensors ir kontrindicēts lietošanai pacientiem šādos gadījumos:

- Fiziski vieta ir pārāk maza, lai uz tās pareizi novietotu sensoru.
- Alerģiska reakcija uz sensora līpošo materiālu.
- Tiek veikta magnētiskās rezonanses attēlveidošanas procedūra, jo pastāv ar traumas gūšanu saistīts risks.

1.3.2 HemoSphere Alta uzlabotā monitoringa platforma ar ClearSight tehnoloģiju

HemoSphere Alta uzlabotais monitors, ja to lieto kopā ar saderīgu pirksta manšeti(-ēm), nav paredzēts dažiem pacientiem ar spēcīgu gludās muskulatūras saraušanos artērijās un arteriolās roku apakšējā daļā un plaukstās, kā tas var būt Reno slimības pacientiem. Šādiem pacientiem asinsspiediena mērīšana var būt neiespējama.

Šīs operatora rokasgrāmatas publicēšanas laikā nebija informācijas ne par kādām citām kontrindikācijām.

1.4 Paziņojums par paredzēto lietošanu

HemoSphere Alta uzlaboto monitoringa platformu paredzēts izmantot tikai kvalificētiem vai apmācītiem darbiniekiem slimnīcas intensīvās aprūpes vidē.

HemoSphere Alta uzlaboto monitoringa platformu paredzēts izmantot ar saderīgiem Edwards oksimetrijas katetriem, Swan-Ganz/Swan-Ganz Jr/Swan-Ganz IQ katetriem, Edwards augšstilba artērijas katetriem, FloTrac sensoriem, FloTrac Jr sensoriem, Acumen IQ sensoriem, TruWave vienreizlietojamiem spiediena devējiem, ForeSight/ForeSight Jr/ForeSight IQ sensoriem, Acumen IQ šķidruma mērītāju un ClearSight/ClearSight Jr/ Acumen IQ pirksta manšetēm.

Pilnīgs parametru saraksts, kas pieejams, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu HemoSphere Alta Swan-Ganz pacienta kabeli, ir sniegts turpmāk: 1-1. tabula 28. lpp.. Pediatrijas pacientu populācijai ir pieejama tikai iCO, iCI, iSVR un iSVRI.

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
со	nepārtraukta sirds izsviede		
sCO	STAT sirds izsviede		
СІ	nepārtrauktais sirds indekss		
sCl	STAT sirds indekss		
EDV	labā sirds kambara beigu diastoliskais tilpums		
sEDV	STAT labā sirds kambara beigu diastoliskais tilpums		
EDVI	labā sirds kambara beigu diastoliskā tilpuma in- dekss		
sEDVI	STAT labā sirds kambara beigu diastoliskā tilpuma indekss		
HR _{avg}	vidējā sirdsdarbības frekvence		
LVSWI	kreisā kambara sistoliskā darba indekss	tikai pieaugušajiem	
PVR	plaušu asinsvadu pretestība		operāciju zāle inten-
PVRI	plaušu asinsvadu pretestības indekss		sīvās aprūpes nodaļa,
RVEF	labā kambara izsviedes frakcija		neatliekamās palīdzī- bas nodala
sRVEF	STAT labā kambara izsviedes frakcija		,
RVSWI	labā kambara sistoliskā darba indekss		
SV	sistoles tilpums		
SVI	sistoles tilpuma indekss		
SVR	sistēmiskā asinsvadu pretestība		
SVRI	sistēmiskās asinsvadu pretestības indekss		
ВТ	pulmonālās artērijas asins temperatūra		
iCO	intermitējoša sirds izsviede		
iCl	intermitējošais sirds indekss		
iSVR	intermitējoša sistēmiskā asinsvadu pretestība	diatrijas pacientiem	
iSVRI	intermitējošās sistēmiskās asinsvadu pretestības in- dekss		

i - 1. labula. Helliopphele Alla Swall-Gallz paciella Kabellili pieejallio parallellu saraksis
--

Tālāk (1-2. tabula 28. lpp.) ir sniegts pilnīgs to parametru saraksts, kas pieejami pieaugušajiem un pediatrijas pacientiem, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu HemoSphere oksimetrijas kabeli.

1-2. tabula. Hemo	Sphere oksimetri	jas kabelim pie	ejamo parametru saraksts
-------------------	------------------	-----------------	--------------------------

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
SvO ₂	jaukto venozo asiņu skābekļa piesātinājums	. v	operāciju zāle, inten-
ScvO ₂	centrālo venozo asiņu skābekļa piesātinājums	pieaugusajiem un pe- diatrijas pacientiem	sīvās aprupes nodaļa, neatliekamās palīdzī- bas nodaļa

Tālāk (1-3. tabula 29. lpp.) ir pilnīgs parametru saraksts, kas pieejams pieaugušajiem un pediatrijas pacientiem, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu HemoSphere Alta Swan-Ganz pacienta kabeli un oksimetrijas kabeli.

1-3. tabula. HemoSphere Alta Swan-Ganz pacienta kabelim ar oksimetrijas kabeli pieejamo parametru
saraksts

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
DO ₂	skābekļa padeve		
DO ₂ I	skābekļa padeves indekss		
VO ₂	skābekļa patēriņš	niosugučsijom un po	operāciju zāle inten-
VO ₂ e	prognozētā skābekļa patēriņš, uzraugot ScvO2	diatrijas pacientiem	sīvās aprūpes nodaļa,
VO ₂ I	skābekļa patēriņa indekss		neatliekamas palidzi- bas nodaļa
VO ₂ le	prognozētā skābekļa patēriņa indekss, uzraugot ScvO2		
GHI	globālās hipoperfūzijas indekss	tikai pieaugušajiem	

Pilnīgs parametru saraksts, kas pieejams, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu HemoSphere Alta Swan-Ganz pacienta kabeli un spiedienkabeli(-iem), ir sniegts turpmāk: 1-4. tabula 29. lpp. (viens spiedienkabelis) un 1-5. tabula 30. lpp. (divi spiedienkabeļi).

1-4. tabula. HemoSphere Alta Swan-Ganz pacienta kabelim ar HemoSphere spiedienkabeli vai HemoSphere Alta monitoru — spiedienkabeli pieejamo parametru saraksts

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
CO _{20s}	20 sekunžu sirds izsviede ¹		
CO _{RV}	labā sirds kambara izsviede ²		
CI _{20s}	20 sekunžu sirds indekss ¹		
CI _{RV}	labā sirds kambara sirds indekss ²		
CPO _{RV}	labā sirds kambara izvades jauda ²		
CPI _{RV}	labā sirds kambara jaudas indekss ²		
DIA _{RVP}	labā sirds kambara diastoliskais spiediens ²		
MRVP	vidējais labā sirds kambara spiediens ²		operāciju zāle, inten-
РАОР	plaušu artērijas oklūzijas spiediens ²	tikai pieaugušajiem	sīvās aprūpes nodaļa, neatliekamās palīdzī-
PR _{RVP}	labā kambara sirdsdarbības ātrums ²		bas nodaļa
RV dP/dt	labā sirds kambara sistoliskais kritums ²		
RV EDP	labā kambara gala diastoliskais spiediens ²		
SYS _{RVP}	labā sirds kambara sistoliskais spiediens ²		
SV _{20s}	20 sekunžu sistoles tilpums ¹		
SV _{RV}	labā sirds kambara sistoles tilpums ²		
SVI _{20s}	20 sekunžu sistoles tilpuma indekss ¹		
SVI _{RV}	labā sirds kambara sistoles tilpuma indekss ²		
¹ 20 sekunžu plūsmas ciju par šīs uzlabotās i	parametri ir pieejami tikai tad, ja 20 s plūsmas parametr funkcijas iespējošanu, sazinieties ar vietējo Edwards pārs	u funkcija ir iespējota. Lai s tāvi.	aņemtu papildinformā-
² RVP un RVCO param	etri ir pieejami, izmantojot Swan-Ganz IQ katetru.		

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
CFI	sirds funkcijas indekss		
со	sirds izsviede ¹		
CI	sirds indekss ¹		
iCO	intermitējoša sirds izsviede		
iCl	intermitējošais sirds indekss		
EVLW	šķidruma uzkrāšanās ārpus plaušu asinsvadiem		
ELWI	šķidruma uzkrāšanās ārpus plaušu asinsvadiem — indekss		
GEF	vispārējā izsviedes frakcija		
GEDV	vispārējais diastoliskais beigu tilpums		operāciju zāle, inten-
GEDI	vispārējais diastoliskais beigu tilpums — indekss	tikai pieaugušajiem	sīvās aprūpes nodaļa, neatliekamās palīdzī-
ITBV	intratorakālais asins tilpums		bas nodaļa
ІТВІ	intratorakālā asins tilpuma indekss		
PVPI	plaušu asinsvadu caurlaidības indekss		
SV	sistoles tilpums ¹		
SVI	sistoles tilpuma indekss ¹		
iSV	intermitējošs sistoles tilpums		
iSVI	intermitējoša sistoles tilpuma indekss		
iSVR	Intermitējoša sistēmiskā asinsvadu pretestība		
iSVRI	intermitējošās sistēmiskās asinsvadu pretestības in- dekss		
¹ Kalibrētie nepārtrau	, ktie parametri no Acumen 10 sensora pie auašstilba artēr	iias caurulītes ir pieeiami, i	zmantoiot transpulmo-

1-5. tabula. HemoSphere Alta Swan-Ganz pacienta kabelim ar diviem HemoSphere spiedienkabeļiem vai HemoSphere Alta monitoru — spiedienkabeļiem pieejamo parametru saraksts

nālās termodilūcijas (TPTD) procedūru.

Tālāk (1-6. tabula 30. lpp.) ir sniegts pilnīgs parametru saraksts, kas pieejams pieaugušajiem un pediatrijas pacientiem, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu HemoSphere spiedienkabeli vai spiedienkabeli — HemoSphere Alta monitoru.

1-6. tabula. HemoSphere spiedienkabelim/HemoSphere Alta monitoram — spiedienkabelim pieejamo parametru saraksts

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
со	nepārtraukta sirds izsviede ¹		
CI	nepārtrauktais sirds indekss ¹		
СРО	sirds izvades jauda		
СРІ	sirds jaudas indekss	pieaugušaiiem un pe-	operāciju zāle, inten-
DIA _{ART}	sistēmiskais arteriālais diastoliskais asinsspiediens	diatrijas pacientiem	sīvās aprūpes nodaļa, neatliekamās palīdzī-
DIA _{RVP}	labā sirds kambara diastoliskais spiediens	≥12	bas nodaļa
МАР	vidējais arteriālais asinsspiediens		
MRVP	vidējais labā kambara spiediens		
PPV	pulsa spiediena variācija ¹		

Saīsinājums

PR

PR_{RVP}

RV dP/dt

Definīcija	Pacientu populācija	Slimnīcas vide
sirdsdarbības ātrums		
labā kambara sirdsdarbības ātrums		
labā sirds kambara sistoliskais kritums		
labā kambara beigu diastoles spiediens		
sistoles tilpums ¹		
sistoles tilpuma indekss ¹		

RV EDP	labā kambara beigu diastoles spiediens	
SV	sistoles tilpums ¹	
SVI	sistoles tilpuma indekss ¹	-
SVR	sistēmiskā asinsvadu pretestība ¹	-
SVRI	sistēmiskās asinsvadu pretestības indekss ¹	
SVV	sistoles tilpuma variācija ¹	
SYS _{ART}	sistēmiskais arteriālais sistoliskais asinsspiediens	
SYS _{RVP}	labā sirds kambara sistoliskais spiediens	
CVP	centrālais venozais spiediens	
DIA _{PAP}	pulmonālās artērijas diastoliskais asinsspiediens	
dP/dt	sistoliskais kritums ²	
Ea _{dyn}	dinamiskā arteriālā elastība ²	tikai pieaugušajiem
HPI	Acumen Hypotension Prediction Index ²	-
MPAP	vidējais pulmonālās artērijas asinsspiediens	-
SYS _{PAP}	plaušu artērijas sistoliskais asinsspiediens	
¹ FloTrac parametri ir pieejami, ja tiek lietots FloTrac/FloTrac Jr/Acumen IQ sensors.		
² HPI parametri ir pieejami, ja tiek lietots Acumen IQ sensors.		

Tālāk ir sniegts saraksts ar Acumen atbalstītās šķidrumu pārvaldības (AFM) izvadēm, kas pieejamas kirurģiskajiem pacientiem ≥ 18 gadu vecumā, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu HemoSphere spiedienkabeli vai spiedienkabeli — HemoSphere Alta monitoru. (1-7. tabula 31. lpp.)

1-7. tabula. HemoSphere spiedienkabelim/HemoSphere Alta monitoram — spiedienkabelim pieejamo AFM izvadīto datu saraksts

AFM izvade	Pacientu populācija	Slimnīcas vide
leteikta bolus injekcijas šķidruma izmantošana		
leteikta testa bolus injekcija		
Šķidrums nav ieteikts		
AFM ieteikumi apturēti		
Tiek veikta bolus injekcija		
Bolus injekcija pabeigta	ciem pacientiem	tikai operāciju zāle
Bolus injekcija pabeigta; Notiek hemodinamiskās reakcijas analīze		
Kopējais trasētais tilpums, ml		
Plūsmas ātrums ml/h		
Bolus injekcijas tilpums		

AFM izvade	Pacientu populācija	Slimnīcas vide
Piezīme. AFM izvades ir pieejamas, ja tiek lietots Acumen IQ sensors un ir aktivizēta AFM funkcija. Plūsmas ātrums ml/h un Bolus		
injekcijas tilpums ir redzami, izmantojot automātiskās šķidruma trasēšanas re.	žīmu.	

Tālāk (1-8. tabula 32. lpp.) ir sniegts pilnīgs to parametru saraksts, kas pieejami pieaugušajiem un pediatrijas pacientiem, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu gan HemoSphere spiedienkabeli, gan oksimetrijas kabeli.

1-8. tabula. HemoSphere spiedienkabelim vai HemoSphere Alta monitoram — spiedienkabelim ar oksimetrijas kabeli pieejamo parametru saraksts

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
DO2	skābekļa padeve		
DO ₂ I	skābekļa padeves indekss		
VO ₂	skābekļa patēriņš		operāciju zāle, inten-
VO ₂ e	prognozētā skābekļa patēriņš, uzraugot ScvO2	tikai pieaugušajiem	neatliekamās palīdzī-
VO ₂ I	skābekļa patēriņa indekss		bas nodaļa
VO₂le	prognozētā skābekļa patēriņa indekss, uzraugot ScvO ₂		

Skābekļa piesātinājumu audos StO₂ var pārraudzīt, izmantojot HemoSphere Alta uzlaboto monitoringa platformu un pievienotu ForeSight oksimetra kabeli, kā norādīts šeit: 1-9. tabula 32. lpp.

1-9. tabula. ForeSid	aht oksimetri	ias kabelim ı	pieeiamo	parametru saraksts
				baranneti a baranoto

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
StO ₂	audu piesātinājums ar skābekli	pieaugušajiem un pe-	
ΔctHb	kopējā hemoglobīna līmeņa relatīvās izmaiņas	diatrijas pacientiem	operāciju zāle, inten-
tHb	kopējais hemoglobīns	pieaugušajiem un pubertātes vecumu sasniegušiem pusau- džiem, kuru svars ir ≥ 40 kg	sīvās aprūpes nodaļa, neatliekamās palīdzī- bas nodaļa
Piezīme. Kopēiais hem	ogalobīns (tHb) ir pieeiams, pārraudzībai izmantojot Hen	noSphere ForeSiaht oksime	etra kabeli un divus

ForeSight IQ sensorus galvas smadzeņu vietās.

Tālāk (1-10. tabula 32. lpp.) ir sniegts pilnīgs to parametru saraksts, kas pieejami pieaugušajiem pacientiem, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu gan HemoSphere spiedienkabeli, gan spiedienkabeli — HemoSphere Alta monitoru un ForeSight oksimetra kabeli.

1-10. tabula. HemoSphere spiedienkabelim vai HemoSphere Alta monitoram — spiedienkabelim ar ForeSight oksimetrijas kabeli pieejamo parametru saraksts

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
CAI	smadzeņu automātiskās regulācijas indekss ¹	tikai pieaugušajiem	operāciju zāle, inten- sīvās aprūpes nodaļa, neatliekamās palīdzī- bas nodaļa
¹ CAI parametrs ir piee	jams, lietojot ForeSight IQ sensoru, ja iespējota CAI funkc	cija.	

Tālāk (1-11. tabula 33. lpp.) ir sniegts pilnīgs parametru saraksts, kas pieejams, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu spiediena kontrolleru.

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide	
со	nepārtraukta sirds izsviede			
CI	nepārtrauktais sirds indekss			
СРО	sirds izvades jauda			
СЫ	sirds jaudas indekss			
DIA _{ART}	arteriālais diastoliskais asinsspiediens			
МАР	vidējais arteriālais asinsspiediens			
PPV	pulsa spiediena izmaiņas	pieaugušajiem un pe-	operāciju zāle, inten- sīvās aprūpes nodaļa, neatliekamās palīdzī- bas nodaļa	
PR	sirdsdarbības ātrums	≥ 12		
SV	sistoles tilpums			
SVI	sistoles tilpuma indekss			
SVR	sistēmiskā asinsvadu pretestība			
SVRI	sistēmiskās asinsvadu pretestības indekss			
SVV	sistoles tilpuma variācija			
SYS _{ART}	arteriālais sistoliskais asinsspiediens			
dP/dt	sistoliskais kritums ¹			
Ea _{dyn}	dinamiskā arteriālā elastība ¹	tikai pieaugušajiem		
НРІ	Acumen Hypotension Prediction Index ¹			
¹ HPI parametri ir piee	ejami, ja tiek lietota Acumen IQ pirksta manšete un s	irds kontrolsensors (HRS).	r	
Piezīme. CO/CI un SV	/SVI tiek mērīti, izmantojot rekonstruēto brahiālās a	rtērijas spiediena līkni. Visi citi u	zraudzītie parametri	

1-11. tabula. HemoSphere ClearSight tehnoloģijai pieejamo parametru saraksts

Piezīme. CO/CI un SV/SVI tiek mērīti, izmantojot rekonstruēto brahiālās artērijas spiediena līkni. Visi citi uzraudzītie parametri izmanto rekonstruētu radiālās artērijas spiediena līkni. SVR/SVRI ir atvasināti no CO/CI un MAP, kā arī ievadītās un uzraudzītās CVP vērtības. Lai iegūtu papildinformāciju, skatiet Spiediena līknes rekonstrukcija un hemodinamiskā analīze (ClearSight tehnoloģija) 185. lpp..

Pilnīgs to parametru saraksts, kas pieejami pieaugušajiem pacientiem, veicot uzraudzību ar HemoSphere Alta uzlaboto monitoringa platformu un pievienotu gan spiediena kontrolleru, gan oksimetrijas kabeli, ir sniegts tālāk šeit: 1-12. tabula 33. lpp.

Saīsinājums	Definīcija	Pacientu populācija	Slimnīcas vide
DO2	skābekļa padeve		
DO ₂ I	skābekļa padeves indekss		
VO ₂	skābekļa patēriņš		operāciju zāle un in-
VO ₂ e	prognozētā skābekļa patēriņš, uzraugot ScvO2	tikai pieaugušajiem	tensīvās terapijas no-
VO ₂ I	skābekļa patēriņa indekss		Gaja
VO ₂ le	prognozētā skābekļa patēriņa indekss, uzraugot ScvO ₂		

BRĪDINĀJUMS

Ja HemoSphere Alta uzlabotā monitoringa platforma netiek lietota pareizi, var tikt apdraudēts pacients. Pirms platformas lietošanas rūpīgi izlasiet šīs rokasgrāmatas 2. nodaļas sadaļu "Brīdinājumi".

HemoSphere Alta uzlabotā monitoringa platforma paredzēta tikai pacienta stāvokla izvērtēšanai. Šis instruments jālieto apvienojumā ar fizioloģisko monitoru, kas novietojams pie gultas, un/vai nemot vērā pacienta klīniskās pazīmes un simptomus. Ja no ierīces saņemtās hemodinamiskās vērtības nesakrīt ar pacienta klīniskajiem rādītājiem, pirms terapijas sākuma veiciet ierīces problēmu novēršanu.

EKG signāla ievade un visi parametri, kas atvasināti no sirdsdarbības mērījumiem, nav izvērtēti pediatrijas pacientiem, tādēl šim pacientu lokam nav pieejami.

1.5 Paredzētais klīniskais ieguvums

HemoSphere Alta uzlabotā monitoringa platforma lauj skatīt pacienta hemodinamiskos parametrus un mijiedarboties ar tiem. Lietojot kopā ar saderīgiem sensoriem un prognostisko lēmumu atbalsta programmatūru, HemoSphere Alta uzlabotā monitoringa platforma nodrošina proaktīvu klīnisko lēmumu pieņemšanu un informāciju individualizētai pacientu aprūpei.

1.6 HemoSphere Alta uzlabotās monitoringa platformas hemodinamisko tehnoloģiju savienojumi

HemoSphere Alta uzlabotajai monitoringa platformai ir piecas bieži lietoto kabeļu pieslēgvietas un divas audu oksimetrijas pārraudzības pieslēgvietas. Dažiem modeliem var būt arī pacienta kabela pieslēgvieta Swan-Ganz pārraudzības tehnoloģijai vai spiediena kontrollera pieslēgvieta ClearSight pārraudzības tehnoloģijai. HemoSphere Alta uzlabotās monitoringa platformas integrētās universālās hemodinamiskā stāvokļa pārraudzības tehnoloģijas nodrošina ātru iestatīšanu un stabilitāti. Visu tehnoloģijas kabeļu pievienošanas punkti atrodas labās puses panelī. Skat. 1-1. att. 34. lpp.

- 1. bieži lietojamas kabeļu pieslēgvietas (5)
- 3. Swan-Ganz tehnoloģijas pieslēgvieta (1) 4. ClearSight tehnoloģijas pieslēgvieta (1)

- 2. audu oksimetrijas pieslēgvietas (2)
 - 1-1. attēls. HemoSphere Alta uzlabotās monitoringa platformas hemodinamisko tehnoloģiju savienojumi

1-13. tabula. HemoSphere Alta pārraudzības platformas konfigurācijās pieejamie tehnoloģiju savienojuni

	I	n

Monitora pieslēgvieta	Sirds	Universālā	Viedā atkopšana
1. Bieži lietojamas kabeļu pieslēgvietas (5)	•	•	•

Monitora pieslēgvieta	Sirds	Universālā	Viedā atkopšana
2. Audu oksimetrijas pieslēgvietas (2)	•	•	•
3. Swan-Ganz tehnoloģijas pieslēgvieta (1)	•	•	
4. ClearSight tehnoloģijas pieslēgvieta (1)		•	•

Katrs kabelis ir saistīts ar noteiktu Edwards hemodinamiskā stāvokļa pārraudzības tehnoloģiju. Pašlaik pieejamie kabeļi, ko var pievienot bieži lietojamām pieslēgvietām, ir:

- HemoSphere spiedienkabelis: ievads pieejams tālāk, detalizēts apraksts sniegts 9. nodaļā, Pārraudzība, izmantojot HemoSphere spiedienkabeli 165. lpp..
- HemoSphere oksimetrijas kabelis: ievads pieejams tālāk, detalizēts apraksts sniegts 11. nodaļā, Venozās oksimetrijas monitorings 202. lpp..
- HemoSphere Alta AFM kabelis: ievads pieejams tālāk, detalizēts apraksts sniegts 13. nodaļā, Šķidrumu ievadīšanas darbplūsma — Acumen IQ šķidruma mērītājs 299. lpp..

Audu oksimetrijas pārraudzība: ievads pieejams tālāk, detalizēts apraksts sniegts 12. nodaļā, HemoSphere Alta audu oksimetrijas pārraudzība 210. lpp..

HemoSphere Swan-Ganz tehnoloģija aprakstīta tālāk, detalizēts apraksts sniegts 8. nodaļā, HemoSphere Alta Swan-Ganz pārraudzība 148. lpp..

ClearSight pārraudzības tehnoloģija aprakstīta tālāk, detalizēts apraksts sniegts 10. nodaļā, HemoSphere Alta ClearSight tehnoloģija 184. lpp..

HemoSphere Alta uzlabotā monitoringa platforma ir aprīkota arī ar dziļuma kameru žestu komandām un mikrofonu balss komandām. Papildinformāciju par žestiem skat. HemoSphere Alta uzlabotās monitoringa platformas žestu komandas 99. lpp.. Papildinformāciju par balss komandām skat. HemoSphere Alta uzlabotās monitoringa platformas balss komandas 100. lpp..

1.6.1 HemoSphere Alta Swan-Ganz tehnoloģija

HemoSphere Alta Swan-Ganz pacienta kabelis nodrošina nepārtrauktās sirds izsviedes (CCO) un intermitējošās sirds izsviedes (iCO) pārraudzību, izmantojot saderīgu Edwards Swan-Ganz/Swan-Ganz Jr/Swan-Ganz IQ katetru. Ir pieejama labā kambara beigu diastoliskā tilpuma (EDV) pārraudzība, izmantojot analogās ievades sirdsdarbības frekvences (HR_{avg}) datus no pacienta galda monitora. HemoSphere Alta Swan-Ganz pacienta kabeli var pievienot Swan-Ganz tehnoloģijas pieslēgvietai. Papildinformāciju skatiet 8. nodaļā, HemoSphere Alta Swan-Ganz pārraudzība 148. lpp.. 1-14. tabula 35. lpp. sniedz pieejamos parametrus, izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli.

1-14. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa parametru apraksts

Parametrs	Apraksts	Tehnoloģija
nepārtraukta sirds izsviede (CO)	nepārtraukts sirds izsūknēto asiņu apjo- ma novērtējums, izmantojot uzlabotu termodilūcijas tehnoloģiju; to mēra lit- ros minūtē	Swan-Ganz CCO un CCOmbo katetri

Parametrs	Apraksts	Tehnoloģija
nepārtraukts sirds indekss (Cl)	nepārtraukti noteikta sirds izsviede at- tiecībā pret ķermeņa virsmas laukumu (KVL)	Swan-Ganz CCO un CCOmbo katetri
globālās hipoperfūzijas indekss (GHI)	indekss, kas parāda varbūtību, ka pa- cientam turpmāk iespējams globālas hipoperfūzijas notikums (SvO₂ 60% vismaz vienu minūti)	Swan-Ganz CCOmbo katetrs vai Swan- Ganz IQ katetrs ar oksimetrijas kabeļa ievadi
intermitējošā sirds izsviede (iCO)	intermitējošs sirds izsūknēto asiņu ap- joma novērtējums, izmantojot bolus termodilūcijas metodi; to mēra litros minūtē	Swan-Ganz un Swan-Ganz Jr termodilū- cijas katetri
intermitējošais sirds indekss (iCl)	intermitējoša sirds izsviede attiecībā pret ķermeņa virsmas laukumu (KVL)	Swan-Ganz un Swan-Ganz Jr termodilū- cijas katetri
labā kambara izsviedes frakcija (RVEF)	nepārtraukts no labā kambara sistoles laikā izsviesto asiņu procentuālā apjo- ma novērtējums, izmantojot uzlabotu termodilūcijas tehnoloģiju un algorit- mu analīzi	Swan-Ganz CCOmbo V katetri ar EKG signāla ievadi
labā kambara beigu diastoliskais til- pums (EDV)	nepārtraukts asiņu tilpuma labajā kam- barī diastoles beigās novērtējums, ko aprēķina, dalot sistoles tilpumu (ml/sitieni) ar RVEF(%)	Swan-Ganz CCOmbo V katetri ar EKG signāla ievadi
sistoles tilpums (SV)	asiņu apjoms, kas izsviests no kamba- riem ar katru kontrakciju, ko iegūst, iz- mantojot CO novērtējumu un sirdsdar- bības frekvenci (SV = CO/HR × 1000)	Swan-Ganz CCO, CCOmbo un CCOmbo V katetri ar EKG signāla ievadi
sistoles tilpuma indekss (SVI)	sistoles tilpums attiecībā pret ķermeņa virsmas laukumu (KVL)	Swan-Ganz CCO, CCOmbo un CCOmbo V katetri ar EKG signāla ievadi
sistēmiskā asinsvadu pretestība (SVR)	atvasināts mērījums, kas raksturo pre- testību pret asiņu plūsmu no kreisā kambara (pēcslodzi)	Swan-Ganz CCO un CCOmbo katetri ar MAP un CVP analogā spiediena signāla ievadi
sistēmiskās asinsvadu pretestības in- dekss (SVRI)	sistēmiskā asinsvadu pretestība attiecī- bā pret ķermeņa virsmas laukumu (KVL)	Swan-Ganz CCO un CCOmbo katetri ar MAP un CVP analogā spiediena signāla ievadi

1.6.2 HemoSphere spiedienkabelis

HemoSphere Alta spiedienkabelis (HEMAPSC200) un HemoSphere spiedienkabelis (HEMPSC100) sniedz iespēju veikt asinsvadu spiediena monitoringu, izmantojot saderīgu Edwards spiediena devēju/sensoru un katetru. Pievienots FloTrac, FloTrac Jr vai Acumen IQ sensors nodrošina nepārtrauktu sirds izsviedes (CO) un saistīto hemodinamisko parametru mērījumus. Pievienots TruWave devējs nodrošina no atrašanās vietas atkarīgu intravaskulārā spiediena mērījumu. HemoSphere spiedienkabeli var pievienot monitoringa kabeļa pieslēgvietai. Papildinformāciju skatiet 9. nodaļā Pārraudzība, izmantojot HemoSphere spiedienkabeli 165. lpp. Pieejamie parametri, izmantojot HemoSphere spiedienkabeli, ir minēti šeit: 1-15. tabula 37. lpp..

HEMPSC100

HEMAPSC200

1-15. tabula. HemoSphere spiedienkabeļa galveno parametru apraksts

Parametrs	Apraksts	Tehnoloģija
nepārtraukta sirds izsviede (CO)**	nepārtraukti novērtēts sirds sūknētais asiņu tilpums, kas ir izteikts litros minū- tē un tiek noteikts, izmantojot esošo arteriālā spiediena līkni un FloTrac sistē- mas algoritmu**	FloTrac, FloTrac Jr vai Acumen IQ sen- sors
nepārtraukts sirds indekss (Cl)**	nepārtraukti noteikta sirds izsviede at- tiecībā pret ķermeņa virsmas laukumu (KVL)**	FloTrac, FloTrac Jr vai Acumen IQ sen- sors
centrālais venozais spiediens (CVP)	Centrālais venozais asinsspiediens	TruWave spiediena devējs, kas ir pievie- nots centrālā venozā katetra caurulītei
diastoliskais asinsspiediens (DIA _{ART} / DIA _{PAP} /DIA _{RVP})	diastoliskais asinsspiediens, kas mērīts plaušu artērijā (PAP), labajā sirds kam- barī (RVP) vai sistēmiski artērijā (ART)	FloTrac sensors, FloTrac Jr sensors, Acumen IQ sensors vai TruWave spie- diena devējs
sistoliskais kritums (dP/dt)*	maksimālais arteriālā spiediena līknes kāpums, mērīts perifērā artērijā*	Acumen IQ sensors
dinamiskā arteriālā elastība (Ea _{dyn})*	arteriālās sistēmas radītās kreisā kam- bara pēcslodzes (arteriālās elastības) mērs attiecībā pret kreisā kambara ela- stību*	Acumen IQ sensors
Acumen Hypotension Prediction Index (HPI)*	indekss, kas uzrāda varbūtību, ka paci- entam pastāv hipotensijas risks (MAP < 65 mmHg vismaz vienas minūtes il- gumā)*	Acumen IQ sensors
vidējais arteriālais spiediens (MAP)	vidējais sistēmiskais asinsspiediens vie- nā sirds ciklā	FloTrac sensors, FloTrac Jr sensors, Acumen IQ sensors vai TruWave spie- diena devējs
vidējais plaušu artērijas spiediens (MPAP)	Vidējais plaušu artērijas asinsspiediens vienā sirds ciklā	TruWave spiediena devējs pie plaušu artērijas katetra caurulītes
vidējais labā kambara spiediens (MRVP)	vidējais labā sirds kambara asinsspie- diens vienā sirds ciklā	TruWave spiediena devējs labajā sirds kambarī
pulsa spiediena variācija (PPV)	procentuālā atšķirība starp PP minimā- lo un PP maksimālo vērtību attiecībā pret PP vidējo vērtību, kur PP = SYS - DIA	FloTrac, FloTrac Jr vai Acumen IQ sen- sors
sirdsdarbības ātrums (PR)	arteriālā asinsspiediena pulsāciju skaits minūtē	FloTrac sensors, FloTrac Jr sensors, Acumen IQ sensors vai TruWave spie- diena devējs
labā sirds kambara sirdsdarbības ātrums (PR _{RVP})	kambara kontrakciju skaits minūtē.	TruWave spiediena devējs labajā sirds kambarī

Parametrs	Apraksts	Tehnoloģija
labā sirds kambara sistoliskais kritums (RV dP/dt)	maksimālais spiediena līknes kāpums, mērot labajā sirds kambarī	TruWave spiediena devējs labajā sirds kambarī
labā kambara beigu diastoliskais spie- diens (RV EDP)	spiediens labajā sirds kambarī diastoles beigās pēc plaušu vārstuļa noslēgšanas	TruWave spiediena devējs labajā sirds kambarī
sistoles tilpums (SV)**	viena sirdspuksta laikā pārsūknētais asi- ņu tilpums**	FloTrac, FloTrac Jr vai Acumen IQ sen- sors
sistoles tilpuma indekss (SVI)**	sistoles tilpums attiecībā pret ķermeņa virsmas laukumu (KVL)**	FloTrac, FloTrac Jr vai Acumen IQ sen- sors
sistēmiskā asinsvadu pretestība (SVR)	atvasināts mērījums, kas raksturo pre- testību pret asiņu plūsmu no kreisā kambara (pēcslodzi)	FloTrac, FloTrac Jr vai Acumen IQ sen- sors
sistēmiskās asinsvadu pretestības in- dekss (SVRI)	sistēmiskā asinsvadu pretestība attiecī- bā pret ķermeņa virsmas laukumu (KVL)	FloTrac, FloTrac Jr vai Acumen IQ sen- sors
sistoles tilpuma variācija (SVV)	procentuālā atšķirība starp SV minimālo un SV maksimālo vērtību attiecībā pret SV vidējo vērtību	FloTrac, FloTrac Jr vai Acumen IQ sensors
sistoliskais spiediens (SYS _{ART} /SYS _{PAP} / SYS _{RVP})	sistoliskais asinsspiediens, kas mērīts plaušu artērijā (PAP), labajā sirds kam- barī (RVP) vai sistēmiski artērijā (ART)	FloTrac sensors, FloTrac Jr sensors, Acumen IQ sensors vai TruWave spie- diena devējs

*HPI parametri ir pieejami, ja tiek lietots Acumen IQ sensors.

** Ir pieejami arī nepārtraukti kalibrēti CO, CI, SV un SVI mērījumi, kalibrēšanai izmantojot transpulmonālās termodilūcijas (TPTD) procedūru ar pievienotu Acumen IQ sensoru pie Edwards Lifesciences apakšsilba arterijas katetra caurulītes un TruWave spiediena devēju pie centrālā venozā katetra caurulītes.

Piezīme

Sirds izsviede, kas ir aprēķināta, izmantojot HemoSphere spiedienkabeli, var atšķirties no sirds izsviedes, kas ir aprēķināta, izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli, jo šiem aprēķiniem tiek izmantotas dažādas metodes un algoritmi.

1.6.3 HemoSphere oksimetrijas kabelis

HemoSphere oksimetrijas kabelis sniedz iespēju veikt jauktu venozā skābekļa piesātinājuma (SvO₂) vai centrālā venozā skābekļa piesātinājuma (ScvO₂) monitoringu, izmantojot saderīgu Edwards oksimetrijas katetru. HemoSphere oksimetrijas kabeli var pievienot monitoringa kabeļa pieslēgvietai, un to var izmantot kopā ar citām hemodinamiskā stāvokļa pārraudzības tehnoloģijām. Papildinformāciju par oksimetrijas kontroles ierīci skatiet 11. nodaļā, Venozās oksimetrijas monitorings 202. lpp. 1-16. tabula 39. lpp. ir minēti pieejamie parametri, izmantojot HemoSphere oksimetrijas kabeli.

Parametrs	Apraksts
centrālā venozā oksimetrija (ScvO ₂)	venozo asiņu skābekļa piesātinājums, mērot augšējā dobajā vēnā
jaukta venozā oksimetrija (SvO₂)	venozo asiņu skābekļa piesātinājums, mērot pulmonālajā artērijā
skābekļa patēriņš (VO2)	skābekļa apjoms, ko ķermenis patērē vienā minūtē
prognozētais skābekļa patēriņš (VO2e)	prognozētais skābekļa apjoms, ko ķermenis patērē vienā minūtē (tikai ScvO ₂ uzraudzība)
skābekļa patēriņa indekss (VO ₂ I)	skābekļa apjoms, ko ķermenis patērē vienā minūtē, kas indeksēts attiecībā pret ķermeņa virsmas laukumu (KVL)
prognozētā skābekļa patēriņa indekss (VO ₂ le)	prognozētais skābekļa apjoms, ko ķermenis patērē vienā minūtē, kas indeksēts attiecībā pret ķermeņa virsmas laukumu (KVL)

1.6.4 ForeSight oksimetra kabelis

HemoSphere Alta uzlabotā monitoringa platforma iespējo audu oksimetrijas (StO₂) pārraudzību, izmantojot ForeSight oksimetra kabeli un saderīgus audu oksimetrijas sensorus. Papildinformāciju par audu oksimetrijas pārraudzību skatiet 12. nodaļā, HemoSphere Alta audu oksimetrijas pārraudzība 210. lpp. Pieejamie parametri, izmantojot ForeSight oksimetra kabeli, ir minēti šeit: 1-17. tabula 39. lpp..

Piezīme

Tālāk norādītajiem komponentiem var būt alternatīvs marķējuma formatējums.

ForeSight oksimetra kabelis (FSOC) var būt marķēts arī kā FORE-SIGHT ELITE audu oksimetrijas modulis (FSM).

ForeSight sensori vai ForeSight Jr sensori var būt marķēti arī kā FORE-SIGHT ELITE audu oksimetrijas sensori.

Parametrs	Apraksts	Tehnoloģija
audu oksimetrija (StO ₂)	audu absolūtais piesātinājums ar skā- bekli, noteikts uz ķermeņa virsmas, zem sensora atrašanās vietas	ForeSight/ForeSight Jr sensora noteikta gandrīz infrasarkanās gaismas atstaro- šana
relatīvās izmaiņas kopējā hemoglobīnā (ΔctHb)	tendences vērtība, kas aprēķināta no relatīvo izmaiņu summas ar skābekli piesātinātajā hemoglobīnā un dez- oksigenētā hemoglobīnā (ΔO2Hb un ΔHHb)	ForeSight/ForeSight Jr sensora noteikta gandrīz infrasarkanās gaismas atstaro- šana

1-17. tabula. ForeSight oksimetra kabeļa parametru apraksts

1.6.5 HemoSphere ClearSight tehnoloģija

HemoSphere Alta uzlabotā monitoringa platforma ar savienotu, saderīgu spiediena kontrolleru un pirksta manšeti(-ēm) ļauj neinvazīvi mērīt pacienta arteriālā spiediena līkni un aprēķināt nepārtraukto sirds izsviedi (CO) un saistītos hemodinamiskos parametrus. Spiediena kontrollers jāpievieno ClearSight tehnoloģijas pieslēgvietai. Lai iegūtu papildinformāciju, skatiet 10. nodaļu HemoSphere Alta ClearSight tehnoloģija 184. lpp..

1-18. tabula. HemoSphere ClearSight tehnoloģijas galveno parametru apraksts

Parametrs	Apraksts	Tehnoloģija
nepārtraukta sirds izsviede (CO)	nepārtraukti novērtēts sirds sūknētais asiņu tilpums, kas ir izteikts litros minū- tē un tiek noteikts, izmantojot uzraudzī- tā arteriālā spiediena līkni un ClearSight algoritmu	ClearSight, ClearSight Jr vai Acumen IQ manšete
nepārtraukts sirds indekss (Cl)	nepārtraukti noteikta sirds izsviede at- tiecībā pret ķermeņa virsmas laukumu (KVL)	ClearSight, ClearSight Jr vai Acumen IQ manšete
diastoliskais asinsspiediens (DIA _{ART})	diastoliskais asinsspiediens	ClearSight, ClearSight Jr vai Acumen IQ manšete
sistoliskais kritums (dP/dt)*	maksimālais arteriālā spiediena līknes kāpums, mērīts perifērā artērijā*	Acumen IQ manšete
dinamiskā elastība (Ea _{dyn})*	arteriālās sistēmas radītās kreisā kam- bara pēcslodzes (arteriālās elastības) mērs attiecībā pret kreisā kambara ela- stību*	Acumen IQ manšete
Acumen Hypotension Prediction Index (HPI)*	indekss, kas uzrāda varbūtību, ka pa- cientam pastāv hipotensijas risksMAP vismaz vienas minūtes ilgumā)*	Acumen IQ manšete
vidējais arteriālais spiediens (MAP)	vidējais sistēmiskais asinsspiediens vie- nā sirds ciklā	ClearSight, ClearSight Jr vai Acumen IQ manšete
pulsa spiediena variācija (PPV)	procentuālā atšķirība starp PP minimā- lo un PP maksimālo vērtību attiecībā pret PP vidējo vērtību, kur PP = SYS - DIA	ClearSight, ClearSight Jr vai Acumen IQ manšete
sirdsdarbības ātrums (PR)	arteriālā asinsspiediena pulsāciju skaits minūtē	ClearSight, ClearSight Jr vai Acumen IQ manšete
sistoles tilpums (SV)	viena sirdspuksta laikā pārsūknētais asi- ņu tilpums	ClearSight, ClearSight Jr vai Acumen IQ manšete
sistoles tilpuma indekss (SVI)	sistoles tilpums attiecībā pret ķermeņa virsmas laukumu (KVL)	ClearSight, ClearSight Jr vai Acumen IQ manšete
sistēmiskā asinsvadu pretestība (SVR)	atvasināts mērījums, kas raksturo pre- testību pret asiņu plūsmu no kreisā kambara (pēcslodzi)	ClearSight, ClearSight Jr vai Acumen IQ manšete
sistēmiskās asinsvadu pretestības in- dekss (SVRI)	sistēmiskā asinsvadu pretestība attiecī- bā pret ķermeņa virsmas laukumu (KVL)	ClearSight, ClearSight Jr vai Acumen IQ manšete

Parametrs	Apraksts	Tehnoloģija
sistoles tilpuma variācija (SVV)	procentuālā atšķirība starp SV minimālo un SV maksimālo vērtību attiecībā pret SV vidējo vērtību	ClearSight, ClearSight Jr vai Acumen IQ manšete
sistoliskais spiediens (SYS _{ART})	sistoliskais asinsspiediens	ClearSight, ClearSight Jr vai Acumen IQ manšete
*HPI parametri ir pieejami, ja tiek lietota Acumen IQ pirksta manšete un sirds kontrolsensors.		

1.6.6 HemoSphere Alta AFM kabelis

HemoSphere Alta AFM kabelis iespējo bolus ievades plūsmas ātruma trasēšanu AFM programmatūras funkcijā, kad ir pievienots saderīgs šķidruma mērītājs. Papildinformāciju par AFM programmatūras funkciju, kas ir papildfunkcija, skat. šeit: Atbalstīta šķidrumu pārvaldība 291. lpp.

1.6.7 Dokumentācija un apmācība

Lietošanas instrukcija ir pievienota HemoSphere Alta uzlabotās monitoringa platformas komponentiem. Skat. B-1. tabula 393. lpp. Lai iegūtu papildinformāciju par apmācību vai pieejamo dokumentāciju par HemoSphere Alta uzlaboto monitoringa platformu, sazinieties ar Edwards vietējo pārstāvi vai Edwards tehniskā atbalsta dienestu. Skatiet F pielikumu Sistēmas apkope, remonts un atbalsts 410. lpp..

1.7 Rokasgrāmatas formatējums

Rokasgrāmatā izmantotie formatējuma elementi ir uzskaitīti šeit: 1-19. tabula 41. lpp.

Formatējums	Apraksts
Treknraksts	Ar treknrakstu norādīti programmatūras termini. Šie vārdi vai vārdkopas ir redzamas ekrānā, kā norādīts.
Poga treknrakstā	Poga ir treknrakstā attēlotās opcijas skārienekrāna piekļuves punkts. Piemēram, poga Atpakaļ ekrānā izskatās šādi:
	Atpakaļ
→	Bultiņa tiek izmantota starp divām ekrānā redzamām izvēlnes opcijām, ko operators secīgi atlasa.
\$	lkona ir attēlotās izvēlnes vai navigācijas grafiskā attēla skārienekrāna piekļuves punkts. Pilnu sarakstu ar izvēlnes ikonām, kas redzamas HemoSphere Alta uzlabotajā monitoringa platfor- mā, skatiet šeit: 2-1. tabula 59. lpp.
Ikona Venozā oksimetrija	Teksts treknrakstā kopā ar izvēlnes ikonu norāda uz ikonu, kas ir saistīta ar vārdu vai frāzi, kura ir redzama ekrānā. Piemēram, ikona Venozā oksimetrija ekrānā ir redzama šādi: - - Venozā oksimetrija

1-19. tabula. Operatora rokasgrāmatas formatējums

1.8 Rokasgrāmatā lietotie saīsinājumi

1-20. tabula. Akronīmi, saīsinājumi

Saīsinājums	Definīcija
A/D	analogs/digitāls
AFM	atbalstīta šķidrumu pārvaldība
ART	Sistēmiskais arteriālais asinsspiediens
ĶМІ	Ķermeņa masas indekss
KVL	ķermeņa virsmas laukums
ВТ	asins temperatūra
CAI	smadzeņu automātiskās regulācijas indekss
CaO ₂	arteriālā skābekļa saturs
CFI	sirds funkcijas indekss
CI	sirds indekss
Cl _{20s}	20 sekunžu sirds indekss
CI _{RV}	labā sirds kambara indekss
СО	sirds izsviede
CO _{20s}	20 sekunžu sirds izsviede
CO _{RV}	labā sirds kambara izsviede
ссо	nepārtraukta sirds izsviede (izmantota, aprakstot noteiktus Swan-Ganz katetrus un HemoSphere Alta pacienta kabeli)
СРІ	sirds jaudas indekss
CPI _{RV}	labā sirds kambara jaudas indekss
СРО	sirds izvades jauda
CPO _{RV}	labā sirds kambara izsviedes jauda
CVP	centrālais venozais spiediens
ΔctHb	kopējā hemoglobīna līmeņa relatīvās izmaiņas
DIA	diastoliskais asinsspiediens
DIA _{ART}	sistēmiskais arteriālais diastoliskais asinsspiediens
DIA _{PAP}	plaušu artērijas diastoliskais asinsspiediens
DIA _{RVP}	labā sirds kambara diastoliskais asinsspiediens
DO ₂	skābekļa padeve
DO ₂ I	skābekļa padeves indekss
dP/dt	sistoliskais kritums (maksimālais arteriālā spiediena līknes kāpums)
DPT	vienreizlietojamais spiediena devējs
Ea _{dyn}	dinamiskais artēriju elastīgums
EDV	beigu diastoliskais tilpums
EDVI	beigu diastoliskā tilpuma indekss
ESV	beigu sistoliskais tilpums
ESVI	beigu sistoliskā tilpuma indekss

Saīsinājums	Definīcija
EVLW	šķidruma uzkrāšanās ārpus plaušu asinsvadiem
ELWI	šķidruma uzkrāšanās ārpus plaušu asinsvadiem — indekss
efu	izsviedes frakcijas vienība
FRT	šķidruma reakcijas tests
FT-CO	FloTrac arteriālā spiediena automātiski kalibrētā sirds izsviede
GDT	mērķtiecīga terapija
GEDV	vispārējais diastoliskais beigu tilpums
GEDI	vispārējais diastoliskais beigu tilpums — indekss
GEF	vispārējā izsviedes frakcija
GHI	globālās hipoperfūzijas indekss
Hct	hematokrīts
НЕМРС	spiediena kontrollers
HIS	slimnīcas informācijas sistēmas
HGB	hemoglobīns
НРІ	Acumen Hypotension Prediction Index
HR	Sirdsdarbības frekvence
HR _{avg}	vidējā sirdsdarbības frekvence
HRS	sirds kontrolsensors
IA	intervences analīze
iCl	intermitējošais sirds indekss
iCO	intermitējoša sirds izsviede
IEC	Starptautiskā elektrotehnikas komisija
iSV	intermitējošs sistoles tilpums
iSVI	intermitējoša sistoles tilpuma indekss
iSVR	Intermitējoša sistēmiskā asinsvadu pretestība
iSVRI	intermitējošās sistēmiskās asinsvadu pretestības indekss
IT	injekāta temperatūra
ITBV	intratorakālais asins tilpums
ІТВІ	intratorakālā asins tilpuma indekss
LAEDV	kreisā sirds priekškambara beigu diastoliskais tilpums
LED	gaismas diode
LVEDV	kreisā sirds kambara beigu diastoliskais tilpums
LVSWI	kreisā kambara sistoliskā darba indekss
МАР	vidējais arteriālais spiediens
МРАР	vidējais plaušu artērijas spiediens
MRVP	vidējais labā kambara spiediens
NIBP	Neinvazīvais asinsspiediens
VAI	operāciju zāle
PA	pulmonālā artērija

Saīsinājums	Definīcija
РАР	pulmonālās artērijas asinsspiediens
PaO ₂	skābekļa parciālais spiediens arteriālajās asinīs
РАОР	plaušu artērijas oklūzijas spiediens
PAWP	plaušu artērijas ķīlēšanās spiediens
PBV	plaušu asins tilpums
PBW	prognozētais asins tilpums
PPV	pulsa spiediena variācija
POST	leslēgšanas pašpārbaude
PR	sirdsdarbības ātrums
PR _{RVP}	labā kambara sirdsdarbības ātrums
PvO ₂	skābekļa parciālais spiediens venozajās asinīs
PVPI	plaušu asinsvadu caurlaidības indekss
PVR	plaušu asinsvadu pretestība
PVRI	plaušu asinsvadu pretestības indekss
RAEDV	labā sirds priekškambara beigu diastoliskais tilpums
RV	labais sirds kambaris
RVEDV	labā sirds kambara beigu diastoliskais tilpums
RVCO	labā sirds kambara izsviede (algoritms)
RV dP/dt	labā sirds kambara sistoliskais kritums (maksimālais labā sirds kambara spiediena līknes kāpums)
RV EDP	labā kambara beigu diastoles spiediens
RVP	labā sirds kambara asinsspiediens
RVEF	labā kambara izsviedes frakcija
RVSWI	labā kambara sistoliskā darba indekss
SaO ₂	skābekļa piesātinājums
sCl	STAT sirds indekss
sCO	STAT sirds izsviede
ScvO ₂	centrālā venozā oksimetrija
sEDV	STAT beigu diastoliskais tilpums
sEDVI	STAT beigu diastoliskā tilpuma indekss
SQI	signāla kvalitātes indikators
sRVEF	STAT labā kambara izsviedes frakcija
ST	virsmas temperatūra
STAT	ātrs parametra vērtības aprēķins
StO ₂	audu piesātinājums ar skābekli
SV	sistoles tilpums
SV _{20s}	20 sekunžu sistoles tilpums
SV _{RV}	labā sirds kambara sistoles tilpums
SVI	sistoles tilpuma indekss

Saīsinājums	Definīcija
SVI _{20s}	20 sekunžu sistoles tilpuma indekss
SVI _{RV}	labā sirds kambara sistoles tilpuma indekss
SvO ₂	jaukto venozo asiņu skābekļa piesātinājums
SVR	sistēmiskā asinsvadu pretestība
SVRI	sistēmiskās asinsvadu pretestības indekss
SVV	sistoles tilpuma variācija
SYS	sistoliskais asinsspiediens
SYS _{ART}	sistēmiskais arteriālais sistoliskais asinsspiediens
SYS _{PAP}	plaušu artērijas sistoliskais asinsspiediens
SYS _{RVP}	labā sirds kambara sistoliskais asinsspiediens
Tb	asins temperatūra
tHb	kopējais hemoglobīns
Skāriens	Mijiedarboties ar HemoSphere Alta uzlaboto monitoru, pieskaroties ekrānam.
TD	termodilūcija
Ti	injektāta temperatūra
TPTD	transpulmonāla termodilūcija
USB	universālā seriālā kopne
VO ₂	skābekļa patēriņš
VO ₂ I	skābekļa patēriņa indekss
VO ₂ e	skābekļa patēriņa prognoze
VO ₂ Ie	prognozētā skābekļa patēriņa indekss

Drošība un simboli

Saturs

Drošības signālvārdi un definīcijas	46
Brīdinājumi	
Piesardzības pasākumi	
Lietotāja interfeisa simboli	59
Simboli uz izstrādājumu marķējuma	
Piemērojamie standarti	69
HemoSphere Alta uzlabotās monitoringa platformas pamata veiktspēja	70

2.1 Drošības signālvārdi un definīcijas

2.1.1 Brīdinājums

Brīdinājums aicina atturēties no tādām darbībām vai situācijām, kas var izraisīt traumas vai nāvi.

BRĪDINĀJUMS

Šādi šīs rokasgrāmatas tekstā tiek attēloti brīdinājumi.

2.1.2 Uzmanību!

Piesardzības pasākums aicina atturēties no tādām darbībām vai situācijām, kas var izraisīt iekārtu bojājumus, datu neprecizitātes vai procedūru kļūdas.

UZMANĪBU

Šādi šīs rokasgrāmatas tekstā tiek attēloti piesardzības pasākumi.

2.1.3 Piezīme

Piezīme vērš uzmanību uz noderīgu informāciju saistībā ar kādu funkciju vai procedūru.

Piezīme

Šādi šīs rokasgrāmatas tekstā tiek attēlotas piezīmes.

2.2 Brīdinājumi

Tālāk uzskaitīti brīdinājumi, kas tiek izmantoti HemoSphere Alta uzlaboto monitoringa platformu lietotāja rokasgrāmatā. Tie atrodami rokasgrāmatā attiecīgajās vietās pie funkciju vai procedūru aprakstiem.

 Pirms Edwards HemoSphere Alta uzlabotās monitoringa platformas lietošanas mēģinājuma uzmanīgi izlasiet šo lietotāja rokasgrāmatu.

- Skatiet katram saderīgajam piederumam pievienotās lietošanas instrukcijas, pirms lietojat šos piederumus kopā ar HemoSphere Alta uzlaboto monitoringa platformu.
- Lai nepieļautu traumas pacientam vai lietotājam, platformas bojājumus vai mērījumu neprecizitātes, nelietojiet bojātus vai nesaderīgus platformas piederumus, komponentus vai kabeļus.
- Ja HemoSphere Alta uzlabotā monitoringa platforma netiek lietota pareizi, var tikt apdraudēts pacients. Pirms platformas lietošanas rūpīgi izlasiet šīs rokasgrāmatas 2. nodaļas sadaļu "Brīdinājumi". (1. nodaļa)
- HemoSphere Alta uzlabotā monitoringa platforma paredzēta tikai pacienta stāvokļa izvērtēšanai. Šis instruments jālieto apvienojumā ar fizioloģisko monitoru, kas novietojams pie gultas, un/vai ņemot vērā pacienta klīniskās pazīmes un simptomus. Ja no ierīces saņemtās hemodinamiskās vērtības nesakrīt ar pacienta klīniskajiem rādītājiem, pirms terapijas sākuma veiciet ierīces problēmu novēršanu. (1. nodaļa)
- EKG signāla ievade un visi parametri, kas atvasināti no sirdsdarbības mērījumiem, nav izvērtēti pediatrijas pacientiem, tādēļ šim pacientu lokam nav pieejami. (1. nodaļa)
- **Elektriskās strāvas triecienu risks!** Nemēģiniet pievienot/atvienot sistēmas kabeļus ar mitrām rokām. Pirms sistēmas kabeļu atvienošanas pārliecinieties, ka jūsu rokas ir sausas. (3. nodaļa)
- Sprādzienbīstamība! Nelietojiet HemoSphere Alta uzlaboto monitoringa platformu tāda maisījuma klātbūtnē, kas sastāv no gaisa un uzliesmojošiem anestēzijas līdzekļiem, skābekļa vai slāpekļa oksīda. (3. nodaļa)
- Šis izstrādājums satur metāliskas daļas. NEDRĪKST lietot magnētiskās rezonanses (MR) vidē. (3. nodaļa)
- Pārliecinieties, ka HemoSphere Alta uzlabotā monitoringa platforma ir novietota vai uzstādīta droši un ka visi kabeļi un piederumu kabeļi ir izkārtoti atbilstoši, lai samazinātu pacientu vai lietotāju traumu, kā arī iekārtas bojājumu risku. (3. nodaļa)
- Neizmantojiet šo iekārtu, ja tā atrodas blakus citām iekārtām vai virs tām, jo tas var izraisīt nepareizu iekārtas darbību. Ja šādā situācijā izmantošana tomēr ir nepieciešama, šī iekārta un pārējās iekārtas ir jāuzrauga, lai pārliecinātos, ka iekārtas darbojas normāli. (3. nodaļa)
- HemoSphere Alta uzlabotā monitoringa platforma ir jānovieto vertikālā pozīcijā, lai nodrošinātu atbilstību aizsardzības klasei IPX1. (3. nodaļa)
- Uzraugiet, lai uz monitora ekrāna nenokļūst jebkāda veida šķidrums. Citādi var tikt bojāts skārienekrāns.
 (3. nodaļa)
- Nenovietojiet monitoru tā, ka piekļuve pieslēgvietām aizmugures panelī vai elektropadeves kabelim ir apgrūtināta. (3. nodaļa)
- Aprīkojums ir novērtēts kā piemērots lietošanai kopā ar augstfrekvences ķirurģisko aprīkojumu. Augstfrekvences ķirurģiskā aprīkojuma radītie traucējumi var izraisīt neprecīzus parametru mērījumus. Lai mazinātu augstfrekvences ķirurģiskā aprīkojuma lietošanas izraisītos apdraudējumus, izmantojiet tikai nebojātus pacienta kabeļus un piederumus, kas ir pievienoti saskaņā ar šajā operatora rokasgrāmatā sniegtajiem norādījumiem. (3. nodaļa)
- Šī sistēma ir novērtēta kā piemērota lietošanai kopā ar defibrilatoriem. Lai nodrošinātu pienācīgu darbību bez defibrilatoru izraisītiem traucējumiem, izmantojiet tikai nebojātus pacienta vadus un piederumus, kas ir pievienoti saskaņā ar šajā operatora rokasgrāmatā sniegtajiem norādījumiem. (3. nodaļa)
- Viss standartam IEC/EN 60950 atbilstošais aprīkojums, tostarp printeri, ir jānovieto vismaz 1,5 metru attālumā no pacienta gultas. (3. nodaļa)
- Pārnēsājamais RF sakaru aprīkojums (tostarp tādas perifērās ierīces kā antenu kabeļi un ārējās antenas) jāizmanto attālumā, kas nav tuvāks kā 30 cm (12") līdz jebkurai HemoSphere Alta uzlabotās monitoringa platformas daļai, tostarp ražotāja norādītajiem kabeļiem. Pretējā gadījumā tas var izraisīt aprīkojuma veiktspējas pasliktināšanos. (3. nodaļa)
- Ar HemoSphere Alta uzlaboto monitoringa platformu lietojiet tikai Edwards apstiprinātus akumulatorus. Neveiciet akumulatora uzlādi ārpus monitora. Pretējā gadījumā akumulators var tikt bojāts, vai arī lietotājs var gūt traumas. (3. nodaļa)
- Lai nepieļautu pāraudzības pārtraukumus elektroenerģijas padeves pārrāvuma dēļ, ieteicams lietot HemoSphere Alta uzlaboto monitoringa platformu ar ievietotu akumulatoru. (3. nodaļa)
- Strāvas padeves traucējumu gadījumā un akumulatora iztukšošanās gadījumā pārraudzības ierīce tiks kontrolēti izslēgta. (3. nodaļa)
- Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu, ja tai nav uzlikts strāvas vada pievades vāks. Neveicot šīs darbības, iekārtā var iekļūt šķidrums. (3. nodaļa)

- Elektropadeves kabeļa pievienošanai neizmantojiet pagarinātājus vai vairākligzdu ierīces. Izmantojiet tikai komplektācijā ietverto elektropadeves kabeli. (3. nodaļa)
- Lai izvairītos no elektriskās strāvas triecienu riska, HemoSphere Alta uzlaboto monitoringa platformu var pievienot tikai tādam elektropadeves tīklam, kas savienots ar aizsargzemējumu. Neizmantojiet divzaru– trīszaru adapterus. (3. nodaļa)
- Drošs zemējums tiek panākts tikai tad, ja instruments tiek pieslēgts kontaktligzdai, kas apzīmēta ar "tikai slimnīcām", "slimnīcas līmeņa" vai tamlīdzīgu marķējumu. (3. nodaļa)
- Atvienojiet monitoru no maiņstrāvas avota, atvienojot tīkla strāvas kabeli no maiņstrāvas tīkla. Nospiežot ieslēgšanas/izslēgšanas pogu, monitors netiek atvienots no maiņstrāvas tīkla. (3. nodaļa)
- Izmantojiet tikai Edwards piegādātus un marķētus HemoSphere Alta uzlabotās monitoringa platformas piederumus, kabeļus un/vai komponentus. Citu nemarķētu piederumu, kabeļu un/vai komponentu izmantošana var ietekmēt pacienta drošību un mērījumu precizitāti. (3. nodaļa)
- Sākot jaunu pacienta sesiju, būtu jāpārbauda noklusējuma augstie/zemie fizioloģisko trauksmes signālu diapazoni, lai nodrošinātu, ka tie ir piemēroti attiecīgajam pacientam. (5. nodaļa)
- Izpildiet darbību Jauns pacients vai dzēsiet pacienta datu profilu katru reizi, kad HemoSphere Alta uzlabotajai monitoringa platformai tiek pievienots jauns pacients. Pretējā gadījumā iepriekšējo datu attēlojumos var būt redzami iepriekšējā pacienta dati. (5. nodaļa)
- Pārliecinieties, vai **Demonstrācijas režīms** nav aktivizēts klīniskā vidē, lai simulētos datus kļūdaini neuztvertu par klīniskiem datiem. (5. nodaļa)
- Nelietojiet trauksmes iestatījumus/sākotnējos iestatījumus, kas atšķiras no iestatījumiem tādā pašā vai līdzīgā aprīkojumā, kas tiek lietots tajā pašā telpā, piemēram, intensīvās terapijas nodaļā vai kardioloģijas operāciju zālē. Nesaskaņotas trauksmes var ietekmēt pacienta drošību. (6. nodaļa)
- Pirms sākat jaunu pārraudzības sesiju, pārliecinieties, ka trauksmes iestatījumi/iepriekšējie iestatījumi ir atbilstoši konfigurēti pacientam. (6. nodaļa)
- Neizslēdziet trauksmes stāvokļu skaņas signālus, ja var tikt apdraudēta pacienta drošība. (6. nodaļa)
- Nepazeminiet brīdinājuma signāla skaļumu līdz tādam līmenim, ka brīdinājumus vairs nevar pienācīgi uzraudzīt. Pretējā gadījumā var rasties situācija, kurā tiek apdraudēta pacienta drošība. (6. nodaļa)
- Vizuālie un skaņas fizioloģiskās trauksmes signāli tiek aktivizēti tikai, ja parametrs ir konfigurēts ekrānos kā galvenais parametrs (1.–8. parametrs parametru elementos). Ja parametrs nav atlasīts un attēlots kā galvenais parametrs, skaņas un vizuālie fizioloģisko brīdinājumu signāli šim parametram netiek aktivizēti. (6. nodaļa)
- Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu kā dalītās signalizācijas sistēmas komponentu. HemoSphere Alta uzlabotā monitoringa platforma nav saderīga ar attālajām signalizācijas uzraudzības/pārvaldības sistēmām. Dati tiek reģistrēti un pārraidīti tikai ar nolūku veikt diagrammu veidošanu. (7. nodaļa)
- Atbilstība standartam IEC 60601-1 tiek saglabāta tikai tad, ja HemoSphere Alta Swan-Ganz pacienta kabelis (savienojums daļai, kas saskaras ar pacientu, drošs pret defibrilāciju) ir savienots ar saderīgu pārraudzības platformu. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam. (8. nodaļa)
- Izstrādājumu nedrīkst nekādā veidā pārveidot, veikt tā apkopi vai mainīt. Veicot izstrādājuma apkopi, pārveidojot vai mainot to, var tikt negatīvi ietekmēta pacienta/lietotāja drošība un/vai izstrādājuma veiktspēja. (8. nodaļa)
- CO uzraudzība vienmēr ir jāpārtrauc, ja tiek apturēta asins plūsma ap termisko kvēldiegu. Klīniskās situācijas, kurās ir jāpārtrauc CO uzraudzība, var būt šādas (bet ne tikai):
 - laika periods, kurā pacientam tiek nodrošināta kardiopulmonālā šuntēšana;
 - daļēja katetra izvilkšana, lai termistors būtu ārpus plaušu artērijas;
 - katetra izvilkšana no pacienta.

(8. nodaļa)

PACIENTI AR KARDIOSTIMULATORU. Pulsa mērītāji var turpināt mērīt kardiostimulatora ritmu sirdsdarbības apstāšanās vai aritmijas gadījumā. Nepaļaujieties tikai uz pulsa rādījumu. Pacienti ar kardiostimulatoru rūpīgi jāuzrauga. Informāciju par ierīces iespējām noraidīt kardiostimulatora impulsus skatiet šeit: A-5. tabula 383. lpp. (8. nodaļa)

- Lai iegūtu sirdsdarbības frekvenci un ar sirdsdarbības frekvenci saistītos parametrus, HemoSphere Alta uzlaboto monitoringa platformu nedrīkst izmantot pacientiem, kuriem nepieciešams iekšēja vai ārēja kardiostimulatora atbalsts, turpmāk norādītajos apstākļos:
 - kardiostimulatora pulsa sinhronizācijas izvade no pie gultas novietojamā monitora ietver kardiostimulatora pulsu, taču raksturlielumi ir ārpus kardiostimulatora pulsa noraidīšanas iespēju specifikācijām, kā norādīts A-5. tabulā;
 - kardiostimulatora pulsa sinhronizācijas izvades raksturlielumi no pie gultas novietojamā monitora nav nosakāmi.

(8. nodaļa)

- Ņemiet vērā visas sirdsdarbības ātruma (HR_{avg}) neatbilstības ar pacienta monitora HR un EKG spiediena līknes attēlojumu, kad tiek interpretēti atvasinātie parametri, piemēram, SV, EDV, RVEF, un saistītie indeksa parametri. (8. nodaļa)
- Nesterilizējiet un nelietojiet atkārtoti nevienu FloTrac sensoru, FloTrac Jr sensoru, Acumen IQ sensoru, TruWave devēju vai katetru; skatiet katetra "lietošanas norādījumus". (9. nodaļa)
- Nelietojiet FloTrac sensoru, FloTrac Jr sensoru, Acumen IQ sensoru, TruWave devēju vai katetru, ja tas ir mitrs vai bojāts vai tam ir atklāti elektriskie kontakti. (9. nodaļa)
- Konkrētus norādījumus par piederuma novietošanu un lietošanu, kā arī saistītos paziņojumus ar apzīmējumiem BRĪDINĀJUMS un UZMANĪBU un specifikācijas skatiet katra piederuma komplektācijā ietvertajos norādījumos. (9. nodaļa)
- Kad spiediena kabelis netiek lietots, sargājiet atklāto kabeļa savienotāju no šķidruma. Savienotājā iekļuvis mitrums var izraisīt kabeļa darbības traucējumus vai neprecīzus spiediena mērījumus. (9. nodaļa)
- Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja HemoSphere spiediena kabelis (lietojamās daļas piederums, drošs pret defibrilāciju) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam. (9. nodaļa)
- Ja plaušu artērijas katetrs pāriet ķīļa pozīcijā, kamēr balons nav piepildīts, iespējama spontāna gala ieķīlēšanās, un plaušu artērijas spiediena līkne izskatās pēc ķīļa; tas var ietekmēt algoritma precizitāti. Veiciet atbilstošas darbības saskaņā ar iestādes standarta klīniskajām procedūrām. (9. nodaļa)
- Katetru nedrīkst atstāt pastāvīgā ķīļa pozīcijā. Centieties arī balonu nepiepildīt ilgstoši, kamēr katetrs atrodas ķīļa pozīcijā; tas ir nosprostojošs manevrs un var izraisīt plaušu infarktu. (9. nodaļa)
- Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu kā sirdsdarbības ātruma vai asinsspiediena monitoru. (9. nodaļa)
- Komponentus, kas nav apzīmēti kā DAĻAS, KAS SASKARAS AR PACIENTU, nedrīkst likt atrašanās vietā, kurā pacients var saskarties ar šiem komponentiem. (10. nodaļa)
- Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja spiediena kontrollers (savienojums daļai, kas saskaras ar pacientu) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/ lietotājam. (10. nodaļa)
- Nesterilizējiet atkārtoti HemoSphere Alta neinvazīvās sistēmas elementus. HemoSphere Alta neinvazīvā sistēma tiek piegādāta nesterila. (10. nodaļa)
- Skatiet tīrīšanas norādījumus. Nedezinficējiet instrumentu autoklāvā vai ar gāzi. (10. nodaļa)
- Konkrētus norādījumus par piederuma novietošanu un lietošanu, kā arī saistītos paziņojumus ar apzīmējumiem BRĪDINĀJUMS un UZMANĪBU un specifikācijas skatiet katra piederuma komplektācijā ietvertajos norādījumos. (10. nodaļa)
- Neizmantojiet bojātas daļas/sensorus vai daļas/sensorus ar neizolētiem elektriskajiem kontaktiem, lai novērstu strāvas triecienu pacientam vai lietotājam. (10. nodaļa)
- HemoSphere Alta neinvazīvās sistēmas pārraudzības elementi nav noturīgi pret defibrilatora iedarbību.
 Pirms defibrilācijas veikšanas atvienojiet sistēmu. (10. nodaļa)
- Izmantojiet tikai saderīgas Edwards pirkstu manšetes, sirds kontrolsensorus un citus HemoSphere Alta neinvazīvās sistēmas piederumus, kabeļus un/vai citus komponentus, ko piegādājis un marķējis uzņēmums

Edwards. Citu nemarķētu piederumu, kabeļu un/vai komponentu izmantošana var ietekmēt pacienta drošību un mērījumu precizitāti. (10. nodaļa)

- Pirms mazgājat pacientu, vienmēr noņemiet no pacienta HemoSphere Alta neinvazīvās sistēmas sensorus un komponentus un pilnībā atvienojiet pacientu no instrumenta. (10. nodaļa)
- Nepievelciet spiediena kontrollera joslu vai pirksta manšeti(-es) pārāk cieši. (10. nodaļa)
- Nelietojiet spiediena kontrollera joslu uz savainotas ādas, jo tas var radīt papildu traumas. (10. nodaļa)
- Nepareizi uzliekot pirksta manšeti vai izvēloties nepareizu izmēru, uzraudzība var būt neprecīza. (10. nodaļa)
- Neizmantojiet HemoSphere Alta neinvazīvo sistēmu kā sirdsdarbības ātruma monitoru. (10. nodaļa)
- Ja izmantojat instrumentu ķermeņa pilnīgas apstarošanas laikā, neļaujiet nevienai HemoSphere Alta neinvazīvās sistēmas pārraudzības daļai nonākt apstarošanas laukā. Ja uzraudzības daļa tiek pakļauta apstarošanai, tas var ietekmēt mērījumus. (10. nodaļa)
- Spēcīgs magnētiskais lauks var izraisīt instrumenta kļūdainu nostrādi un apdedzināt pacientu. Neizmantojiet instrumentu magnētiskās rezonanses attēlveidošanas laikā. Inducētā strāva var izraisīt apdegumus. Ierīce var ietekmēt MR attēlu, un magnētiskās rezonanses attēlveidošanas ierīce var ietekmēt mērījumu kvalitāti. (10. nodaļa)
- Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja HemoSphere oksimetrijas kabelis (lietojamās daļas piederums, drošs pret defibrilāciju) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam. (11. nodaļa)
- Neietiniet galveno oksimetrijas kabeļa korpusu audumā un nenovietojiet kabeli tieši uz pacienta ādas.
 Virsma kļūst silta (līdz 45 °C), un siltums jāizkliedē, lai uzturētu iekšējās temperatūras līmeni. Ja iekšējā temperatūra pārsniedz tai noteiktos ierobežojumus, radīsies programmatūras kļūda. (11. nodaļa)
- Pirms pieskarties pogai Atsaukt, lai atsauktu oksimetrijas datus, apstipriniet, ka parādītie dati atbilst pašreizējam pacientam. Nepareizu oksimetrijas kalibrācijas un pacienta demogrāfisko datu izsaukšana radīs mērījumu neprecizitāti. (11. nodaļa)
- Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja ForeSight oksimetrijas kabelis (daļa, kas saskaras ar pacientu, drošs pret defibrilāciju) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam. (12. nodaļa)
- Pirms uzstādīšanas pārbaudiet, vai ForeSight oksimetra kabeļa savienojumi nevienā daļā nav bojāti. Ja konstatējat bojājumus, kabeli nedrīkst izmantot, kamēr tas nav salabots vai nomainīts. Sazinieties ar Edwards tehniskā atbalsta dienestu. Pastāv risks, ka bojātas detaļas var samazināt kabeļa veiktspēju vai radīt drošības apdraudējumu. (12. nodaļa)
- Lai novērstu pacientu savstarpējas kontaminācijas iespēju, ForeSight oksimetra kabelis un kabeļa savienojumi ir jātīra pēc katras lietošanas reizes. (12. nodaļa)
- Lai samazinātu kontaminācijas un savstarpējas inficēšanās risku, ForeSight oksimetra kabelis vai kabeļu savienojumi ir jādezinficē, ja tie ir stipri piesārņoti ar asinīm vai citiem ķermeņa šķidrumiem. Ja ForeSight oksimetra kabeli vai kabeļu savienojumus nevar dezinficēt, tiem ir jāveic tehniskā apkope, tie ir jānomaina vai jāizmet. Sazinieties ar Edwards tehniskā atbalsta dienestu. (12. nodaļa)
- Lai samazinātu risku sabojāt kabeļu bloku iekšējos elementus ForeSight oksimetra kabeļa korpusā, izvairieties no pārmērīgas kabeļa savienojumu vilkšanas, saliekšanas vai cita veida slodzes. (12. nodaļa)
- Sensori nav sterili, tāpēc tos nedrīkst lietot uz nobrāztas, saplaisājušas ādas vai brūcēm. Lietojot sensorus vietās ar maigu ādu, ievērojiet piesardzību. Sensoru, lentes vai spiediena lietošana šādā vietā var samazināt asinsriti un/vai izraisīt ādas stāvokļa pasliktināšanos. (12. nodaļa)
- Nenovietojiet sensoru virs slikti apasiņotiem audiem. Lai nodrošinātu labāku saķeri, izvairieties no nelīdzenām ādas virsmām. Nenovietojiet sensoru virs vietām, kur ir radies ascīts, celulīts, pneimocefālija vai tūska. (12. nodaļa)
- Ja tiks veiktas elektrokauterizācijas procedūras, sensori un elektrokauterizācijas elektrodi jānovieto pēc iespējas tālāk viens no otra, lai novērstu nevēlamus ādas apdegumus; ieteicams vismaz 15 cm (6") attālums. (12. nodaļa)

- Kopā ar ForeSight oksimetra kabeli izmantojiet tikai Edwards piegādātos piederumus. Edwards piederumi nodrošina pacienta drošību un saglabā ForeSight oksimetra kabeļa integritāti, precizitāti un elektromagnētisko saderību. Pieslēdzot sensoru, kura ražotājs nav Edwards, attiecīgajā kanālā tiks parādīts atbilstošs trauksmes ziņojums, un StO₂ vērtības netiks reģistrētas. (12. nodaļa)
- Sensori ir paredzēti lietošanai vienam pacientam, un tos nedrīkst atkārtoti apstrādāt. Atkārtota sensoru izmantošana rada savstarpējas kontaminācijas vai infekcijas risku. (12. nodaļa)
- Katram pacientam izmantojiet jaunu sensoru un pēc lietošanas izmetiet to. Iznīcināšana jāveic saskaņā ar vietējiem slimnīcas un iestādes noteikumiem. (12. nodaļa)
- Ja sensors šķiet jebkādā veidā bojāts, to nedrīkst izmantot. (12. nodaļa)
- Vienmēr izlasiet informāciju uz sensora iepakojuma. (12. nodaļa)
- Novietojot sensorus, rīkojieties ārkārtīgi uzmanīgi. Sensoru ķēdes vada strāvu, un tās nedrīkst nonākt saskarē ar citām iezemētām, strāvu vadošām detaļām, izņemot EEG vai entropijas monitorus. Šāda saskare šķērsotu pacienta izolāciju un atceltu sensora nodrošināto aizsardzību. (12. nodaļa)
- Ja sensori netiek pareizi novietoti, mērījumi var būt nepareizi. Sensoru nepareizs novietojums vai daļēja nobīdīšanās var izraisīt nepareizas skābekļa piesātinājuma vērtības nolasīšanu, kas ir lielāka vai mazāka par reālo vērtību. (12. nodaļa)
- Nenovietojiet sensoru vietā, kur tas būs pakļauts pacienta svaram. Ilgstoša spiediena periodos (piemēram, ja sensoram tiek pārlīmēta lente vai pacients guļ uz sensora) svars tiek pārnests no sensora uz ādu, tāpēc āda var tikt savainota un sensora veiktspēja var samazināties. (12. nodaļa)
- Sensoru pielikšanas vieta jāpārbauda vismaz ik pēc 12 stundām, lai mazinātu nepiemērotas pielipšanas, neatbilstošas asinsrites un ādas bojājumu risku. Ja asinsrites stāvoklis vai ādas integritāte ir pasliktinājusies, sensors ir jāpieliek citā vietā. (12. nodaļa)
- Nepievienojiet vairāk kā vienu pacientu pie ForeSight oksimetra kabeļa. Tas var negatīvi ietekmēt pacienta izolāciju un atcelt sensora nodrošināto aizsardzību. (12. nodaļa)
- ForeSight oksimetra kabelis ir veidots, lai veicinātu pacientu drošību. Visas kabeļa daļas ir "BF tipa noturīgas pret defibrilāciju", tās ir aizsargātas pret defibrilatora izlādes sekām, un tās drīkst palikt piestiprinātas pie pacienta. Defibrilatora lietošanas laikā un līdz divdesmit (20) sekundēm pēc tam kabeļa lasījumi var būt neprecīzi. (12. nodaļa)
- Izmantojot šo aprīkojumu kopā ar defibrilatoru, nav jāveic atsevišķas darbības, taču, lai nodrošinātu pienācīgu aizsardzību pret sirds defibrilatora iedarbību, jāizmanto tikai Edwards nodrošinātie sensori. (12. nodaļa)
- Defibrilācijas laikā nepieskarieties pacientiem, jo tas var izraisīt nopietnas traumas vai nāvi. (12. nodaļa)
- Ja jebkuras monitorā parādītās vērtības pareizība ir apšaubāma, nosakiet pacienta sirdsdarbības rādītājus ar citiem līdzekļiem. Pacienta monitoringam paredzētās trauksmes signālu sistēmas funkcijas jāpārbauda regulāri un ikreiz, kad rodas šaubas par produkta integritāti. (12. nodaļa)
- tHb mērījumus nedrīkst lietot kā vienīgo faktoru pacientu ārstēšanā. Pirms klīnisko lēmumu pieņemšanas ieteicams pārskatīt visus pacienta laboratorisko asins analīžu rezultātus. Ja mērījumi nesaskan, tie jāpapildina ar citām pārbaudēm, lai iegūtu derīgu rezultātu. (12. nodaļa)
- Kopējā hemoglobīna mērījuma precizitāti var ietekmēt apstākļi, kas intermitējoši ietekmē lokālo asins plūsmas hemodinamiku, piemēram, asimetriska miega artērijas stenoze un nediagnosticēts fokāls insults pārraudzības laikā. (12. nodaļa)
- Klīniskās procedūras, kuru gaitā tiek injicēti savienojumi, kuru optiskās absorbcijas parametri ir diapazonā 660–900 nm, piemēram, indocianīna zaļais (kontrastviela) vai metilēnzilais (augsta methemoglobīna līmeņa terapijai), var izraisīt neprecīzus vai kļūdainus mērījumus. Pēc šīm procedūrām ieteicams veikt tHb parametra kalibrāciju vai atkārtotu kalibrāciju. (12. nodaļa)
- Klīniskās procedūras, kas mazina paaugstinātu karboksihemoglobīna (COHb), metemoglobīna (MetHb) vai dishemoglobīna koncentrāciju asins pārliešanas vai citā veidā, var izraisīt neprecīzus vai kļūdainus mērījumus. Mērījumu precizitāti var ietekmēt arī šādi faktori: mioglobīns, hemoglobinopātijas, anēmija, asinsizplūdumi, svešķermeņu iejaukšanās sensora ceļā, bilirubinēmija, ārēji lietotas krāsvielas, augsts HGB vai Hct līmenis un dzimumzīmes. Pēc šīm procedūrām ieteicams veikt tHb parametra kalibrāciju vai atkārtotu kalibrāciju. (12. nodaļa)
- Acumen Hypotension Prediction Index, HPI, nedrīkst izmantot tikai pacientu ārstēšanas nolūkā. Pirms ārstēšanas sākuma ieteicams pārbaudīt pacienta hemodinamikas rādītājus. (13. nodaļa)

- Globālās hipoperfūzijas indeksu GHI nedrīkst izmantot kā vienīgo faktoru pacientu ārstēšanai. Pirms ārstēšanas sākuma ieteicams pārbaudīt visus pacienta hemodinamikas rādītājus. (13. nodaļa)
- Galvas smadzeņu automātiskas regulācijas indekss (CAI), nedrīkst lietot kā vienīgo rādītāju pacientu ārstēšanai. Pirms ārstēšanas sākuma ieteicams pārbaudīt visus pacienta hemodinamikas rādītājus. (13. nodaļa)
- Pacienta ārstēšanas laikā nedrīkst paļauties tikai uz atbalstītās šķidruma pārvaldības funkciju. Lai izvērtētu reakciju uz šķidrumu, visas pārraudzības sesijas laikā ieteicams pārskatīt pacienta hemodinamiskos rādītājus. (13. nodaļa)
- Izmantojiet tikai Edwards piegādātus un marķētus, apstiprinātus HemoSphere Alta uzlabotās monitoringa platformas piederumus, kabeļus un/vai komponentus. Neapstiprinātu piederumu, kabeļu un/vai komponentu izmantošana var ietekmēt pacienta drošību un mērījumu precizitāti. (B pielikums)
- HemoSphere Alta uzlabotā monitoringa platforma nesatur detaļas, kuru apkope būtu jāveic lietotājam. Noņemot pārsegu vai veicot citus demontāžas darbus, pieaug risks saskarties ar bīstamu spriegumu. (F pielikums)
- **Elektriskās strāvas trieciena vai aizdegšanās risks!** Neiegremdējiet HemoSphere Alta uzlaboto monitoringa platformu vai platformas kabeļus nekādā šķidrumā. Nepieļaujiet šķidrumu iekļūšanu instrumentā. (F pielikums)
- Nekādos apstākļos neveiciet ForeSight oksimetra kabeļa tīrīšanu vai apkopi, kamēr kabelis tiek izmantots pacienta pārraudzībai. Monitors ir jāizslēdz, un HemoSphere Alta uzlabotās monitoringa platformas barošanas vads ir jāatvieno, vai arī kabelis ir jāatvieno no monitora, un sensori jānoņem no pacienta. (F pielikums)
- Pirms jebkādu tīrīšanas vai apkopes darbu veikšanas pārbaudiet, vai ForeSight oksimetra kabelis, kabeļu savienojumi, ForeSight sensori un citi piederumi nav bojāti. Pārbaudiet, vai kabeļiem nav saliektu vai bojātu sazarojumu un vai kabeļi nav saplaisājuši vai sadriskāti. Ja konstatējat bojājumus, kabeli nedrīkst izmantot, kamēr tas nav pārbaudīts un salabots vai nomainīts. Sazinieties ar Edwards tehniskā atbalsta dienestu. (F pielikums)
- Šīs procedūras neievērošanas gadījumā pastāv smagu traumu vai nāves risks. (F pielikums)
- Sprādzienbīstamība! Neatveriet akumulatoru, nesadedziniet to, neuzglabājiet augstā temperatūrā un neradiet īsslēgumu. Tas var uzliesmot, eksplodēt, iztecēt vai sakarst, izraisot nopietnas traumas vai nāvi. (F pielikums)
- Izmantojot piederumus, devējus un kabeļus, ko nav norādījis vai nodrošinājis šī aprīkojuma ražotājs, var tikt paaugstinātas šī aprīkojuma elektromagnētiskās emisijas vai samazināts tā elektromagnētiskais noturīgums, tādējādi izraisot nepareizu darbību. (G pielikums)
- HemoSphere Alta uzlaboto monitoringa platformu nedrīkst modificēt. (G pielikums)
- Tāds portatīvais un mobilais RF saziņas aprīkojums un citi elektromagnētisko traucējumu avoti kā diatermija, litotripsija, RFID, elektromagnētiskās aizsardzības sistēmas un metāla detektori var potenciāli ietekmēt visu elektronisko medicīnas aprīkojumu, tostarp HemoSphere Alta uzlaboto monitoringa platformu.

Norādījumi par atbilstoša attāluma nodrošināšanu starp sakaru ierīcēm un HemoSphere Alta uzlaboto monitoringa platformu ir sniegti šeit: G-3. tabula 420. lpp. Citu RF raidītāju izraisītā iedarbība nav zināma, un tie var ietekmēt HemoSphere pārraudzības platformas darbību un drošību (G pielikums).

2.3 Piesardzības pasākumi

Turpmāk uzskaitīti piesardzības pasākumi, kas tiek izmantoti HemoSphere Alta uzlabotās monitoringa platformas lietotāja rokasgrāmatā. Tie atrodami rokasgrāmatā attiecīgajās vietās pie funkciju vai procedūru aprakstiem.

- Pirms lietošanas pārbaudiet HemoSphere Alta uzlaboto monitoringa platformu un visus kopā ar to lietotos piederumus un aprīkojumu, lai pārliecinātos, ka tie nav bojāti. Bojājumi var būt plaisas, skrāpējumi, iespiedumi, atklāti elektriskie kontakti vai jebkādas iespējamu korpusa bojājumu pazīmes.
- Pievienojot vai atvienojot kabeļus, vienmēr satveriet savienotāju, nevis kabeli. Nesavērpiet un nesalieciet savienotājus. Pirms lietošanas pārliecinieties, ka visi sensori un kabeļi ir pievienoti pareizi un līdz galam. (3. nodaļa)

- Lai nepieļautu datu bojājumus HemoSphere Alta uzlabotajai monitoringa platformai, pirms defibrilatora lietošanas vienmēr atvienojiet HemoSphere Alta Swan-Ganz pacienta kabeli un oksimetrijas kabeli no monitora. (3. nodaļa)
- ClearSight tehnoloģijas spiediena izvades signālu uz pacienta monitoru ir paredzēts pievienot tikai BF vai CF tipa spiediena signāla ievades pieslēgvietai pacienta monitorā, kas aizsargāts pret sirds defibrilatora izlādes ietekmi. (3. nodaļa)
- Nepakļaujiet HemoSphere Alta uzlaboto monitoringa platformu ekstremālai temperatūrai. Vides specifikācijas skatiet A pielikumā. (3. nodaļa)
- Neglabājiet HemoSphere Alta uzlaboto monitoringa platformu putekļainā vai netīrā vidē. (3. nodaļa)
- Nenosprostojiet HemoSphere Alta uzlabotā monitora ventilācijas atveres. (3. nodaļa)
- Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu vidē, kur spilgts apgaismojums traucē saskatīt LCD ekrānu. (3. nodaļa)
- Nelietojiet monitoru kā rokas ierīci. (3. nodaļa)
- Pārvietojot instrumentu, pārliecinieties, ka tas ir izslēgts un ka pieslēgtais elektropadeves kabelis ir atvienots. (3. nodaļa)
- Nelietojiet balss komandas funkciju citu HemoSphere Alta uzlaboto monitoringa platformu tuvumā. Tādā gadījumā iespējams nejauši aktivizēt balss komandas šiem citiem monitoriem. (4. nodaļa)
- Lai novērstu inficēšanos ar vīrusu vai ļaunprātīgu programmatūru, pirms pievienošanas veiciet vīrusu skenēšanu ikvienai USB zibatmiņai. (7. nodaļa)
- Neprecīzus sirds izsviedes mērījumus var izraisīt:
 - nepareizs katetra novietojums vai pozīcija;
 - pārmērīgas pulmonālās artērijas asins temperatūras izmaiņas; BT izmaiņas izraisa, piemēram, bet ne tikai:
 - * stāvoklis pēc kardiopulmonālās šuntēšanas,
 - * centrāli ievadīti atdzesēti vai sasildīti asins produktu šķīdumi,
 - * secīgās kompresijas ierīču izmantošana,
 - trombu veidošanās uz termistora;
 - anatomiskas novirzes (piemēram, sirds šunts);
 - pārmērīgas pacienta kustības;
 - elektrokoagulācijas vai elektroķirurģijas ierīču traucējumi;
 - straujas sirds izsviedes izmaiņas.

(8. nodaļa)

- Neprecīzus 20 sekunžu plūsmas parametru mērījumus var izraisīt šādi cēloņi:
 - Nepareizs katetra novietojums vai pozīcija
 - Nepareizi nullēts un/vai nolīmeņots devējs
 - pārāk daudz vai nepietiekami slāpēta spiediena līnija;
 - PAP līnijas korekcijas pēc uzraudzības sākšanas.

(8. nodaļa)

- Skatiet pielikumu E, lai pārliecinātos, ka aprēķina konstante ir tāda pati, kā norādīts uz katetra iepakojuma ieliktņa. Ja aprēķina konstante atšķiras, ievadiet nepieciešamo aprēķina konstanti manuāli. (8. nodaļa)
- Pēkšņas izmaiņas PA asins temperatūrā, piemēram, pacienta kustību vai bolus zāļu ievadīšanas radītas izmaiņas, var izraisīt iCO vai iCl vērtības aprēķināšanu. Lai izvairītos no kļūdaini aktivizētām līknēm, veiciet injekciju, cik drīz vien iespējams, pēc ziņojuma **Injicēt** parādīšanas. (8. nodaļa)
- Nelietojiet FloTrac sensoru, FloTrac Jr sensoru, Acumen IQ sensoru vai TruWave devēju pēc tā etiķetē norādītā "derīguma termiņa." Ja izstrādājumi tiek lietoti pēc šī datuma, var būt apdraudēta devēja vai caurulīšu veiktspēja vai sterilitāte. (9. nodaļa)
- Pārmērīga HemoSphere spiediena kabeļa nomešana var izraisīt kabeļa bojājumus un/vai nepareizu darbību. (9. nodaļa)
- FT-CO mērījumu efektivitāte pediatrijas pacientiem, kuri jaunāki par 12 gadiem, nav novērtēta. (9. nodaļa)

- Neprecīzus FT-CO mērījumus var izraisīt šādi faktori:
 - nepareizi nullēts un/vai līmeņots sensors/devējs;
 - pārmērīga vai nepietiekama spiediena izlīdzināšana spiediena caurulītēs;
 - pārmērīgas asinsspiediena variācijas. BP variācijas izraisa tostarp šādi faktori:
 - * intraaortālie balonsūkņi;
 - jebkura klīniskā situācija, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu aortas spiedienam, tostarp šādas situācijas:
 - * izteikta perifērā vazokonstrikcija, kas izraisa kļūdainu radiālā arteriālā spiediena līkni;
 - * hiperdinamisks stāvoklis, kas ir raksturīgs pēc aknu transplantēšanas;
 - pārmērīgas pacienta kustības;
 - elektrokoagulācijas vai elektroķirurģijas ierīču traucējumi.

Regurgitācija aortas vārstulī var izraisīt pārāk lielas sirds sistoliskā tilpuma/sirds izsviedes vērtības aprēķināšanu atkarībā no vārstuļu slimības smaguma pakāpes un atpakaļ kreisajā kambarī ieplūdušā tilpuma. (9. nodaļa)

- Pievienojot vai atvienojot kabeli, vienmēr satveriet savienotāju, nevis kabeli. (9. nodaļa)
- Nesavērpiet un nesalieciet savienotājus. (9. nodaļa)
- Lai novērstu kabeļu bojājumus, nelietojiet pārlieku spēku uz spiediena kabeļa nullēšanas pogu. (9. nodaļa)
- Neprecīzu PAOP mērījumu iespējamie cēloņi:
 - Nepareizs katetra novietojums vai pozīcija
 - Katetra balons nav pilnībā uzpildīts vai ir pārāk pilns
 - Nepareizi nullēts un/vai nolīmeņots devējs
 - Pārāk daudz vai nepietiekami slāpēta spiediena līnija
 - PAP līnijas korekcijas pēc uzraudzības sākšanas

(9. nodaļa)

- HemoSphere Alta neinvazīvās sistēmas efektivitāte nav novērtēta pacientiem, kas jaunāki par 12 gadiem.
 (10. nodaļa)
- Pievienojot vai atvienojot kabeļus, vienmēr satveriet savienotāju, nevis kabeli. Nesavērpiet un nesalieciet savienotājus. Pirms lietošanas pārliecinieties, ka visi sensori un kabeļi ir pievienoti pareizi un līdz galam. (10. nodaļa)
- Pārliecinieties, ka HRS ir pareizi uzlikts, lai to var izlīmeņot ar flebostatisko asi. (10. nodaļa)
- HemoSphere Alta neinvazīvā sistēma nav paredzēta izmantošanai kā apnojas monitors. (10. nodaļa)
- Pacientiem, kuru apakšdelma un plaukstas artērijās un arteriolās ir novērojama spēcīga gludās muskulatūras saraušanās (piemēram, Reino sindroma gadījumā), var būt neiespējami veikt asinsspiediena mērījumus. (10. nodaļa)
- Neprecīzus neinvazīvos mērījumus var izraisīt šādi faktori:
 - Nepareizi kalibrēts un/vai nolīmeņots HRS
 - Pārmērīgas asinsspiediena variācijas. Daži apstākļi, kas izraisa asinsspiediena izmaiņas, ir šādi:

* Intraaortālie balonsūkņi.

- Jebkādas klīniskās situācijas, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu arteriālajam spiedienam.
- Slikta asinsrite pirkstos.
- Saliekta vai saplacināta pirksta manšete.
- Pārmērīgas pacienta roku vai pirkstu kustības.
- Artefakti un slikta signāla kvalitāte.
- Nepareizs pirksta manšetes novietojums, pirksta manšetes pozīcija, vaļīga pirksta manšete.

Elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi.

(10. nodaļa)

- Vienmēr atvienojiet pirksta manšeti, ja tā nav aplikta ap pirkstu, lai novērstu nejaušas pārslogošanas izraisītu bojājumu risku. (10. nodaļa)
- Ar Edwards saderīgas pirksta manšetes darbības efektivitāte nav noteikta pacientēm ar preeklampsiju. (10. nodaļa)
- Intraaortiskā balona balsta pulsācija var palielināt sirdsdarbības ātrumu instrumenta sirdsdarbības ātruma displejā. Pārbaudiet pacienta sirdsdarbības ātrumu salīdzinājumā ar EKG sirdsdarbības ātrumu. (10. nodaļa)
- Sirdsdarbības ātruma mērījums pamatojas uz perifērās plūsmas impulsa optisko noteikšanu, un tāpēc noteiktu veidu aritmijas var netikt atklātas. Sirdsdarbības ātrums nebūtu jāizmanto, lai aizstātu uz EKG balstītu aritmijas analīzi. (10. nodaļa)
- Veicot monitoringu bez HRS, mērījumi var būt neprecīzi. Nodrošiniet, ka pacientam joprojām ir pareizi izmērīta pirksta un sirds augstuma starpība. (10. nodaļa)
- Nenovietojiet pacientu pozīcijā, kas nav guļus pozīcija, veicot monitoringu ar HRS. Tā rezultātā var tikt ievadīta nepareiza vertikālā nobīde HRS, kā arī rasties mērījumu neprecizitātes. (10. nodaļa)
- Neveiciet asinsspiediena kalibrēšanu monitoringa laikā, ja šķiet, ka asinsspiediens nav stabils. Tā rezultātā asinsspiediena mērījumi var nebūt pareizi. (10. nodaļa)
- ClearSight sistēmas spiediena izvades signālu uz pacienta monitoru ir paredzēts pievienot tikai BF vai CF tipa spiediena signāla ievades pieslēgvietai pacienta monitorā, kas aizsargāts pret sirds defibrilatora izlādes ietekmi. Simbolus, kas parādīti blakus pieņemtajām savienojuma pieslēgvietām, skat. šeit: 10-5. tabula 200. lpp. (10. nodaļa)
- Pārliecinieties, ka oksimetrijas kabelis ir droši nostiprināts, lai izvairītos no liekām pievienotā katetra kustībām. (11. nodaļa)
- Katetra galu vai kalibrēšanas kausiņu nedrīkst samitrināt, pirms tiek veikta in vitro kalibrācija. Lai nodrošinātu precīzu oksimetriju in vitro kalibrācijas laikā, katetram un kalibrācijas kausiņam ir jābūt sausam. Pēc in vitro kalibrācijas beigšanas skalojiet tikai katetra lūmenu. (11. nodaļa)
- Ja in vitro kalibrēšana tiek veikta pēc tam, kad oksimetrijas katetrs ir ievietots pacienta ķermenī, iegūtie rezultāti ir neprecīzi. (11. nodaļa)
- SQI signālu dažkārt ietekmē elektroķirurģijas instrumentu lietošana. Mēģiniet novietot elektrokauterizācijas ierīces un kabeļus tālāk prom no HemoSphere Alta uzlabotās monitoringa platformas un, ja iespējams, pieslēdziet elektropadeves kabeļus citām maiņstrāvas ķēdēm. Ja signāla kvalitātes problēmas joprojām pastāv, lūdziet palīdzību vietējam Edwards pārstāvim. (11. nodaļa)
- Neatvienojiet oksimetrijas kabeli kalibrēšanas vai datu atsaukšanas laikā. (11. nodaļa)
- Ja oksimetrijas kabelis tiek pārvietots no vienas HemoSphere Alta uzlabotas monitoringa platformas uz citu HemoSphere Alta uzlaboto monitoringa platformu, pirms uzraudzības sākšanas pārbaudiet, vai pacienta auguma garums, svars un KVL rādītāji ir pareizi. Ja nepieciešams, ievadiet pacienta datus atkārtoti. (11. nodaļa)
- Nenovietojiet ForeSight oksimetra kabeli vietās, kur statusa LED indikatori nav viegli saskatāmi. (12. nodaļa)
- Pieliekot pārāk lielu spiedienu, fiksācijas izcilnis var salūzt, tāpēc var rasties risks, ka kabelis uzkritīs pacientam, blakus esošai personai vai operatoram. (12. nodaļa)
- Neceliet un nevelciet ForeSight oksimetra kabeli ne aiz viena kabeļa savienojuma un nenovietojiet ForeSight oksimetra kabeli vietā, kas varētu radīt risku, ka kabelis var uzkrist pacientam, blakus esošai personai vai operatoram. (12. nodaļa)
- Nenovietojiet ForeSight oksimetra kabeli zem palagiem vai segas, kas varētu ierobežot gaisa plūsmu ap kabeli un tādējādi paaugstināt kabeļa korpusa temperatūru un izraisīt traumas. (12. nodaļa)
- Sensorus nedrīkst novietot vietās, kas ir blīvi klātas ar matiem. (12. nodaļa)
- Sensoram tieši jāsaskaras ar tīru, sausu ādu. Jebkādi netīrumi, losjoni, eļļa, pūderis, sviedri vai mati, kas novērš labu kontaktu starp sensoru un ādu, ietekmē savākto datu derīgumu un var izraisīt trauksmes ziņojumu. (12. nodaļa)
- Ja sensorus izmanto telpās ar LED apgaismojumu, pirms pievienošanas sensora kabelim var būt nepieciešams pārklāt sensoru ar gaismas bloķētāju, jo dažas augstas intensitātes sistēmas var traucēt sensora spēju pareizi uztvert tuvā infrasarkanā spektra gaismu. (12. nodaļa)

- Kad pacienta monitorings ir sākts, nepārvietojiet sensoru un neatvienojiet sensoru ilgāk par 10 minūtēm, lai nebūtu jāatsāk sākotnējais StO₂ aprēķins. (12. nodaļa)
- Spēcīgu elektromagnētisko avotu, piemēram, elektroķirurģijas aprīkojuma, klātbūtne var ietekmēt mērījumus, un šāda aprīkojuma lietošanas laikā mērījumi var būt kļūdaini. (12. nodaļa)
- Paaugstināts karboksihemoglobīna (COHb) vai methemoglobīna (MetHb) līmenis var izraisīt nepareizus vai kļūdainus mērījumus, tāpat kā intravaskulāras krāsvielas vai jebkura viela, kas satur krāsvielas, kas maina parasto asins pigmentāciju. Mērījumu pareizību var ietekmēt arī šādi faktori: mioglobīns, hemoglobinopātijas, anēmija, asinsizplūdumi, svešķermeņu iejaukšanās sensora ceļā, bilirubinēmija, ārēji lietotas krāsvielas (tetovējumi), augsts HGB vai Hct līmenis un dzimumzīmes. (12. nodaļa)
- Salīdzinājumā ar agrākām programmatūras versijām ForeSight oksimetra kabelis ar programmatūras versiju V3.0.7 vai jaunāku versiju, ko izmanto pediatrijas sensoros (mazos un vidējos), daudz labāk parāda StO₂ vērtības. Jo īpaši diapazonā zem 60% StO₂ mērījumi var tikt parādīti kā zemāki salīdzinājumā ar iepriekšējām programmatūras versijām. Ārstiem jāņem vērā šī ātrākā reakcija un, iespējams, mainītās StO₂ vērtības, izmantojot programmatūru V3.0.7, jo īpaši, ja viņiem ir pieredze ar agrākām ForeSight oksimetra kabeļa programmatūras versijām. (12. nodaļa)
- Neprecīzu tHb vērtību iespējamie cēloņi:
 - Neprecīzas relatīvās izmaiņas audu hemoglobīna (ΔctHb) mērījumos
 - Neprecīzi laboratorijas asins gāzu analizatora mērījumi

(12. nodaļa)

- HPI parametrs var nesniegt iepriekšēju norādi par tendenci uz hipotensijas notikumu situācijās, kurās klīniska iejaukšanās izraisa pēkšņu nefizioloģisku hipotensijas notikumu. Šādā gadījumā HPI funkcija bez aizkaves nodrošinās: augstas trauksmes uznirstošo logu, augstas prioritātes trauksmi, un tiks parādīta HPI vērtība 100, norādot, ka pacientam ir hipotensijas notikums. (13. nodaļa)
- levērojiet piesardzību, izmantojot dP/dt absolūtās vērtības. Spiediens distāli mainās asinsvadu sašaurināšanās, kā arī berzes spēku asinsvados dēļ. Lai gan dP/dt var neprecīzi aprakstīt sirds kontraktilitāti, tendences var būt noderīgas. (13. nodaļa)
- levērojiet piesardzību, izmantojot dP/dt pacientiem ar smagu aortas stenozi, jo stenoze var samazināt sasaisti starp kreiso kambari un pēcslodzi. (13. nodaļa)
- Lai gan parametru dP/dt galvenokārt nosaka LV kontraktilitātes izmaiņas, to var ietekmēt pēcslodze vazoplēģisku stāvokļu laikā (venoarteriāla atsaiste). Šo periodu laikā dP/dt var neatspoguļot LV kontraktilitātes izmaiņas. (13. nodaļa)
- HPI parametra informācija, ko sniedz 13-16. tabula 261. lpp. un 13-17. tabula 262. lpp., ir paredzēta kā vispārīgi norādījumi un var neattēlot konkrēta pacienta pieredzi. Pirms ārstēšanas sākuma ieteicams pārbaudīt pacienta hemodinamikas rādītājus. (13. nodaļa)
- HPI parametra informācija, ko sniedz 13-26. tabula 268. lpp. un 13-27. tabula 270. lpp., ir paredzēta kā vispārīgi norādījumi un var neattēlot konkrēta pacienta pieredzi. Pirms ārstēšanas sākuma ieteicams pārbaudīt pacienta hemodinamikas rādītājus. (13. nodaļa)
- Neprecīzu GHI vērtību iespējamie cēloņi:
 - Neprecīzi sirds izsviedes mērījumi
 - Neprecīzi SvO₂ mērījumi
 - Nepareizs katetra novietojums vai pozīcija
 - Pārmērīgas plaušu artērijas asins temperatūras izmaiņas. Daži faktori, kas līdz ar citiem izraisa asins temperatūras variācijas:
 - * statuss pēc kardiopulmonālās šuntēšanas operācijas;
 - * centralizēti ievadīti asins produktu dzesēti vai sildīti šķīdumi;
 - * secīgu kompresijas ierīču lietošana.
 - Trombu veidošanās uz termistora
 - anatomiskas novirzes (piemēram, sirds šunts);
 - Pārmērīgas pacienta kustības
 - Elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi
 - straujas sirds izsviedes izmaiņas.

(13. nodaļa)

- GHI parametrs var nesniegt iepriekšēju norādi par iespējamu globālas hipoperfūzijas notikumu situācijās, kurās klīniska iejaukšanās izraisa pēkšņu nefizioloģisku hipoperfūzijas notikumu. Šādā gadījumā GHI funkcija bez aizkaves nodrošinās vidējas trauksmes uznirstošo logu, un tiks parādīta GHI vērtība 100, norādot, ka pacientam ir hipoperfūzijas notikums. (13. nodaļa)
- Neprecīzu CAI vērtību iespējamie cēloņi:
 - Neprecīzi vidējā arteriālā spiediena (MAP) mērījumi
 - Neprecīzi galvas smadzeņu StO₂ mērījumi

(13. nodaļa)

- Atbalstītās šķidruma pārvaldības programmatūras funkcija paļaujas uz ārsta sniegto informāciju, lai precīzi novērtētu reakciju uz šķidrumu. (13. nodaļa)
- AFM funkcijas sniegtos šķidrumu pārvaldības ieteikumus var ietekmēt šādi faktori:
 - neprecīzi FT-CO mērījumi;
 - akūtas izmaiņas FT-CO mērījumos, kas ir sekundāras attiecībā pret vazoaktīvo zāļu ievadīšanu, pacienta novietojuma maiņu vai ķirurģisku iejaukšanos;
 - asiņošana, kuras ātrums ir līdzvērtīgs vai lielāks par šķidruma ievadīšanas ātrumu;
 - arteriālās caurulītes traucējumi.

Pirms AFM ieteikumu ievērošanas vienmēr pārskatiet pacienta hemodinamisko stāvokli. (13. nodaļa) Lai sniegtu šķidrumu pārvaldības ieteikumus, AFM programmatūras funkcijai ir nepieciešams precīzs sistoles tilpuma variācijas (SVV) mērījums. Pacientiem jābūt:

- mehāniski ventilētiem;
- ar ieelpas tilpumu $\ge 8 \text{ ml/kg}$.

(13. nodaļa)

- Ja tiek izmantoti šķidrumi, kas nav norādīti minētajā sarakstā Šķidruma veids, vai izvēlēts neatbilstošs šķidruma veids, iespējama mērījumu neprecizitāte. (13. nodaļa)
- Mainīgu faktoru klātbūtne bolus injekcijas ievadīšanas laikā var izraisīt nepareizus AFM programmatūras sniegtos šķidruma ieteikumus. Tāpēc bolus injekcijas, kas ievadītas mainīgu faktoru klātbūtnē, nav jāņem vērā. Iespējamie mainīgie faktori var būt šādi (bet ne tikai):
 - Bolus injekcijas ievadīšanas laikā ievadīts vazoaktīvais līdzeklis
 - Papildu šķidrums, kas ievadīts pēc primārās bolus injekcijas
 - Pacienta pārvietošana
 - Ventilatorās izmaiņas
 - Ķirurģiska manipulācija
 - Arteriālās caurulītes traucējumi
 - * Ārēja kompresija (t.i., spiediens uz A līniju)
 - * ABG parauga ņemšana, ātrā skalošana
 - * Caurulītes pārmērīga slāpēšana
 - Asinsvadu saspiešana
 - Papildu šķidruma līnija vienlaicīgi atvērta bolus injekcijas ievadīšanas laikā
 - Zināma akūta hemorāģija šķidruma ievadīšanas laikā
 - Neprecīzi FT-CO mērījumi

(13. nodaļa)

- Neprecīzu RVCO vērtību iespējamie cēloņi:
 - Neprecīzs vai trokšņains labā sirds kambara spiediens
 - Nepareizs katetra novietojums vai pozīcija
 - Pārmērīgas pacienta kustības

• Neprecīzas intermitējošās sirds izsviedes (iCO) vērtības

(13. nodaļa)

- Neprecīzus TPTD vai TPTD algoritma CO mērījumus var izraisīt šādi faktori:
 - Nepareizi nullēts un/vai līmeņots sensors/devējs
 - Pārmērīga vai nepietiekama spiediena izlīdzināšana spiediena caurulītēs
 - Jebkādas klīniskās situācijas, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu arteriālajam spiedienam
 - Pārmērīgas pacienta kustības
 - Elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi
 - Edwards Lifesciences augšstilba artērijas katetra nepareizs novietojums vai pozīcija
 - Asins temperatūras mērījumu pārmērīgas variācijas vai traucējumi. Temperatūras variācijas izraisa tālāk minētie un citi apstākļi:

* statuss pēc kardiopulmonālās šuntēšanas operācijas;

- * centralizēti ievadīti asins produktu dzesēti vai sildīti šķīdumi;
- * trombu veidošanās uz termistora;

* ārējie siltuma avoti (dzesējošas vai sildošas segas), kas novietoti uz Edwards Lifesciences femorālo arteriālo katetru termistora savienojuma;

- * elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi;
- * straujas sirds izsviedes izmaiņas.
- Intraaortālie balonsūkņi
- Anatomiskas novirzes (piemēram, sirds šunts)

(13. nodaļa)

- TPTD un TPTD algoritma CO mērījumu efektivitāte pediatrijas pacientiem nav novērtēta. (13. nodaļa)
- Ja kāds no ForeSight oksimetra kabeļa LED indikatoriem neieslēdzas, kabeli nedrīkst izmantot, kamēr tas nav salabots vai nomainīts. Sazinieties ar Edwards tehniskā atbalsta dienestu. Pastāv risks, ka bojātas detaļas var samazināt kabeļa veiktspēju. (14. nodaļa)
- Lietošanas laikā nesaspiediet sirds kontrolsensora caurules un vadus zem spiediena kontrollera vāka. Parūpējieties, lai vienīgais vads aizmugurējā montāžas ierobē būtu spiediena kontrollera kabelis. (B pielikums)
- Neceliet PCCVR aiz cita punkta, izņemot priekšējo mēlīti. (B pielikums)
- Pēc katras lietošanas reizes tīriet un noglabājiet instrumentu un piederumus. (F pielikums)
- Uzmanīgi izpildiet visus tīrīšanas norādījumus, lai monitors un platformas kabeļi būtu rūpīgi notīrīti. Pēc tīrīšanas aplūkojiet HemoSphere Alta uzlaboto monitoru un visus piederumus, vai uz tiem nav atlieku un svešķermeņu. Ja pēc tīrīšanas joprojām redzamas atliekas, atkārtoti izpildiet tīrīšanas norādījumus. Izpildiet visus papildu tīrīšanas norādījumus, ko sniedz norādīto apstiprināto tīrīšanas līdzekļu ražotājs.

(F pielikums)

- HemoSphere Alta uzlabotā monitoringa platforma un monitora kabeļi ir jutīgi pret elektrostatisko izlādi (ESD). Nemēģiniet atvērt kabeļa korpusu vai izmantot kabeli, ja tā korpuss ir bojāts. (F pielikums)
- Nelejiet un nesmidziniet šķidrumus uz HemoSphere Alta uzlabotās monitoringa platformas, piederumiem vai kabeļiem. (F pielikums)
- Lietojiet tikai norādītos dezinfekcijas šķīdumu veidus. (F pielikums)
- NEPIEĻAUT: jebkādu šķidrumu nonākšanu saskarē ar jaudas savienotāju; jebkādu šķidrumu iekļūšanu monitora korpusa vai moduļu savienotājos vai atverēs. Ja jebkāds šķidrums nonāk saskarē ar iepriekš minētajām daļām, NEMĒĢINIET lietot monitoru. Nekavējoties atvienojiet elektropadevi un sazinieties ar jūsu biomedicīnas nodaļas darbiniekiem vai vietējo Edwards pārstāvi. (F pielikums)
- Regulāri pārbaudiet, vai nevienam kabelim nav bojājumu. Glabāšanas laikā nesaritiniet kabeļus pārāk cieši. (F pielikums)
- Neizmantojiet citus tīrīšanas līdzekļus un aerosolus, kā arī nelejiet tīrīšanas līdzekli tieši uz platformas kabeļiem. Platformas kabeļus nedrīkst tīrīt ar tvaiku, apstarot vai sterilizēt ar EO. Neiegremdējiet platformas kabeļus. (F pielikums)

- Nesterilizējiet HemoSphere oksimetrijas kabeli ar tvaiku, starojumu vai etilēnoksīdu. Neiegremdējiet HemoSphere oksimetrijas kabeli šķīdumos. (F pielikums)
- Ja monitoram pievienota kabeļa savienotājos iekļūst jebkāds elektrolīta šķīdums, piemēram, Ringera laktāta šķīdums un monitors tiek ieslēgts, ierosmes spriegums var izraisīt elektrolīta koroziju un strauju elektrisko kontaktu noārdīšanos. (F pielikums)
- Neiegremdējiet kabeļa savienotājus mazgāšanas līdzeklī, izopropilspirtā vai glutaraldehīdā. (F pielikums)
- Nežāvējiet kabeļa savienotājus ar fēnu. (F pielikums)
- Ierīce satur elektroniku. Rīkoties piesardzīgi. (F pielikums)
- Nedezinficējiet sirds kontrolsensoru vai spiediena sensoru autoklāvā vai ar gāzes sterilizācijas metodi. (F pielikums)
- Spiediena kontrolleru, sirds kontrolsensoru un jebkādus kabeļu savienojumus nedrīkst iemērkt šķidrumā. (F pielikums)
- Pēc katras lietošanas reizes notīriet un uzglabājiet sirds kontrolsensoru. (F pielikums)
- Pārstrādājiet vai iznīciniet litija jonu akumulatorus atbilstoši valsts, reģionālajiem un vietējiem noteikumiem. (F pielikums)
- Instruments ir testēts un atbilst standartā IEC 60601-1-2 minētajām robežvērtībām. Šīs parametru
 robežas paredzētas stabilas aizsardzības nodrošināšanai pret kaitīgu iedarbību tipiskas medicīniskas
 instalācijas apstākļos. Šī iekārta ģenerē, izmanto un var izstarot radiofrekvenču enerģiju, kā arī var izraisīt
 kaitīgus traucējumus citu tuvumā esošu ierīču darbībā, ja tā nav uzstādīta un netiek lietota atbilstoši
 instrukcijām. Tomēr netiek garantēts, ka noteiktos apstākļos traucējumi nevar rasties. Ja šī iekārta izraisa
 kaitīgus traucējumus citu ierīču darbībā, ko var noteikt, izslēdzot un ieslēdzot iekārtu, ieteicams novērst
 traucējumus, veicot vienu vai vairākus no šiem pasākumiem:
 - pagrieziet uztvērējierīci citā virzienā vai pārvietojiet to;
 - palieliniet attālumu starp ierīcēm;
 - lūdziet palīdzību ražotājam.

(G pielikums)

- Bezvadu tehnoloģijas pakalpojuma kvalitāti (QoS) var ietekmēt tuvumā esošas citas ierīces, kas izraisa radiofrekvenču traucējumus (RFI). Šādas RFI ierīces var būt elektrokauterizācijas aprīkojums, mobilie tālruņi, bezvadu personālie datori un planšetdatori, peidžeri, RFID, magnētiskās rezonanses attēlveidošanas aprīkojums vai citas elektroniskas ierīces. Izmantojot tādu ierīču tuvumā, kas izraisa iespējamus augstfrekvences traucējumus, jāmēģina palielināt attālumu starp ierīcēm un jānovēro, vai pastāv iespējamu traucējumu pazīmes, piemēram, sakaru zudums vai pazemināts Wi-Fi signāla stiprums. (G pielikums)
- Veicot izmaiņas vai modifikācijas, kuras nav skaidri apstiprinājusi par atbilstību atbildīgā puse, lietotājs var zaudēt tiesības lietot šo aprīkojumu. (G pielikums)
- Saskaņā ar Industry Canada prasībām, ja tiek izmantots no 5,15 līdz 5,25 GHz frekvences režīms, lai novērstu iespējamus traucējumus tā paša kanāla mobilo sakaru satelītu sistēmām, šis izstrādājums jālieto iekštelpās. (G pielikums)

2.4 Lietotāja interfeisa simboli

Tālāk uzskaitītas ikonas, kas ir redzamas HemoSphere Alta uzlabotās monitoringa platformas ekrānā. Papildinformāciju par ekrāna izskatu un navigāciju skatiet 4. nodaļā: HemoSphere Alta uzlabotās monitoringa platformas navigācija 83. lpp.. Dažas ikonas tiek parādītas tikai tad, kad tiek veikta pārraudzība, izmantojot noteiktu hemodinamikas tehnoloģiju saskaņā ar norādījumiem.

Simbols	Apraksts
	Navigācijas joslas ikonas
لم Trauksme	Nav trauksmes signālu

2-1. tabula. Monitora ekrāna simboli

Simbols	Apraksts
	Navigācijas joslas ikonas
Trauksme	Trauksmes skaņas signāli
汝 01:58 Trauksme	Trauksmes signāli apturēti (izslēgti, izmantojot vienu pieskārienu) ar atskaites taimeri (skat. Trauksmes signālu izslēgšana sadaļā Navigācijas josla 84. lpp.)
<u>بخ</u> ر Atiestatīt	Trauksmju atiestatīšana (trauksmes apakšizvēlne)
Klusums	Trauksmes signālu apklusināšana uz nenoteiktu laiku (trauksmes apakšizvēlne, aizsargāta ar ieejas kodu)
Ieslēgts klusums	Trauksmes signāli izslēgti
-V <mark>u</mark> Pauzēt	Pārraudzības pauze (pāreja uz bezpulsācijas režīmu, trauksmes apakšizvēlne)
Bezpulsāciju režīms	Bezpulsācijas režīms ar aizritējušo laiku kopš pārraudzības pauzes
<i>☆</i> Ekrāns	Pārraudzības atlases ekrāns
≓`⊚ Ekrāns	Atgriešanās pārraudzības ekrānā
Pacients	Pacienta datu izvēlne (sesijas beigas)
Pacients	Pacienta datu izvēlne (izlaisti demogrāfiskie dati)
, O (Nulle	Nulles spiediens (HemoSphere spiedienkabelis un ClearSight tehnoloģija)
R (P)(⊕	Atlasiet pārraudzības režīmu (atspējots vairāku sensoru režīms)
Sākt Swan-Ganz	Sākt CO pārraudzību (HemoSphere Alta Swan-Ganz pacienta kabelis)
0:50	Apturēt CO monitoringu ar CO atskaites taimeri (skat. CO atskaites taimeris 153. lpp.) (HemoSphere Alta Swan-Ganz pacienta kabelis)
Sākt ClearSight	Sākt neinvazīvu pārraudzību (HemoSphere Alta ClearSight tehnoloģija)

Simbols	Apraksts
	Navigācijas joslas ikonas
₩ 👽 Apturēt ClearSight	Apturēt neinvazīvu pārraudzību (HemoSphere Alta ClearSight tehnoloģija)
01:14 Manšetes spiediena samazināšana	Atsākt neinvazīvo pārraudzību pēc manšetes spiediena atbrīvošanas (HemoSphere Alta ClearSight tehnoloģija)
-•••- Venozā oksimetrija	Venozās oksimetrijas iestatījumi un kalibrēšana
Klīniskie Rīki	Sānu panelis Klīniskie rīki
((بلی ») Žesti	lespējota žestu mijiedarbība
(پلی ^{»)} Žesti	Atspējota žestu mijiedarbība
U Voice	lespējota balss mijiedarbība (tikai angļu valodā)
Voice	Atspējota balss mijiedarbība
Palīdzība	Palīdzības izvēlne
Ç Iestatījumi	lestatījumu izvēlne
	Sānu paneļa Klīniskie rīki izvēlnes ikonas
\$	Atbalstīta šķidrumu pārvaldība
	legūtās vērtības aprēķināšana
٩	iCO termodilūcija (intermitējoša sirds izsviede) (HemoSphere Alta Swan-Ganz pacienta kabelis)
Ē	Notikumi un lejaukšanās

Sānu paneļa Klīniskie rīki izvēlnes ikonas	
	HRS kalibrēšana (HemoSphere Alta ClearSight tehnoloģija)
HPI	Hipotensijas prognozēšanas indekss
•=	Šķidruma reakcijas tests (papildu funkcija)
	Kalibrēšana (HemoSphere Alta ClearSight tehnoloģija)
Ċ	mērķtiecīga terapija
	TPTD (transpulmonālā termodilūcija)
	Izvēlnes navigācijas ikonas
×	lziet vai atgriezties galvenajā pārraudzības ekrānā
\leftarrow	Atgriezties iepriekšējā izvēlnē
×	Atcelt
*	levadīt
$\langle \times $	Atpakaļatkāpes taustiņš uz papildtastatūras
-	Pārvietot kursoru pa kreisi
→	Pārvietot kursoru pa labi
~	Vienums ir iespējots/atlasīts

Izvēlnes navigācijas ikonas	
	Vienums nav iespējots/atlasīts
	Atlasīta izvēlnes opcija (radiopoga)
	Nav atlasīta izvēlnes opcija (radiopoga)
	Vienums ir iespējots (pārslēgšanas poga)
\bigcirc	Vienums ir atspējots (pārslēgšanas poga)
	Parametru elementu ikonas
X	Parametru trauksmes skaņas signāla indikators: pauzēts
粱	Parametru trauksmes skaņas signāla indikators: izslēgts uz nenoteiktu laiku
.1	Signāla kvalitātes indikatora josla Skatiet Signāla kvalitātes indikators 206. lpp.
	(HemoSphere oksimetrijas kabelis)
	Skatiet SQI 195. lpp.
	(HemoSphere Alta ClearSight tehnoloģija)
~	SVV filtrēšanas robežvērtības pārsniegšanas indikators: augsts sirdsdarbības ātruma mainī- gums var ietekmēt SVV vērtības
-•	Venozās oksimetrijas kalibrēšana (HemoSphere oksimetrijas kabelis)
Manuāls 6 CVP ≠	CVP manuāli ievadīta vērtība (tikai SVR/SVRI)
Noklusējums 5 CVP / mmHg	Izmantotā noklusējuma CVP vērtība (tikai SVR/SVRI)
	ΔctHb vērtība (tikai StO₂)

	Informācijas joslas ikonas
	Akumulatora kalpošanas laika indikatora ikonas informācijas joslā Skatiet 4-6. tabula 120. lpp.
(îr	Wi-Fi signāls Skatiet 7-1. tabula 144. lpp.
· .	Ekrāna spilgtums
<∙›))	Trauksmes signāla skaļums
Ð	Bloķēšanas ekrāns
	Ekrāna tveršana
	Laiks starp sirspukstiem (HemoSphere Alta Swan-Ganz pacienta kabelis ar EKG ievadi)
٢	Laiks līdz manšetes spiediena atbrīvošanas režīmam (HemoSphere Alta ClearSight tehnoloģija, skat. Manšetes spiediena samazināšanas režīms 197. lpp.)
() 4:54	Laiks līdz manšetes spiediena atbrīvošanas režīma noslēgumam (HemoSphere Alta ClearSight tehnoloģija, skat. Manšetes spiediena samazināšanas režīms 197. lpp.)
	HemoSphere attālās savienojamības statusa ikona Skatiet 7-2. tabula 146. lpp.
lejaukšanās analīzes ikonas	
	lejaukšanās analīzes veida indikators pielāgotam notikumam (pelēks)
	iejaukšanās analīzes veida indikators novietojuma pārbaudei (violets)

	iejaukšanās analīzes veida indikators šķidruma pārbaudei (zils)
	lejaukšanās analīzes veida indikators intervencei (zaļš)
	lejaukšanās analīzes veida indikators sistēmas ģenerētas iejaukšanās gadījumā (oksimetrija, BP kalibrēšana, balts)
	lejaukšanās analīzes veida indikators notikumam (dzeltens)
Ø	Komentāru rediģēšanas ikona

AFM ikonas	
ê	Atbalstītās šķidrumu pārvaldības (AFM) ikona sānu panelī
	AFM šķidruma statusa ikonas AFM informācijas panelī. Lai iegūtu papildinformāciju, skatiet 13-56. tabula 297. lpp
	Sākt vai atsākt atbalstītās šķidrumu pārvaldības (AFM) sesiju
	Apturēt atbalstītās šķidrumu pārvaldības (AFM) sesiju
Ø	Rediģēt beigu laiku vai bolus tilpumu
90%	Time-in-Target parādīts SVV parametra elementā (automātiska GDT sesija)
\$	AFM iestatījumi
?	AFM konteksta palīdzība
	Beigt atbalstītās šķidrumu pārvaldības (AFM) sesiju
	GDT trasēšanas ikonas
~	Parametrs iespējots GDT sānu panelī
Ø	Rediģēt GDT parametru mērķus
	Sākt GDT trasēšanas sesiju
	Pauzēt GDT trasēšanas sesiju
	Apturēt GDT trasēšanas sesiju

GDT trasēšanas ikonas	
Ś	Pieņemt mērķa diapazonu SV optimizācijai
90	Time-In-Target simbols GDT trasētajos parametros
HPI ikonas	
НРІ	HPI sānu paneļa ikona

2.5 Simboli uz izstrādājumu marķējuma

Šajā sadaļā ir norādīti simboli, kas redzami uz HemoSphere Alta uzlabotās monitoringa platformas un citiem pieejamiem HemoSphere Alta uzlabotās monitoringa platformas piederumiem, tostarp platformas kabeļiem.

Simbols	Apraksts
	Ražotājs
	Izgatavošanas datums
Rx only	Tikai ar recepti
IPX1	Nodrošina aizsardzību pret vertikāli krītošu ūdeni atbilstoši IPX1 standartam
IPX4	Aizsardzības līmenis pret priekšmetu iekļūšanu
	Dalīta elektrisko un elektronisko iekārtu savākšana saskaņā ar ES direktīvu 2012/19/ES.
FC	Federālās komunikāciju komisijas (FCC — Federal Communications Commission) atbilstība — tikai ASV
((:))	Šī ierīce satur nejonizējošā starojuma raidītāju, kas var izraisīt RF traucējumus citām ierīcēm, kas atrodas šīs ierīces tuvumā.
	levērojiet lietošanas instrukciju
eifu.edwards.com + 1 888 570 4016	levērojiet lietošanas instrukciju, kas pieejama tīmekļa vietnē

2-2. tabula. Simboli uz izstrādājumu marķējuma

Simbols	Apraksts
	Lietošanas instrukcija elektroniskā formātā ir pieejama, pasūtot pa tālruni vai interneta vietnē.
o Consultations	Intertek ETL
#	Modeļa numurs
SN	Sērijas numurs
UDI	Unikālais ierīces identifikators
MR	Nedrīkst lietot MR vidē
LOT	Partijas kods
QTY	Daudzums
Pb	Bez svina
c RL ° us	Underwriters Laboratories izstrādājumu sertifikācijas marķējums
Li-ion	Pārstrādājams litija jonu
(II)	Tehniskās atbilstības zīme (Japāna)
$\textcircled{\begin{tabular}{ c c c c } \hline \hline$	Neizjaukt!
X	Nededzināt!
MD	Medicīnas ierīce
	Importētājs

Simbols	Apraksts						
)))	EMVCo bezkontakta indikators						
Savienotāju identifikācijas marķējums							
\forall	Ekvipotenciālā termināla tapa						
● 	USB 2.0						
품	Ethernet savienojums						
\rightarrow	Spiediena (vienreizlietojamā spiediena devēja) signāla izvade						
	Uzmanību! Skatīt lietošanas instrukciju ar svarīgu piesardzības informāciju						
H t	Pret defibrilāciju noturīga CF tipa daļa vai savienojums, kas saskaras ar pacientu						
- ↑ -	Pret defibrilāciju noturīga BF tipa daļa vai savienojums, kas saskaras ar pacientu						
Ŕ	BF tipa daļa vai savienojums, kas saskaras ar pacientu						
<u>ii</u>	Nepārtraukta neinvazīva arteriālā asinsspiediena mērīšana						
	Noņemiet spiediena kontrollera vāku no šī gala.						
\bigcirc	Nenoņemiet spiediena kontrollera vāku no šī gala.						
ECG	EKG ievade no ārējā monitora						
нэті	Augstas izšķirtspējas multivides interfeisa izvade						
	Savienotājs: seriālā COM izvade (RS232)						

Papildu iepakojuma marķējums						
Ţ	Trausls, rīkoties piesardzīgi					
<u> 11 1 1 1 1 </u>	Ar šo galu uz augšu					
	lekārtas iepakojumā vai konstrukcijā iekļauti litija jonu akumulatori					
*÷	Uzglabāt vēsā, sausā vietā					
	Nelietot, ja iepakojums ir bojāts, un skatīt lietošanas instrukciju					
20	lepakojums izgatavots no pārstrādājama kartona					
	Derīguma termiņš					
50)	Vidi saudzējošas lietošanas periods (EFUP) — tikai Ķīna					

Piezīme

Visu piederumu izstrādājumu marķējumā izmantotos simbolus skatiet šo izstrādājumu lietošanas instrukciju simbolu tabulā.

2.6 Piemērojamie standarti

2-3.	tabula.	Piemēroj	jamie	standarti
------	---------	----------	-------	-----------

Standarts	Nosaukums				
IEC 60601-1:2005/AMD1:2012/ AMD2:2020	Medicīniskās elektroiekārtas — 1. daļa: vispārīgas prasības par pamata drošību un būtisko veiktspēju; 1. labojums (2012); 2. labojums (2020)				
IEC 60601-1-2: 2020	Medicīniskās elektroiekārtas — 1-2. daļa: vispārīgas prasības par pamata drošību un būtisko veiktspēju — netiešais standarts. Elektromagnētiskā saderība — prasības un pārbaudes				
IEC 60601-2-34: 2011	Medicīniskās elektroiekārtas — 2-34. daļa: īpašas prasības par invazīvā asinsspiedie- na monitoringa aprīkojuma pamata drošību un būtisko veiktspēju				
IEC 80601-2-49:2018	Medicīniskās elektroiekārtas — 2-49. daļa: īpašas prasības par daudzfunkcionālās pacienta novērošanas aparatūras/monitoru pamata drošību un būtisko veiktspēju				
ISO 80601-2-56:2017/AMD1:2018	Medicīniskās elektroiekārtas — 2-56. daļa: īpašas prasības par ķermeņa temperatū- ras mērīšanai izmantoto klīnisko termometru pamata drošību un būtisko veiktspēju: 1. labojums (2018. gads)				

2.7 HemoSphere Alta uzlabotās monitoringa platformas pamata veiktspēja

Monitors parāda nepārtraukto CO un intermitējošo CO ar saderīgu Swan-Ganz katetru atbilstoši specifikācijām, kas norādītas A pielikumā Specifikācijas un ierīces raksturlielumi 380. lpp.. Platforma nodrošina intravaskulārā asinsspiediena rādījumu, izmantojot saderīgu FloTrac, FloTrac Jr vai Acumen IQ sensoru vai saderīgu TruWave vienreizlietojamo spiediena devēju, kas atbilst A pielikumā norādītajām specifikācijām. Platforma nodrošina nodrošina neinvazīvu arteriālā asinsspiediena rādījumu, izmantojot saderīgu oksimetrijas katetru, kas atbilst A pielikumā norādītajām specifikācijām. Platforma nodrošina neinvazīvu arteriālā asinsspiediena rādījumu, izmantojot saderīgu Edwards pirksta manšeti, kas atbilst A pielikumā norādītajām specifikācijām. Platforma nodrošina stO₂ rādījumu, izmantojot saderīgu kas atbilst A pielikumā norādītajām specifikācijām. Platforma nodrošina neinvazīvu arteriālā asinsspiediena rādījumu, izmantojot saderīgu Edwards pirksta manšeti, kas atbilst A pielikumā norādītajām specifikācijām. Platforma nodrošina StO₂ rādījumu, izmantojot saderīgu kas atbilst A pielikumā norādītajām specifikācijām. Platforma nodrošina StO₂ rādījumu, izmantojot saderīgu oksimetra kabeli un sensoru, kas atbilst A pielikumā norādītajām specifikācijām. Ja platforma nevar nodrošinā tattiecīgā hemodinamiskā parametra mērījumu, tā nodrošina trauksmi, indikatoru un/vai sistēmas statusa informāciju. Lai iegūtu papildinformāciju, skatiet Pamata veiktspējas parametri 380. lpp.

lerīces veiktspēja, ieskaitot funkcionālos parametrus, ir pārbaudīta vispusīgu testu sērijā, lai apliecinātu ierīces drošumu un veiktspēju atbilstoši tās paredzētajam lietojumam, ja ierīci lieto saskaņā ar norādījumiem, kas sniegti lietošanas instrukcijā.

Uzstādīšana un iestatīšana

Saturs

Izpakošana	71
HemoSphere Alta uzlabotās monitoringa platformas savienojumu pieslēgvietas	.74
HemoSphere Alta uzlabotās monitoringa platformas uzstādīšana	. 77
Sākotnējā palaišana	81
Izslēgšana un enerģijas taupīšanas režīms	82

3.1 Izpakošana

Pārbaudiet, vai piegādes iepakojumam nav nekādu piegādes laikā radušos bojājumu pazīmju. Ja konstatējat jebkādus bojājumus, nofotografējiet iepakojumu un sazinieties ar Edwards tehniskā atbalsta dienestu. Neizmantojiet, ja iepakojums vai tā saturs ir bojāts. Vizuāli pārbaudiet, vai iepakojuma saturam nav bojājumu. Bojājumi ietver plaisas, skrāpējumus, iespiedumus un jebkādas citas pazīmes, ka monitors vai kabeļa korpuss varētu būt bojāts. Ziņojiet par jebkādiem ārējiem bojājumiem.

3.1.1 lepakojuma saturs

HemoSphere Alta uzlabotā monitoringa platforma ir modulāra, tādēļ iepakojuma konfigurācija atšķiras atkarībā no pasūtītā komplekta. Visu platformu piegādes komplektācijā iekļauts elektrotīkla barošanas vads un dažos reģionos arī USB zibatmiņa ar operatora rokasgrāmatu. Atkarībā no komplekta konfigurācijas var būt iekļauti un piegādāti arī papildu vienumi. Skat. 3-1. tabula 71. lpp. Izmantojamie materiāli un piederumi var tikt piegādāti atsevišķi. Lietotājam ieteicams apstiprināt visu pasūtīto iekārtu saņemšanu. Pilnu pieejamo piederumu sarakstu skatiet B pielikumā. Piederumi 393. lpp.

HemoSphere Alta uzlabotās monito- ringa platformas sirdsdarbības kom- plekts	HemoSphere Alta uzlabotās monito- ringa platformas viedās atkopšanas komplekts	HemoSphere Alta uzlabotās monito- ringa platformas universālais kom- plekts				
 HemoSphere Alta sirds monitors elektrotīkla kabelis lietotāja rokasgrāmata (pēc reģiona) HemoSphere Alta Swan-Ganz pacienta kabelis HemoSphere oksimetrijas kabelis* HemoSphere spiedienkabelis HemoSphere Alta monitors — spiedienkabelis ForeSight oksimetra kabelis 	 HemoSphere Alta viedās atkopša- nas monitors elektrotīkla kabelis lietotāja rokasgrāmata (pēc reģio- na) HemoSphere spiedienkabe- lis/HemoSphere Alta monitors — spiedienkabelis ClearSight tehnoloģijas kabeļi (spiediena kontrollers un HRS) 	 HemoSphere Alta universālais monitors elektrotīkla kabelis lietotāja rokasgrāmata (pēc reģio- na) HemoSphere Alta Swan-Ganz pa- cienta kabelis HemoSphere spiedienkabe- lis/HemoSphere Alta monitors — spiedienkabelis ClearSight tehnoloģijas kabeļi (spiediena kontrollers un HRS) HemoSphere oksimetrijas kabelis ForeSight oksimetra kabelis HemoSphere Alta AFM kabelis 				
*Pēc izvēles						

3-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas konfigurācijas

3.1.2 Nepieciešamie piederumi platformas kabeļiem

Nākamajās tabulās ir norādīti piederumi, kas nepieciešami konkrētam hemodinamiskās tehnoloģijas kabelim, lai parādītu konkrētus pārraudzības laikā iegūtos un aprēķinātos parametrus.

3-2. tabula. Kabeļi un katetri, kas ir nepieciešami parametru monitoringam, izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli

	Pārraudzības laikā iegūtie un aprēķinātie parametri									
Nepieciešamais kabe- lis/katetrs	со	CO _{20s} *	EDV	RVEF	SVR	iCO	SV	SV _{20s} *	CO _{RV} / SV _{RV} ‡	GHI [†]
EKG kabelis vai PR no ART spiediena līknes**			•	•			•	•		
analogais spiediena ieva- des kabelis(-ļi)					•					
injekcijas šķīduma tempe- ratūras zonde						•				
Swan-Ganz termodilūcijas katetrs vai Swan-Ganz Jr termodilūcijas katetrs						•				
Swan-Ganz CCO katetrs vai Swan-Ganz CCOmbo ka- tetrs	•				•	•	•			
Swan-Ganz CCOmbo V ka- tetrs	•	•	•	•	•	•	•	•		٠
Swan-Ganz IQ katetrs						•			•	•
TruWave devējs*		•						•	•	
HemoSphere oksimetrijas kabelis										•

*20 sekunžu plūsmas parametri ir pieejami, tikai īstenojot pārraudzību ar CCOmbo V katetru (modeļi 777F8 un 774F75), un tiem ir nepieciešams pulmonālās artērijas spiediena signāls, kas tiek nodots pa HemoSphere spiedienkabeļa savienojumu. Skat.: 20 sekunžu plūsmas parametri 153. lpp..

** Spiedienkabeļa vai ClearSight manšetes pārraudzītās arteriālās spiediena līknes sirdsdarbības ātrumu (PR) var izmantot, kad ir pievienots/pieejams EKG kabeļa nodrošināts sirdsdarbības ātruma (HR) rādītājs.

[†]Globālās hipoperfūzijas indeksa (GHI) algoritms ir pieejams tikai tad, ja pārraudzībai izmantots CCOmbo V katetrs (modelis 777F8) vai IQ katetrs (modelis AlQSGF8) un HemoSphere oksimetrijas kabeļa savienojums.

[‡]RVCO parametri ir pieejami, tikai īstenojot pārraudzību ar IQ katetru (modelis AIQSGF8), un tiem ir nepieciešams labā sirds kambara spiediena signāls, kas tiek nodots pa HemoSphere spiedienkabeļa savienojumu. Skat.: Labā sirds kambara izsviedes algoritms 318. lpp..

Piezīme

Ne visus pediatrijas pacientu parametrus var pārraudzīt vai aprēķināt. Pieejamos parametrus skatiet 1-1. tabula 28. lpp..
3-3. tabula. Pieejamie sensori parametru pārraudzībai, izmantojot HemoSphere spiedienkabeli/HemoSphere Alta monitoru — spiedienkabeli

	Pārraudzības laikā iegūtie un aprēķinātie parametri											
Pieejamie spiedie- na sensori/devēji	со	SV	SVV/ PPV	SVR*	PR	SYS/ DIA/ MAP	МРАР	CVP	RVP	HPI/ dP/dt/ Ea _{dyn}		
FloTrac sensors vai FloTrac Jr sensors	•	•	•	*	•	•						
TruWave devējs					•	•	•	•	•			
Acumen IQ sen- sors**	•	•	•	*	•	•				•		

*Pārraudzības laikā iegūtoCVP vērtību, manuāli ievadīto CVP vērtību vai noklusējuma CVP vērtību izmanto SVR aprēķināšanai.

** Lai piekļūtu AFM programmatūras funkcijai, ir nepieciešams Acumen IQ sensors. Lai iegūtu papildinformāciju, skatiet Atbalstīta šķidrumu pārvaldība 291. lpp..

3-4. tabula. Pirksta manšetes opcijas pārraudzības parametriem, izmantojot neinvazīvu ClearSight tehnoloģiju

		Pārraudzības laikā iegūtie un aprēķinātie parametri										
Pirksta manšetes opci- jas (viena obligāta)	со	SV	SVV/ PPV	SVR*	PR	SYS/ DIA/ MAP	HPI/ dP/dt/ Ea _{dyn}					
ClearSight pirksta manše- te vai ClearSight Jr pirksta manšete	•	•	•	*	•	•						
Acumen IQ pirksta man- šete	•	•	•	*	•	•	•					
*Pārraudzības laikā iegūto CVPvērtību, manuāli ievadīto CVP vērtību vai noklusējuma CVP vērtību izmanto SVR aprēķināšanai.												

3-5. tabula. Katetri, kas ir nepieciešami parametru pārraudzībai, izmantojot HemoSphere oksimetrijas kabeli

	Pārraudzības laikā iegūtie un aprēķinātie parametri				
Nepieciešamais katetrs	ScvO ₂	SvO ₂			
PediaSat oksimetrijas katetrs vai saderīgs centrālās venozās oksimetrijas katetrs	•				
Swan-Ganz oksimetrijas katetrs		•			

3-6. tabula. Nepieciešamie piederumi parametru pārraudzībai ar ForeSight oksimetra kabeli

	Pārraudzības laikā iegūtie un aprēķinātie paramet					
Nepieciešamais piederums	Audu oksimetrija (StO ₂)	Relatīvās hemoglobī- na izmaiņas (ΔctHb)	Kopējais hemoglo- bīns (tHb)			
ForeSight/ForeSight Jr sensors	•	•				
ForeSight IQ sensors	•	•	•			

BRĪDINĀJUMS

Elektriskās strāvas triecienu risks! Nemēģiniet pievienot/atvienot sistēmas kabeļus ar mitrām rokām. Pirms sistēmas kabeļu atvienošanas pārliecinieties, ka jūsu rokas ir sausas.

UZMANĪBU

Pievienojot vai atvienojot kabeļus, vienmēr satveriet savienotāju, nevis kabeli. Nesavērpiet un nesalieciet savienotājus. Pirms lietošanas pārliecinieties, ka visi sensori un kabeļi ir pievienoti pareizi un līdz galam.

Lai nepieļautu datu bojājumus HemoSphere Alta uzlabotajai monitoringa platformai, pirms defibrilatora lietošanas vienmēr atvienojiet HemoSphere Alta Swan-Ganz pacienta kabeli un oksimetrijas kabeli no monitora.

3.2 HemoSphere Alta uzlabotās monitoringa platformas savienojumu pieslēgvietas

Turpmākajos monitora skatos attēlotas HemoSphere Alta uzlabotā monitora savienojumu pieslēgvietas un citi galvenie priekšējā un aizmugurējā paneļa, kā arī sānu paneļu elementi.

3.2.1 Monitora priekšpuse

1. vizuālais trauksmes indikators

3. mikrofons balss komandām

ieslēgšanas poga

- 2. kamera žestiem
- 3-1. attēls. HemoSphere Alta uzlabotā monitora priekšpuses skats

3.2.2 Monitora aizmugure

- 1. elektrotīkla barošanas vada savienojums
- 2. Ethernet pieslēgvieta
- 3. HDMI pieslēgvieta
- 4. USB pieslēgvieta (3)

- 5. COM1 seriālās pieslēgvietas savienotājs, RS-232 (2)
- 6. EKG ievade
- 7. EQP spaile

3-2. attēls. HemoSphere Alta uzlabotā monitora aizmugures skats

3.2.3 Monitora apakšējais panelis

1. ventilācijas atvere (2)

 statīva ar ritenīšiem kronšteins (stiprinājums ar 4 skrūvēm)

2. Akumulatora nodalījuma vāks

3-3. attēls. HemoSphere Alta uzlabotā monitora apakšējais panelis

3.2.4 Monitora kreisais panelis

- 1. bieži lietojamas kabeļu pieslēgvietas (5)
- 2. audu oksimetrijas pieslēgvietas (2)
- 3. Swan-Ganz tehnoloģijas pieslēgvieta (1)
- 4. ClearSight tehnoloģijas pieslēgvieta (1)
- 5. neinvazīvas spiediena izvades pieslēgvieta (1)*

3-4. attēls. HemoSphere Alta uzlabotā monitora kreisais panelis

UZMANĪBU

*ClearSight tehnoloģijas spiediena izvades signālu uz pacienta monitoru ir paredzēts pievienot tikai BF vai CF tipa spiediena signāla ievades pieslēgvietai pacienta monitorā, kas aizsargāts pret sirds defibrilatora izlādes ietekmi.

3.3 HemoSphere Alta uzlabotās monitoringa platformas uzstādīšana

3.3.1 Montāžas opcijas un ieteikumi

HemoSphere Alta uzlabotā monitoringa platforma ir jānovieto uz stabilas, līdzenas virsmas vai droši jāpiestiprina pie saderīga statīva atbilstoši jūsu iestādes praksei. Lietošanas laikā lietotājam jāatrodas monitora priekšā un tuvu tam. Ierīci vienlaikus var izmantot tikai viens lietotājs. Kā papildu piederums ir pieejams HemoSphere Alta uzlabotās monitoringa platformas statīvs uz ritenīšiem. Lai iegūtu papildinformāciju, skatiet Papildpiederumu apraksts 394. lpp.. Lai saņemtu ieteikumus par papildu montāžas iespējām, sazinieties ar vietējo Edwards pārstāvi.

BRĪDINĀJUMS

Sprādzienbīstamība! Nelietojiet HemoSphere Alta uzlaboto monitoringa platformu tāda maisījuma klātbūtnē, kas sastāv no gaisa un uzliesmojošiem anestēzijas līdzekļiem, skābekļa vai slāpekļa oksīda.

Šis izstrādājums satur metāliskas daļas. NEDRĪKST lietot magnētiskās rezonanses (MR) vidē.

Pārliecinieties, ka HemoSphere Alta uzlabotā monitoringa platforma ir novietota vai uzstādīta droši un ka visi kabeļi un piederumu kabeļi ir izkārtoti atbilstoši, lai samazinātu pacientu vai lietotāju traumu, kā arī iekārtas bojājumu risku.

Neizmantojiet šo iekārtu, ja tā atrodas blakus citām iekārtām vai virs tām, jo tas var izraisīt nepareizu iekārtas darbību. Ja šādā situācijā izmantošana tomēr ir nepieciešama, šī iekārta un pārējās iekārtas ir jāuzrauga, lai pārliecinātos, ka iekārtas darbojas normāli.

HemoSphere Alta uzlabotā monitoringa platforma ir jānovieto vertikālā pozīcijā, lai nodrošinātu atbilstību aizsardzības klasei IPX1.

Uzraugiet, lai uz monitora ekrāna nenokļūst jebkāda veida šķidrums. Citādi var tikt bojāts skārienekrāns.

Nenovietojiet monitoru tā, ka piekļuve pieslēgvietām aizmugures panelī vai elektropadeves kabelim ir apgrūtināta.

Aprīkojums ir novērtēts kā piemērots lietošanai kopā ar augstfrekvences ķirurģisko aprīkojumu. Augstfrekvences ķirurģiskā aprīkojuma radītie traucējumi var izraisīt neprecīzus parametru mērījumus. Lai mazinātu augstfrekvences ķirurģiskā aprīkojuma lietošanas izraisītos apdraudējumus, izmantojiet tikai nebojātus pacienta kabeļus un piederumus, kas ir pievienoti saskaņā ar šajā operatora rokasgrāmatā sniegtajiem norādījumiem.

Šī sistēma ir novērtēta kā piemērota lietošanai kopā ar defibrilatoriem. Lai nodrošinātu pienācīgu darbību bez defibrilatoru izraisītiem traucējumiem, izmantojiet tikai nebojātus pacienta vadus un piederumus, kas ir pievienoti saskaņā ar šajā operatora rokasgrāmatā sniegtajiem norādījumiem.

Viss standartam IEC/EN 60950 atbilstošais aprīkojums, tostarp printeri, ir jānovieto vismaz 1,5 metru attālumā no pacienta gultas.

Pārnēsājamais RF sakaru aprīkojums (tostarp tādas perifērās ierīces kā antenu kabeļi un ārējās antenas) jāizmanto attālumā, kas nav tuvāks kā 30 cm (12") līdz jebkurai HemoSphere Alta uzlabotās monitoringa platformas daļai, tostarp ražotāja norādītajiem kabeļiem. Pretējā gadījumā tas var izraisīt aprīkojuma veiktspējas pasliktināšanos.

UZMANĪBU

Nepakļaujiet HemoSphere Alta uzlaboto monitoringa platformu ekstremālai temperatūrai. Vides specifikācijas skatiet A pielikumā.

Neglabājiet HemoSphere Alta uzlaboto monitoringa platformu putekļainā vai netīrā vidē.

Nenosprostojiet HemoSphere Alta uzlabotā monitora ventilācijas atveres.

Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu vidē, kur spilgts apgaismojums traucē saskatīt LCD ekrānu.

Nelietojiet monitoru kā rokas ierīci.

3.3.2 Akumulators

HemoSphere Alta uzlabotajai monitoringa platformai ir iekšējais akumulators, kas nodrošina nepārtrauktu darbību elektroenerģijas padeves pārrāvuma laikā. Lai piekļūtu akumulatoram, izskrūvējiet 2 fiksācijas skrūves (skat. 3-3. att. 76. lpp.). Lai atvieglotu izskrūvēšanu, tās laikā turiet akumulatora nodalījuma durtiņas aizvērtas. Akumulatora nodalījuma durtiņas jātur aizvērtas arī tad, kad uzstādāt tās atpakaļ un pievelkat skrūves.

Piezīme

Lai nodrošinātu, ka sistēmas monitorā uzrādītais akumulatora uzlādes līmenis ir pareizs, lūdzu, pielietojiet akumulatora atjaunošanas režīmu pirms pirmās lietošanas reizes. Papildinformāciju par akumulatora apkopi un atjaunošanu skatiet šeit: Akumulatora apkope 416. lpp.

HemoSphere Alta monitora akumulatoru ir paredzēts izmantot kā rezerves barošanas avotu elektroenerģijas padeves pārrāvuma laikā, un tas var nodrošināt monitora darbību tikai īsu brīdi.

Šajā rokasgrāmatā HemoSphere Alta akumulators nozīmē brīvi iegādājamu akumulatoru (nodrošina ražotājs RRC Vācijā), kas iestrādāts HemoSphere Alta uzlabotā monitora konstrukcijā.

BRĪDINĀJUMS

Ar HemoSphere Alta uzlaboto monitoringa platformu lietojiet tikai Edwards apstiprinātus akumulatorus. Neveiciet akumulatora uzlādi ārpus monitora. Pretējā gadījumā akumulators var tikt bojāts, vai arī lietotājs var gūt traumas.

Lai nepieļautu pāraudzības pārtraukumus elektroenerģijas padeves pārrāvuma dēļ, ieteicams lietot HemoSphere Alta uzlaboto monitoringa platformu ar ievietotu akumulatoru.

Strāvas padeves traucējumu gadījumā un akumulatora iztukšošanās gadījumā pārraudzības ierīce tiks kontrolēti izslēgta.

3.3.3 Barošanas kabeļa pievienošana

Pirms barošanas kabeļa pievienošanas monitora aizmugurējam panelim pārliecinieties, ka ir uzlikts strāvas pievades vāks.

- 1. Ja strāvas pievades vāks jau ir uzlikts, izskrūvējiet abas skrūves (3. attēls, 3-5. att. 80. lpp.), kas strāvas pievades vāku savieno ar monitora aizmugurējo paneli.
- 2. Pievienojiet atvienojamo barošanas kabeli. Pārliecinieties, ka kabeļa spraudnis ir cieši ievietots kontaktligzdā. (1. attēls, 3-5. att. 80. lpp.)
- Nostipriniet strāvas pievades vāku virs spraudņa, izvelkot barošanas kabeli caur vāka atveri un tad spiežot vāku un blīvi uz augšu pret monitora aizmugurējo paneli, salāgojot abas skrūves atveres. (1. attēls, 3-5. att. 80. lpp.)
- 4. leskrūvējiet atpakaļ skrūves, lai piestiprinātu vāku pie monitora. (3. attēls, 3-5. att. 80. lpp.)
- 5. Pievienojiet barošanas kabeli slimnīcas līmeņa kontaktligzdai.

BRĪDINĀJUMS

Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu, ja tai nav uzlikts strāvas vada pievades vāks. Neveicot šīs darbības, iekārtā var iekļūt šķidrums.

3-5. attēls. HemoSphere Alta uzlabotā monitora strāvas pievades vāks — uzlikšanas darbības

3.3.3.1 Ekvipotenciāls savienojums

Ekspluatācijas laikā šim monitoram ir JĀBŪT iezemētam (I klases aprīkojums saskaņā ar IEC 60601-1). Ja nav pieejams slimnīcas līmeņa vai trīszaru uztvērējs, jākonsultējas ar slimnīcas elektriķi, lai veiktu pienācīgu iezemēšanu. Monitora aizmugurējā panelī atrodas ekvipotenciāls terminālis (3-2. att. 75. lpp.), kas ir jāsavieno ar ekvipotenciālu iezemēšanas sistēmu (ekvipotenciālu kabeli).

BRĪDINĀJUMS

Elektropadeves kabeļa pievienošanai neizmantojiet pagarinātājus vai vairākligzdu ierīces. Izmantojiet tikai komplektācijā ietverto elektropadeves kabeli.

Lai izvairītos no elektriskās strāvas triecienu riska, HemoSphere Alta uzlaboto monitoringa platformu var pievienot tikai tādam elektropadeves tīklam, kas savienots ar aizsargzemējumu. Neizmantojiet divzaru-trīszaru adapterus.

Drošs zemējums tiek panākts tikai tad, ja instruments tiek pieslēgts kontaktligzdai, kas apzīmēta ar "tikai slimnīcām", "slimnīcas līmeņa" vai tamlīdzīgu marķējumu.

Atvienojiet monitoru no maiņstrāvas avota, atvienojot tīkla strāvas kabeli no maiņstrāvas tīkla. Nospiežot ieslēgšanas/izslēgšanas pogu, monitors netiek atvienots no maiņstrāvas tīkla.

UZMANĪBU

Pārvietojot instrumentu, pārliecinieties, ka tas ir izslēgts un ka pieslēgtais elektropadeves kabelis ir atvienots.

3.3.4 Hemodinamiskā stāvokļa pārraudzības kabeļa pievienošana un atvienošana

Vairākums uzraudzības kabeļu pieslēgvietu ir aprīkotas ar magnētiskās fiksācijas mehānismu. Pirms pievienošanas pārbaudiet, vai kabelim nav bojājumu. Tiklīdz uzraudzības kabelis ir pareizi ievietots pieslēgvietā, tas fiksējas vietā. Spiediena kontrollera kabeļa savienojumam nav magnētiskās fiksācijas mehānisma. Lai atvienotu kabeli, satveriet spraudni un velciet virzienā prom no monitora.

3.3.5 Ārējo ierīču kabeļu pievienošana

HemoSphere Alta uzlabotā monitoringa platforma izmanto analogās ievades monitorētos datus, lai aprēķinātu noteiktus hemodinamiskos parametrus. Tie ietver datus no EKG monitora ievades pieslēgvietas. Visi analogās ievades kabeļu savienojumi atrodas monitora aizmugurējā panelī (3-2. att. 75. lpp.). Aprēķinātajiem parametriem pieejamo kabeļu savienojumu sarakstu skatiet šeit: Nepieciešamie piederumi platformas kabeļiem 72. lpp.

Piezīme

SVARĪGI! HemoSphere Alta uzlabotā monitoringa platforma ir saderīga ar analogo EKG ievadi no jebkura ārējā pacienta monitora, kam ir analogās izvades pieslēgvietas, kas atbilst šīs lietotāja rokasgrāmatas pielikumā A, A-5. tabula 383. lpp. norādītajām signāla ievades specifikācijām. Tādējādi tiek nodrošināts ērts veids, kā izmantot informāciju no pacienta monitora, lai aprēķinātu papildu parādāmos hemodinamiskos parametrus. Tā ir papildu funkcija, kas neietekmē HemoSphere Alta uzlabotās monitoringa platformas primārās funkcijas — sirds izsviedes (ar HemoSphere Alta Swan-Ganz pacienta kabeli) vai venozā skābekļa piesātinājuma (ar HemoSphere oksimetrijas kabeli) uzraudzību.

BRĪDINĀJUMS

Izmantojiet tikai Edwards piegādātus un marķētus HemoSphere Alta uzlabotās monitoringa platformas piederumus, kabeļus un/vai komponentus. Citu nemarķētu piederumu, kabeļu un/vai komponentu izmantošana var ietekmēt pacienta drošību un mērījumu precizitāti.

3.4 Sākotnējā palaišana

3.4.1 Palaišanas procedūra

Lai ieslēgtu un izslēgtu monitoru, nospiediet ieslēgšanas pogu, kas atrodas uz priekšējā paneļa. Pēc monitora ieslēgšanas tiek parādīts Edwards ekrāns, bet pēc tam — ieslēgšanas pašpārbaudes (POST) ekrāns. POST laikā tiek pārbaudīts, vai monitors atbilst pamata ekspluatācijas prasībām, testējot kritiski svarīgus aparatūras komponentus, un šī pārbaude tiek veikta katru reizi, kad sistēma tiek ieslēgta. Palaišanas ekrānā tiek parādīts POST statusa ziņojums, kā arī sistēmas informācija, piemēram, sērijas numurs un programmatūras versijas numurs.

3-6. attēls. Palaišanas ekrāns

Piezīme

Ja diagnostikas testa laikā tiek noteikts kļūdas stāvoklis, palaišanas ekrāns tiek nomainīts uz sistēmas kļūdas ekrānu. Skatiet 14. nodaļu: Problēmu novēršana 338. lpp.; vai F pielikumu: Sistēmas apkope, remonts un atbalsts 410. lpp.. Pretējā gadījumā sazinieties ar Edwards Lifesciences pārstāvi.

3.4.2 lerīces ID atlase

HemoSphere Alta uzlabotās monitoringa platformas sākotnējās palaišanas laikā lietotājs ekrānā **Laipni lūdzam!** var atlasīt lerīces ID vai monitora nosaukumu. Ierīces ID pēc noklusējuma ir monitora sērijas numurs, taču to var mainīt uz jebkuru citu nosaukumu (20 rakstzīmes). Statusa joslas centrā parādīts parametrs Ierīces ID. Skat. Statusa josla 118. lpp.

Laipni lūdzam!		
🖳 Izveidojiet ierīces ID, lai palīdzētu identificēt sistēmu		
lerices ID		
 Unikálá D priekšá ir prefiksa "SK-" Vělák nosaukumu varés redijájť 		
16:19:32 PM -08:00 11/05/2024		
Serijas 19y1234567	Izlaist	Izveidot

3-7. attēls. Ierīces ID ekrāns

Parametru lerīces ID var mainīt jebkurā laikā ekrānā lerīces ID ar droša lietotāja paroles palīdzību, izmantojot

ekrānu **lestatījumi** → **Papildu iestatījumi** → **lerīces ID**. Visas paroles tiek iestatītas sistēmas inicializācijas laikā. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroli.

3.5 Izslēgšana un enerģijas taupīšanas režīms

Lai izslēgtu monitoru, pieskarieties ieslēgšanas/izslēgšanas pogai. Skatiet apzīmējumu (2) šeit: 3-1. att. 74. lpp. Tiek attēlotas tālāk norādītās iespējas.

- Beigt sesiju: pieskarieties pie Jā, lai apturētu pašreizējo pārraudzības sesiju un pārslēgtu monitoru uz režīmu Enerģijas taupīšanas režīms. Tas ļauj novērst ierīces darbību pilnas jaudas režīmā, un monitoru var restartēt, pieskaroties ekrānam.
- Izslēgšana: šī darbība izslēdz monitoru.
- Atcelt: ļauj atgriezties ekrānā, kas tika attēlots pirms ieslēgšanas/izslēgšanas pogas nospiešanas.

HemoSphere Alta uzlabotās monitoringa platformas navigācija

Saturs

HemoSphere Alta uzlabotā monitora ekrāna izskats.	
Navigācijas josla	
Pārraudzības skati	87
HemoSphere Alta uzlabotās monitoringa platformas žestu komandas	
HemoSphere Alta uzlabotās monitoringa platformas balss komandas	
Klīniskie rīki	104
Vairāku sensoru uzlabotās pārraudzības režīms	
Statusa josla	
Statusa josla — paziņojumi	121
Monitora ekrāna navigācija	121

4.1 HemoSphere Alta uzlabotā monitora ekrāna izskats

Visas pārraudzības funkcijas tiek inicializētas, pieskaroties atbilstošajam skārienekrāna apgabalam. HemoSphere Alta uzlabotās monitoringa platformas ekrāna izkārtojums nodrošina ārstam ātru piekļuvi kritiskiem pārraudzības ekrāniem un izvēlnēm, lai gādātu par vienkāršu lietošanu. Navigācijas joslā, kas atrodas ekrāna apakšā, ir ietvertas dažādas vadīklas pārraudzības sākšanai un apturēšanai, pārraudzības ekrānu atlasīšanai, piekļūšanai klīnisko rīku sānu panelim, sistēmas iestatījumu pielāgošanai, piekļūšanai balss un žestu funkcijām un trauksmes signālu izslēgšanai. HemoSphere Alta uzlabotā monitora ekrāna galvenie komponenti ir norādīti tālāk 4-1. att. 84. lpp.. Galvenajā logā ir redzams pašreizējās pārraudzības skats vai izvēlnes ekrāns. Detalizētu informāciju par pārraudzības skatu veidiem skatiet sadaļā Pārraudzības skati 87. lpp. Detalizētu informāciju par citām ekrāna funkcijām skatiet sadaļās, kas norādītas 4-1. att. 84. lpp..

- 1. statusa josla paziņojumi (4.9. sadaļa)
- 2. sānu panelis Klīniskie rīki (4.6. sadaļa)
- 3. navigācijas josla (4.2. sadaļa)

- 4. statusa josla ikonas (4.8. sadaļa)
- 5. galvenais logs (pārraudzības skats, 4.3. sadaļa)
- 6. parametra elements (4.3.2. sadaļa)

4-1. attēls. HemoSphere Alta uzlabotā monitora ekrāna funkcijas

4.2 Navigācijas josla

Navigācijas josla ir redzama vairākumā ekrānu. Izņēmumi ir palaišanas ekrāns un ekrāni, kuros norādīts, ka HemoSphere Alta uzlabotās monitoringa platformas veiktā pārraudzība ir apturēta. Tālāk parādītais piemērs 4-2. att. 85. lpp. attiecas uz neinvazīvas un invazīvas pārraudzības tehnoloģijām, kas pievienotas, kad iespējots vairāku sensoru režīms. Visas pieejamās ikonas ir detalizēti aprakstītas tālāk.

Sāciet Swan-Ganz CO pārraudzību. Ja monitoringam tiek izmantots HemoSphere Alta Swan-Ganz pacienta kabelis, CO pārraudzības sākšanas ikona sniedz lietotājam iespēju tieši sākt CO monitoringu no navigācijas joslas. Skat. Nepārtraukta sirds izsviede 150. lpp.

Apturiet Swan-Ganz CO pārraudzību. Pārraudzības apturēšanas ikona norāda, ka pašlaik notiek CO pārraudzība, izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli. Lietotājs var uzreiz apturēt pārraudzību, pieskaroties šai ikonai un pēc tam pogai **Labi** apstiprinājuma uznirstošajā logā.

Sākt neinvazīvu pārraudzību. Ja pārraudzībai tiek izmantota ClearSight neinvazīvā tehnoloģija, pārraudzības sākšanas ikona dod lietotājam iespēju tieši sākt neinvazīvo asinsspiediena un CO pārraudzību no navigācijas joslas. Skat. HemoSphere neinvazīvās sistēmas monitoringa problēmu novēršana 192. lpp.

Apturēt neinvazīvu pārraudzību. Neinvazīvās pārraudzības apturēšanas ikona parāda, ka notiek neinvazīvā asinsspiediena un hemodinamisko parametru pārraudzība, izmantojot ClearSight tehnoloģiju.

Venozās oksimetrijas pārraudzība. Pieskarieties šeit, lai piekļūtu venozās oksimetrijas iestatījumiem un kalibrēšanas ekrānam. Ja nepieciešama venozās oksimetrijas kalibrēšana, šī ikona sāk spīdēt. Skat. Venozās oksimetrijas uzstādīšana 202. lpp.

Nulle un spiediena līkne Šī ikona sniedz lietotājam iespēju tieši piekļūt ekrānam Zero & Waveform no navigācijas joslas. Skat. Ekrāns Nulle un spiediena līkne 182. lpp.

Atlasiet pārraudzības režīmu. Pieskarieties šeit, lai pārslēgtos starp pārraudzības režīmiem, kad ir atspējots vairāku sensoru režīms. Skat. Vairāku sensoru uzlabotās pārraudzības režīms 117. lpp. Zem šīs ikonas navigācijas joslā tiek parādīts pašreizējais pārraudzības režīms.

Pacients. Pieskarieties šai ikonai, lai skatītu un rediģētu pašreizējos pacientu demogrāfiskos datus un informāciju. Pieskarieties pogai **Beigt sesiju** ekrānā **Pacients** katras pacienta pārraudzības sesijas beigās, lai atbilstoši beigtu pārraudzību. Tiek parādīts ekrāns Jauna pacienta dati, iepriekšējā pārraudzības sesija beidzas, un to nevar atsākt.

Pacients (demogrāfiskie dati izlaisti). Šī ikona tiek parādīta navigācijas joslā pēc pacienta demogrāfisko datu izlaišanas. Jebkurā brīdī pieskarieties šai ikonai, lai ievadītu pacienta demogrāfiskos datus. Ja noklusējuma pacienta režīms ir pediatrijas režīms, tas saglabājas. Ja ir izlaisti pacienta demogrāfiskie dati, pārraudzībai pieejamie parametri ir ierobežoti. Skat. Pacienta dati 127. lpp.

lestatījumi. Ikona **lestatījumi** nodrošina piekļuvi vispārējiem iestatījumiem, pacienta trauksmes/mērķa rādītāju iestatījumiem, papildu iestatījumiem, režīmam **Demonstrācijas režīms** un datu eksportēšanai. Papildinformāciju par iestatījumu izvēlni skatiet lestatījumu izvēlnes navigācija un paroles aizsardzība 124. lpp..

Ekrāns. Šī ikona nodrošina piekļuvi šādiem trim konfigurācijas ekrāniem: **Tendence**, **Kontrolpults** un **Dalīt**. Kad tiek atlasīts pārraudzības skata ekrāns, tiek nekavējoties parādīts attiecīgais pārraudzības režīms.

Palīdzība. Skatiet 14. nodaļu: Ekrānā redzamā palīdzība 338. lpp.

Trauksmes skaņas signālu izslēgšana. Pieskarieties ikonai Trauksme navigācijas joslā un turiet to, lai piekļūtu trauksmes apakšizvēlnei. Ir pieejamas tālāk norādītās opcijas.

- Pauze: pieskarieties šai ikonai, lai pārtrauktu CO pārraudzību un pārietu uz režīmu Bezpulsāciju režīms. Lai apstiprinātu CO pārraudzības darbības, tiek parādīta apstiprinājuma josla. Izņēmums: asinsspiediena pārraudzības, audu oksimetrijas pārraudzības un saistītās trauksmes Bezpulsāciju režīms laikā saglabāsies aktīvas. Aktīvos parametrus skatiet šeit: D-3. tabula 405. lpp. Bezpulsāciju režīms laikā visi asinsspiediena vidējie laiki iegūst noklusējuma vērtību 5 sekundes ar 2 sekunžu atjaunināšanas ātrumu. Skat. 5-4. tabula 131. lpp.
- 2. Atiestatīt: ar šo tiek atiestatītas visas fiksācijas kļūmes, kas vairs nav aktīvas. Aktīvās fiksācijas kļūmes joprojām signalizēs par trauksmi.
- 3. Klusums: ar šo visus skaņas un vizuālos trauksmes indikatorus izslēdz uz laiku līdz piecām minūtēm. Trauksmes pauzes intervāla opcijas ir 1, 2, 3, 4 un 5 minūtes. Jauni fizioloģisko trauksmju signāli tiek izslēgti pauzes laikā. Izņēmums ir globālās hipoperfūzijas indeksa (GHI) parametrs, kas tiek izslēgts uz 15 minūtēm (skat. GHI trauksme 283. lpp.). Pēc pauzes trauksmes signāli atsāk skanēt. Kļūmes tiek apklusinātas, līdz kļūme ir dzēsta un notiek no jauna. Ja rodas jauna kļūme, trauksmes signāls tiks atskaņots atkārtoti.

Trauksmes skaņas signāli izslēgti. Norāda, ka trauksmes signāli uz laiku izslēgti, un tiek parādīts atskaites

taimeris. Trauksmes rādītāju apturēšanas indikators tiek parādīts jebkura parametra elementā, kuram pašlaik ir aktivizēts trauksmes signāls.

Pastāvīgi izslēgt visus trauksmes signālus. Pieskarieties ikonai izvērstajā trauksmju izvēlnē, lai pilnībā apklusinātu visus trauksmes signālus. Lai atlasītu šo trauksmes signālu apklusināšanas opciju, laukā **Galvenais** lietotājs ir jāievada parole. Skat. Iestatījumu izvēlnes navigācija un paroles aizsardzība 124. lpp.

Bezpulsāciju režīms

Atsākt pārraudzību. Pēc bezpulsāciju režīma apturēšanas navigācijas joslā tiek parādīts pagājušais laiks. Tiek parādīts ziņojums "**Bezpulsāciju režīms**". Lai atgrieztos pie pārraudzības, pieskarieties bezpulsāciju režīma ikonai.

4.3 Pārraudzības skati

Ir trīs primārie pārraudzības skati: **Tendence** (grafiska vai tabulas tendence), **Kontrolpults** un **Dalīt**. Atbilstīgi atlasītajam pārraudzības skatam var atainot ne vairāk par desmit uzraudzītajiem parametriem.

Lai pārslēgtos starp pārraudzības režīmiem, rīkojieties, kā norādīts tālāk.

• Navigācijas joslā pieskarieties ikonai Ekrāns.

VAI

 Izmantojiet žesta komandu (skat. HemoSphere Alta uzlabotās monitoringa platformas žestu komandas 99. lpp.).

4.3.1 Tendenču pārraudzības skats

Ekrānā **Tendence** ir redzams pārraudzīto parametru pašreizējais stāvoklis un vēsture. Parametru vērtību tendenci var skatīt grafiskā vai tabulārā formātā. Parādītie parametri tiek uzskatīti par "galvenajiem parametriem" un ir atlasāmi parametru konfigurācijas izvēlnē. Skat. Parametru maiņa 91. lpp.

4.3.1.1 Grafisko tendenču ekrāns

Grafisko tendenču ekrāna galvenās funkcijas aprakstītas sadaļā 4-3. att. 88. lpp. un tālāk.

- 2. y ass ar robežvērtību datu etiķetēm
- 3. laika diapazons

- piekļūtu parametru konfigurācijas izvēlnei)
- 6. grafika/tabulas pārslēgšanas slēdzis

- Grafisko tendenču diagrammā parādīti dati par iepriekš noteiktu laika periodu (skat. 3). Diagrammas līnijas 1. iekrāsojuma pamatā ir lietotāja definētas robežvērtības/mērķa rādītāji atbilstošajam parametram.
- 2. Y asī ir parādītas lietotāja definēto robežvērtību datu atzīmes. Lai mainītu robežvērtības, pieskarieties jebkurai šī parametra grafiskās tendences elementa vietai (skat. 5), lai piekļūtu parametra izvēlnei.
- Tendenču diagrammas laika diapazonu (x ass) var modificēt, pieskaroties jebkurai vietai uz x ass. Opciju 3. diapazons ir no 1 minūtes līdz 72 stundām.
- 4. Ja asinsspiediena līknes parametrs ir atlasīts kā galvenais parametrs, tas parādās ekrāna augšdaļā.
- Grafisko tendenču elementā tiek parādīts parametra nosaukums un vērtība, kā arī citi galvenie elementi. 5. Vairāk informācijas par šo jautājumu un piekļuvi parametru izvēlnei skatiet šeit: Parametru elementi parametru konfigurācijas izvēlne 91. lpp..

Lai pārslēgtos uz tabulāro tendenci, pieskarieties tabulu tendences pārslēgšanas slēdzim 6.

4.3.1.2 Tabulāro tendenču ekrāns

Tabulāro tendenču ekrānā atlasītie galvenie parametri un to vēsture tiek attēlota tabulārā formātā. Tabulāro tendenču ekrāna galvenās funkcijas aprakstītas sadaļā 4-4. att. 89. lpp. un tālāk.

- 2. vecākā tabulāro tendenču šūna
- 3. laika punkts

- 5. tabulārās tendences elements (pieskarieties šeit, lai piekļūtu parametru konfigurācijas izvēlnei)

6. grafika/tabulas pārslēgšanas slēdzis

- 1. Tabulāro tendenču šūnās parādīti dati par iepriekš noteiktu laika periodu (skat. 3).
- 2. Vecāko parādīto laika punktu nosaka parametrs Pieaugums tabulārā formā (skat. 3).
- 3. Tabulārā tendenču attēlojuma pieaugumu tabulārā formā (x ass) var modificēt, pieskaroties jebkurai vietai uz x ass. Opciju diapazons ir no 1 minūtes līdz 60 minūtēm.
- Ja asinsspiediena līknes parametrs ir atlasīts kā galvenais parametrs, tas parādās ekrāna augšdaļā. 4.
- 5. Tabulāro tendenču elementā tiek parādīts parametra nosaukums un vērtība, kā arī citi galvenie elementi. Vairāk informācijas par šo jautājumu un piekļuvi parametru izvēlnei skatiet šeit: Parametru elementi parametru konfigurācijas izvēlne 91. lpp..

Lai pārslēgtos uz tabulāro tendenci, pieskarieties tabulu tendences pārslēgšanas slēdzim 6.

Redzamo pārraudzīto parametru vēstures apjomu var konfigurēt, regulējot laika skalu. Pieskarieties jebkurā vietā uz x ass laika skalas, lai piekļūtu parametram Laika diapazons (grafiskās tendences) vai Pieaugums tabulārā formā (tabulārās tendences).

4.3.1.3 Grafisko tendenču funkcijas

Kad parametra mērķa diapazons ir iespējots, grafika līnijai tiek piešķirts krāsas kods: zaļa krāsa norāda atbilstību mērķa diapazonam; dzeltena krāsa norāda, ka vērtība ir ārpus mērķa diapazona, bet ietilpst fizioloģiskās trauksmes diapazonā; sarkana krāsa norāda, ka vērtība ir ārpus trauksmes diapazona. Ja parametra mērķa diapazons ir atspējots, grafika līnija ir balta. Diagrammas krāsas var atspējot vispārīgajos iestatījumos.

→ pārslēgšanas slēdzim **Tendenču mērķa krāsas**.

Ja parametra mērķi ir iespējoti, šīs krāsas atbilst klīniskā mērķa indikatora (parametra elementa kontūras) krāsām galveno parametru elementos grafisko tendenču grafikā. Trauksmes signālu ierobežojumi katram parametram ir attēloti kā skaitliskas vērtības uz grafika y ass. Skatiet apzīmējumu (2) šeit: 4-3. att. 88. lpp.

Ja kādam parametram ir trauksme, diagramma tiek ieēnota sarkanā krāsā.

Piezīme

Parametra Acumen Hypotension Prediction Index HPI grafiskās tendences tiek attēlotas kā balta tendenču līkne, ja tas atrodas ārpus trauksmes diapazona, un kā sarkana tendenču līkne, ja tas atrodas trauksmes diapazonā.

Lai apvienotu diagrammas, parametra diagrammu nometiet uz citas grafiskās tendences diagrammas vai

pieskarieties apvienošanas ikonai starp diagrammām. Otrā parametra y ass vērtības tiks rādītas diagrammas labajā pusē. Lai atkal rādītu atsevišķas grafisko tendenču diagrammas, pieskarieties izvēršanas

Grafisko tendenču diagrammas y ass mērogošanai var piekļūt no parametru konfigurēšanas izvēlnes, atlasot cilni Y skala. Ja parametrs ir ārpus skalas diapazona, parametra vērtības virzienā tiek parādīta zila, mirgojoša

bultiņa 📃

4.3.1.4 Grafisko/tabulāro tendenču ritināšanas režīms

Ritinot atpakaļ, varat skatīt pārraudzīto parametru datus par maksimāli 72 stundām. Lai sāktu ritināt, grafiskajā tendenču diagrammā pavelciet pa labi/pa kreisi. Ekrāns atgriežas reāllaika režīmā divas minūtes pēc pieskaršanās ritināšanas pogai; varat arī pieskarties pašreizējā laika bultiņai, kas parādīta pa labi no laika ass

. Ritināšanas režīmā lietotājs var ritināt līdz datiem, kas ir vecāki nekā pašreizējā laika skalas attēlojums.

Piezīme

10-54

Nav iespējams ritināt uz priekšu no vietas pie jaunākajiem datiem vai pirms vecākajiem datiem. Grafiku var ritināt tikai tiktāl, cik ļauj pieejamie dati.

4.3.1.5 Tendenču atlase

Pieskarieties tendenču diagrammai ar diviem pirkstiem, lai skatītu parametra vērtības izmaiņas noteiktā pārraudzības laika posmā.

Laika posms apzīmēts ar divām vertikālām pelēkām līnijām un parametru vērtībām šajos laika punktos, kas atbilst laika posma zemākajai un augšējai robežai. Parametra vērtību procentuālās izmaiņas šajā laika posmā tiek parādītas centrā. Velciet parametru tendenču diagrammas pelēkos vērtību lodziņus, lai pārvietotu laika posmu. Ritiniet atpakaļ vai uz priekšu, lai pārvietotu laika posmu pārraudzītajā laika periodā. Lai bloķētu atlasi,

pieskarieties bloķēšanas ikonai

4.3.1.6 Asinsspiediena reāllaika līknes rādīšana

Lai parādītu reāllaika asinsspiediena līkni, atlasiet parametru **Spiediena līkne** kā galveno parametru. Spiediena reāllaika līknes grafiku panelis atainosies virs pirmā pārraudzītā parametra grafika. Sistoliskā, diastoliskā un vidējā arteriālā spiediena skaitlisks rādījums no sitiena līdz sitienam tiks parādīts virs pirmā monitorētā parametra elementa. Lai mainītu diagrammas datu notīrīšanas ātrumu (x ass skalu), pieskarieties spiediena līknes parametra elementam un piekļūstiet parametra konfigurēšanas izvēlnei.

4.3.2 Parametru elementi — parametru konfigurācijas izvēlne

Parametru elementi atrodas grafisko/tabulāro tendenču ekrānu labajā pusē. Kontrolpults monitoringa skatu veido lielāka formāta parametru apļi, kas darbojas tāpat, kā aprakstīts tālāk. Ja lietotājs pieskaras jebkur parametra elementā, tiek atvērta šī parametra iestatījumu izvēlne. Šeit varat mainīt parametru, pievienot jaunus parametrus un konfigurēt citas šī parametra attēlojuma funkcijas, tostarp trauksmes un mērķus.

4.3.2.1 Parametru maiņa

- 1. Pieskarieties attēlotā parametra apzīmējumam parametra elementā, lai to mainītu uz citu parametru.
- 2. Parametru konfigurācijas izvēlnē pieskarieties cilnei **Izvēlieties parametru**.
- Parametru atlases ekrānā visi atlasītie galvenie parametri ir iezīmēti ar zilu krāsu. Pašlaik atlasītais parametrs ir iezīmēts ar dzeltenu krāsu. Pieejamie parametri ekrānā tiek parādīti bez iezīmēšanas. Sadaļā 4-5. att.
 92. lpp. parādīta parametru atlases izvēlne, pārraudzībai izmantojot visas pieejamās tehnoloģijas vairāku sensoru režīmā. Šī loga izskats pārraudzības laikā ar citām HemoSphere Alta uzlabotās monitoringa platformas konfigurācijām atšķiras no tā, kas redzams šeit: 4-5. att. 92. lpp.

Parametri tiek organizēti arī kategorijās atlasītajā tehnoloģijā. Tālāk norādītās kategorijas ir sagrupētas parametru atlases konfigurēšanas izvēlnē. Skat. 4-5. att. 92. lpp.

Spiediena līkne. Atlasiet asinsspiediena līknes parametru, lai skatītu asinsspiediena līkni ekrāna augšdaļā. Tālāk ir norādīti spiediena līknes parametri.

- **ART.** Asinsspiediena parametri, kas pārraudzīti no arteriālās caurulītes (minimāli invazīvi vai rekonstruēti neinvazīvi): līkne (spiediena līkne), MAP, SYS_{ART}, DIA_{ART}, PR un PPV.
- PAP. Asinsspiediena parametri tiek uzraudzīti no plaušu arteriālās caurulītes: līkne (spiediena līkne), MPAP, SYS_{PAP} un DIA_{PAP}.
- **CVP.** Asinsspiediena parametri tiek uzraudzīti no centrālās venozās caurulītes: līkne (spiediena līkne) un CVP.
- **RVP.** Asinsspiediena parametri tiek uzraudzīti no labajā sirds kambarī izvietotās caurulītes: līkne (spiediena līkne), MRVP, SYS_{RVP}, DIA_{RVP} un PR_{RVP}.

Plūsma. Plūsmas parametri mēra asins plūsmu no sirds kreisās vai labās puses (atkarībā no pievienotās tehnoloģijas), un tie ir: CO (CO, sCO, CO_{20s} vai CO_{RV}), CI (CI, sCI, CI_{20s} vai CI_{RV}), CPO (CPO vai CPO_{RV}), CPI (CPI vai CPI_{RV}), SV (SV, SV_{20s} vai SV_{RV}), SVI (SVI, SVI_{20s} vai SVI_{RV}) un SVV.

Pretestība. Pretestības parametri SVR un SVRI ir saistīti ar sistēmisko pretestību asins plūsmai.

RV funkcija. Šie parametri, proti, EDV, EDVI un RVEF, ir labā sirds kambara (RV) tilpuma indikatori.

Acumen. Šeit norādītie parametri ir pieejami tikai tad, ja ir pievienots Acumen IQ sensors vai manšete. Tie ir HPI, Ea_{dvn} un dP/dt.

Venozā oksimetrija. Venozās oksimetrijas parametri ir venozā oksimetrija (SvO₂/ScvO₂) un GHI (globālās hipoperfūzijas indekss).

Audu oksimetrija. Audu oksimetrijas parametrs ir StO₂, un tam ir pievienota atzīme ar kanālu, kam pievienots sensors. Citi audu oksimetrijas parametri ir tHb un CAI.

	Param	etru iestatīju	mi									_							
				Izvēlieti	ies paran	netru		Iestatīt mērķa rādītājus Trauksmes Signāls: IESLĒGTS				Y skala 0.0-12.0				Delta intervāli Izslēgts			
×	+ SVI	2	5																
×	• tHb			Spie	ediens		Plūsm	a		I				Pretestīb	a		Audu oksi	metrija	
×	+ CO	6.	0	A	ART ►	PAP ►	со	٠	CI ►		со		Swan-Ganz	svr ►	s	VRI ►	StO ₂ A1	StO ₂ A2	
		+		c	CVP ►	RVP ►	sv	•	SVI ►		sCO		A caurulīte				StO ₂ B1	StO ₂ B2	
							СРО) ►	CPI ►		CO _{20s}		1. manšete				tHb	CAI	
							sv	/ ►			CORV								
				Acu	men		RV fur	ıkcij	a					Venozā o	ksime	etrija			
				+	HPI ►	Eadyn ►	ED	/ •	EDVI ►					SvO ₂		GHI			
				di	P/dt ►		RVE	F ►	RV dP/dt										
							RV E	DP											

4-5. attēls. Galveno parametru atlases elementu konfigurēšanas izvēlnes piemērs

- 4. Pieskarieties kādam no pieejamajiem parametriem, lai atlasītu parametra aizstājēju.
- 5. Lai mainītu kāda galvenā parametra secību, pieskarieties parametra elementam un turiet, līdz ap elementu un tendenču diagrammu parādās zila kontūra. Velciet un nometiet parametra elementu un tendenču diagrammu jaunajā vēlamajā vietā, atjauninot galveno parametru secību.

4.3.2.2 Trauksmes/mērķa rādītāju maiņa

Ekrānā **lestatīt mērķa rādītājus** lietotājs var skatīt un iestatīt trauksmes un mērķa vērtības atlasītajam parametram vai iespējot/atspējot trauksmes skaņas signālus un mērķa iestatījumus. Mērķa iestatījumus var pielāgot, izmantojot cipartastatūru vai ritināšanas pogas, ja nepieciešami nelieli pielāgojumi.

- 1. Pieskarieties attēlotā parametra apzīmējumam parametra elementā, lai to mainītu uz citu parametru.
- 2. Parametru konfigurācijas izvēlnē pieskarieties cilnei lestatīt mērķa rādītājus.

Lai iegūtu papildinformāciju, skatiet Trauksmes stāvokļi/mērķi 133. lpp..

Piezīme

Parametra Acumen Hypotension Prediction Index HPI trauksmes robežvērtības un mērķa diapazoni nav pielāgojami.

4.3.2.3 Statusa indikatori

Parametra elementam ir krāsaina kontūra, kas norāda pacienta pašreizējo stāvokli. Krāsa mainās, tiklīdz mainās pacienta stāvoklis. Pasvītrotiem vienumiem elementā var pieskarties, lai piekļūtu konfigurēšanas izvēlnei. Elementos var būt ietverta papildinformācija.

Papildu ikonas

Trauksmes skaņas signāla indikators – trauksmes signāli apturēti

SQI josla (ScvO₂/SvO₂/StO₂ un neinvazīva pārraudzība)

Audu oksimetrijas tehnoloģijas grafiks

Venozās oksimetrijas tehnoloģijas grafiks

ΔctHbΔctHb vērtībaμmol/I(tikai StO2)

SVV filtrēšanas robežvērtības pārsniegšanas indikators

- 1. Tehnoloģija (sensora veids)
- 2. Parametra vērtība
- **3.** trauksmes skaņas signāla indikators trauksmes izslēgtas (apklusinātas)
- 4. CVP vērtība (tikai SVR/SVRI)

- 5. Parametra nosaukums
- 6. Mērvienības
- 7. Mērķa statusa indikators (kontūra)
- 4-6. attēls. Parametra elements

Statusa joslas ziņojumi. Kļūmes, brīdinājuma vai trauksmes stāvokļa gadījumā ziņojums(-i) statusa joslā būs redzams(-i) līdz brīdim, kad stāvoklis būs notīrīts. Ja ir vairāk nekā viena kļūme, brīdinājums vai trauksme, ziņojums ik pēc divām sekundēm cikliski mainās.

Kļūmes stāvokļa gadījumā parametru aprēķini tiek apturēti un katra ietekmētā parametra elements rāda pēdējo vērtību, laiku un datumu, kad parametrs tika mērīts.

Nepārtrauktu izmaiņu intervāls. Šis indikators rāda izmaiņu procentuālo apjomu vai izmaiņu absolūto vērtību, kā arī laika periodu, kurā izmaiņas iestājās, vai atsauces vērtību. Konfigurācijas opcijas skatiet šeit: Delta intervāli/ vidējošana 130. lpp.

SVV filtrēšanas robežvērtības pārsniegšanas indikators. Pārsniegtas SVV filtrēšanas indikatora simbols

ir redzams SVV parametra elementā, ja noteikts augsts sirdsdarbības ātruma mainīguma līmenis, kas var ietekmēt SVV vērtību.

SQI josla. SQI josla **DUM** norāda signāla kvalitāti oksimetrijas vai neinvazīvās pārraudzības laikā. Signāla kvalitātes pamatā ir katetra stāvoklis un novietojums asinsvadā intravaskulārās oksimetrijas gadījumā vai tuvā infrasarkanā spektra gaismas, kas iziet caur audiem, indekss audu oksimetrijas gadījumā. Informāciju par oksimetrijas indikatora līmeņiem skatiet šeit: 11-3. tabula 206. lpp. Neinvazīvas pārraudzības ar pirksta

manšeti gadījumā SQI pamatā ir spiediena līknes signāla kvalitāte no pletismogrāfa sensora uz pirksta manšetes. Informāciju par neinvazīvajiem SQI līmeņiem skatiet šeit: 10-2. tabula 195. lpp.

Mērķa statusa indikatori. Krāsainais indikators katra pārraudzības elementa kontūrā parāda pacienta klīnisko stāvokli. Informāciju par indikatora krāsām un to klīnisko nozīmi skatiet šeit: 6-2. tabula 135. lpp.

Piezīme

Izmantojot parametru Acumen Hypotension Prediction Index, HPI, pacienta statusa indikatori atšķiras no aprakstītajiem. Skatiet Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp., lai uzzinātu informāciju par pacienta statusa indikatoriem, kas pieejami, izmantojot Acumen Hypotension Prediction Index funkciju.

4.3.2.4 CVP ieraksts (tikai SVR/SVRI)

CVP ieraksts ekrānā lietotājs var ievadīt pacienta CVP vērtību, kas tiek izmantota atvasināto parametru SVR/SVRI nepārtrauktam aprēķinam, ja ir pieejami arī MAP dati.

- 1. Pieskarieties jebkurā SVR/SVRI parametra elementa vietā → pieskarieties cilnei CVP ieraksts.
- 2. levadiet CVP vērtību.

Pieskarieties sākuma ikonai

lai atgrieztos galvenajā pārraudzības ekrānā.

Piezīme

3.

CVP ieraksts nav pieejams, ja CVP pārraudzībai tiek izmantots HemoSphere spiedienkabelis un TruWave devējs (sk.: 4-1. tabula 94. lpp. un Spiedienkabeļa monitorings, izmantojot TruWave spiediena devēju 171. lpp.).

Ja nav noteikts neviens avots, CVP noklusējuma vērtība ir 5 mmHg. Ja tiek izmantota noklusējuma CVP vērtība (5 mmHg), periodiski pārskatiet un atjauniniet CVP, izmantojot CVP manuālo ierakstu, jo ir jāveic izmaiņas, kad faktiskā CVP vērtība būtiski atšķiras. Šo noklusējuma vērtību var mainīt. Skat. CVP iestatījumi 139. lpp.

CVP vērtības var iegūt šādi:

- veicot tiešo pārraudzību ar TruWave spiediena devēju un HemoSphere spiedienkabeli (skat. .Spiedienkabeļa monitorings, izmantojot TruWave spiediena devēju 171. lpp.);
- Kā statisku vērtību, kuru lietotājs ievada manuāli (**CVP ieraksts**).

Ja ir pieejami vairāki CVP avoti, monitors nosaka vērtību prioritāti saskaņā ar datiem, kas norādīti šeit: 4-1. tabula 94. lpp.

Prioritāte Izmantotā CVP vērtība					
1	HemoSphere spiedienkabelis un TruWave spiediena devējs				
2	Manuāls CVP ieraksts /noklusējuma CVP vērtība				

4-1. tabula. CVP vērtības prioritātes noteikšana

4.3.3 Ekrāns Dalīt

Ekrāna **Dalīt** pārraudzības skatā parādīts grafisks tendenču pārraudzības skats ekrāna kreisajā pusē un šādu trīs ekrānu izvēle labajā pusē:

- 2. mērķa pozicionēšana
- 3. grafiska tendence ar līdz pat 5 papildu grafisko tendenču parametru diagrammām

4.3.3.1 Fizioloģijas datu ekrāns

Pieskarieties fizioloģijas ikonai ekrāna **Dalīt** labajā pusē, lai skatītu fizioloģijas ekrānu. Noklusējuma skats ir liela mēroga (visa ķermeņa) pacienta grafiskais attēls. Pārraudzītie parametri tiek parādīti miniatūros parametru elementos. Parādītie parametri tiek fiksēti, pamatojoties uz pašlaik pievienotajām tehnoloģijām, un tos nevar atlasīt. Fizioloģijas datu ekrānā redzamais pukstošās sirds attēls ir sirdsdarbības frekvences vizuāls attēlojums un nesniedz precīzu informāciju par sitienu skaitu minūtē.

4-7. attēls. Dalīts ekrāns ar liela mēroga fizioloģijas atlasi

Pieskarieties palielinājuma ikonai, lai skatītu animētu sirds, asins un asinsvadu sistēmas mijiedarbības attēlojumu. Parametru vērtības tiek nepārtraukti rādītas saistībā ar animāciju.

4-8. attēls. Dalīts ekrāns ar palielinātu fizioloģijas atlasi

Tālāk ir norādītas šī ekrāna galvenās funkcijas.

- 1. Šeit tiek rādīti parametra ScvO₂/SvO₂ dati un signāla kvalitātes indikators (SQI), ja ir pievienots HemoSphere oksimetrijas kabelis un tas tiek izmantots aktīvai venozā skābekļa piesātinājuma pārraudzībai.
- Sirds izsviede (CO/CI), sirdsdarbības ātrums (PR) un vidējais arteriālais spiediens (MAP) ir norādīts asinsvadu sistēmas animācijas arteriālajā pusē. Animācijā redzamais asins plūsmas ātrums pielāgosies atkarībā no CO/CI vērtības un šim parametram atlasītajiem zemajiem/augstajiem mērķa diapazoniem.
- 3. Asinsvadu sistēmas animācijas centrā redzamais sistēmiskās asinsvadu pretestības rādījums ir pieejams tad, ja tiek veikta CO/CI pārraudzība un tiek izmantota MAP un CVP analogā spiediena signāla ievade no pievienota pacienta monitora vai diviem HemoSphere spiedienkabeļiem, jo SVR = [(MAP-CVP)/CO]*80. Minimāli invazīvā vai neinvazīvā pārraudzības režīmā ir nepieciešama tikai CVP vērtība, ko var nodrošināt, izmantojot CVP ieraksta ekrānu vai CVP pārraudzību ar HemoSphere spiedienkabeli. Konstatētā asinsvada sašaurinājuma pakāpe tiek pielāgota, pamatojoties uz atvasināto SVR vērtību un šim parametram atlasītajiem augsta/zema mērķa diapazoniem.
- 4. Pievienotajiem audu oksimetrijas sensoriem pievienotā sensora atrašanās vietu krāsa pacienta ķermeņa grafikā atbilst pašreiz pārraudzītajai vērtībai. Vērtībām, kas ietilpt augstākā un zemākā mērķa diapazonā, somatisko sensoru veidi tiek parādīti pelēki, bet galvas smadzeņu sensoru veidi tiek parādīti sārtā krāsā. Vērtībām, kas ir zemākas par zemāko mērķa diapazonu (zema fizioloģiskā trauksme), sensora atrašanās vieta uz ķermeņa tiek parādīta zilā krāsā. Vērtībām, kas ir augstākas par atrašanās vieta uz ķermeņa tiek parādīta zilā krāsā.

Piezīme

Trauksmju/mērķu iestatījumus var pielāgot trauksmes/mērķa rādītāju iestatījumu ekrānā (skat. Pacienta un pielāgotu trauksmes/mērķa iestatījumu ekrāns 135. lpp.) vai atlasot vēlamo parametru kā galveno parametru un piekļūstot elementu konfigurēšanas izvēlnei, pieskaroties parametra elementā.

Piemērs, kas redzams 4-7. att. 95. lpp., atbilst pārraudzībai ar HemoSphere Alta Swan-Ganz pacienta kabeli. Citos pārraudzības režīmos atšķiras izskats un pieejamie parametri. Piemēram, ja pārraudzībai tiek izmantots FloTrac sensora, FloTrac Jr sensora vai Acumen IQ sensora pārraudzības režīms, parametrs HR_{avq}

 (\div)

Physio pārraudzības

tiek aizstāts ar parametru PR, tiek parādīti parametri PPV un SVV (ja tie ir konfigurēti) un netiek rādīti parametri EDV un RVEF.

SVV krituma indikators. SVV krituma indikators ir Frenka-Stārlinga līknes vizuāls attēlojums, kas tiek izmantots sistoles tilpuma variācijas (SVV) vērtības novērtēšanai. Šī informācija tiek parādīta fizioloģijas ekrānā, kamēr tiek izmantots minimāli invazīvas un neinvazīvas pārraudzības režīms. Laternas tipa indikatora krāsa mainās atkarībā no iestatītajiem mērķa diapazoniem. Aptuveni līknes locījuma punktā tiek rādīta SVV vērtība, kas ir 13%.

Lietotājs var iespējot vai atspējot parametra SVV laternas tipa indikatora, parametra vērtības un SVV filtrēšanas robežvērtības pārsniegšanas indikatora rādīšanu iestatījumu izvēlnē Monitora iestatījumi — Monitoringa ekrāni. Noklusējuma iestatījums ir iespējots. Ja ir aktivizēts SVV filtrēšanas robežvērtības pārsniegšanas indikators, sistēmā netiek rādīts SVV indikatora līknes SVV laternas tipa indikators.

4.3.3.2 Mērķa pozicionēšanas ekrāns

Mērķa pozicionēšanas ekrānā lietotājs var monitorēt un izsekot sakarībai starp diviem galvenajiem parametriem,

attiecinot tos vienu pret otru XY plaknē. Pieskarieties mērķa novietošanas ikonai ekrāna labajā pusē, lai parādītu šo diagrammu.

Atsevišķs zaļš aplis apzīmē abu parametru līniju krustpunktu, un tas tiek reāllaikā pārvietots atbilstoši parametru vērtību izmaiņām. Papildu apļi apzīmē iepriekšējās parametru tendences, mazākiem apļiem norādot vecākus datus.

Zaļš mērķa lodziņš apzīmē zaļās parametru mērķa zonas krustošanās punktu. Sarkanās pārtrauktās līnijas apzīmē parametra trauksmes robežvērtības.

Noklusējuma y ass parametrs ir CO, un noklusējuma x ass parametrs ir SV. Ja ir pievienotas vairākas tehnoloģijas, noklusējuma avots ir Swan-Ganz katetra tehnoloģija un pēc tam — FloTrac sensora tehnoloģija.

4-9. attēls. Mērķa pozicionēšanas ekrāns

Šajā ekrānā var veikt turpmāk norādītos pielāgojumus.

- Lai mainītu kādas ass parametru, pieskarieties asij un skatiet tās GPS (mērķa novietošanas ekrāna) izvēlni.
- Lai mainītu laika intervālu starp vēstures tendenču apļiem, pieskarieties tendenču intervāla ikonai,

kas ir redzama ekrānā.

- Lai izslēgtu vēstures tendenču apļu rādīšanu, turpiniet pieskarties tendenču intervāla ikonai, līdz tiek parādīts apzīmējums Izslēgts.
- Lai pielāgotu X vai Y ass skalu, pieskarieties atbilstošajai asij un skatiet tās GPS (mērķa novietošanas ekrāna) izvēlni.
- Ja pašreizējais parametru krustošanās punkts pārvietojas plaknē ārpus X/Y plaknes mēroga, lietotājam tiek parādīts atbilstošs ziņojums.

4.3.4 Kontrolpults ekrāns

Šajā monitoringa ekrānā, kas ir redzams 4-10. att. 99. lpp., tiek attēloti lieli parametru apļi ar monitorēto parametru vērtībām. Kontrolpults parametru apļi grafiski attēlo trauksmes/mērķu diapazonus un vērtības un ar adatas indikatoriem parāda pašreizējā parametra vērtības atrašanās vietu. Līdzīgi standarta parametru elementiem parametra trauksmes gadījumā vērtība aplī mirgo.

4-10. attēls. Kontrolpults uzraudzības ekrāns

Kontrolpults ekrānā redzamajos galveno rādītāju apļos attēlotais mērķa un trauksmju indikators ir kompleksāks nekā standarta parametru elementos. Tiek izmantots pilnais parametru attēlošanas diapazons, lai izveidotu mērinstrumentu, izmantojot grafisko tendenču minimālos un maksimālos iestatījumus. Ar adatas palīdzību apaļajā mērinstrumenta skalā tiek parādīta pašreizējā vērtība. Ja ir iespējoti mērķa diapazoni, tiek izmantota sarkana (trauksmes zona), dzeltena (brīdinājuma mērķa zona) un zaļa (pieņemama mērķa zona) krāsa, lai iezīmētu mērķa un trauksmes reģionus apaļajā mērinstrumentā. Ja mērķa diapazoni nav iespējoti, apaļā mērinstrumenta apgabals ir pelēks, un mērķa un trauksmes indikatori ir noņemti. Vērtības indikatora bultiņa mainās, norādot, ka vērtības atrodas ārpus mērinstrumenta skalas robežām. Pieskarieties pluszīmes ikonai

4.4 HemoSphere Alta uzlabotās monitoringa platformas žestu komandas

HemoSphere Alta uzlabotajai monitoringa platformai ir žestu komandu iespēja, un tā nodrošina skaņas atbildi uz vienkāršām žestu komandām. Ir divas galvenās žestu komandas:

- 1. Trauksmes skaņas signālu izslēgšana
- 2. Pārraudzības skata ekrānu apmaiņa

Lai lietotu žestu komandas, rīkojieties, kā norādīts tālāk.

- lespējojiet iestatījumu Žestu mijiedarbība ekrānā Mijiedarbība. Pieskarieties iestatījumu ikonai → pogai Papildu iestatījumi → Mijiedarbība. Šai izvēlnei jānorāda drošā lietotāja parole. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroles.
 - ″₩ Žesti
- 2. Pieskarieties navigācijas joslas ikonai Žesti Žesti , lai iespējotu kameru.
- 3. Izmantojiet pamodināšanas žestu, paceļot roku kameras līmenī un pavēršot atvērtu plaukstu pret monitoru. Monitors aktivizējas, par ko liecina zila apmale ap ekrānu un zila ikona Žesti navigācijas joslā. Šī funkcija līdzinās balss režīma pamodināšanas stāvoklim. Sadaļā 4-11. att. 101. lpp. skatiet attēlu, kurā parādīta zilā apmale pamodināšanas režīmā.

4. Žestikulējot ar rokām, nododiet vēlamo komandu. Pieejamie žesti parādīti šeit: 4-2. tabula 100. lpp..

4-2. tabula.	. HemoSphere	Alta uzlabotās r	nonitoringa	platformas rol	kas žestu l	komandas
	-					

Komanda	Žests ar roku	Paredzētais rezultāts	
Pamošanās	Atvērta plauksta, vērsta pret monito- ru	Monitors pāriet nomoda stāvoklī un gaida nākamo komandu	
Trauksmes signālu izslēgšana	Pāreja no atvērtas plaukstas uz sa- žņaugtu dūri, kas vērsta pret monitoru	Apturēts skaņas signāls un trauksmes $\sqrt[4]{n}$ Pauzēt	
Pārraudzības skata maiņa	"Pavilkšanas kustība" (no labās uz kreiso pusi)	Pārslēgšanās uz nākamo pieejamo pārraudzības ekrānu. Pieejamās opci- jas ir Tendences, Kontrolpults un Da- līt. Skat. Pārraudzības skati 87. lpp.	

5. Kad ir veikta žesta komanda, klausieties un vērojiet monitoru, lai saņemtu paredzēto rezultātu.

4.5 HemoSphere Alta uzlabotās monitoringa platformas balss komandas

HemoSphere Alta uzlabotajai monitoringa platformai ir balss komandu iespēja, un tā nodrošina skaņas atbildi uz vienkāršām balss komandām.

Piezīme

Balss komandas pieejamas tikai tad, ja sistēmas valoda iestatīta kā Angļu.

Piemēram, lai izslēgtu trauksmes signālus, sakiet: "Hey Alta, silence the alarms." Ir trīs galvenās balss komandas:

- 1. Trauksmes skaņas signālu izslēgšana
- 2. Trauksmes ziņojuma nolasīšana
- 3. Parametra nolasīšana

Lai lietotu balss komandas, rīkojieties, kā norādīts tālāk.

lespējojiet iestatījumu Balss mijiedarbība ekrānā Mijiedarbība. Pieskarieties iestatījumu ikonai → pogai Papildu iestatījumi → Mijiedarbība. Šai izvēlnei jānorāda drošā lietotāja parole. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroles.

- 2. Pieskarieties navigācijas joslas ikonai **Balss** Voice, lai iespējotu mikrofonu.
- 3. Izmantojiet pamodināšanas frāzi jeb "Hey, Alta." Monitors pāriet klausīšanās stāvoklī, par ko liecina zila apmale ap ekrānu un zila ikona **Balss** navigācijas joslā.

4-11. attēls. Balss klausīšanās stāvoklis (tikai angļu valodā)

- 4. Izrunājiet vēlamo komandu. Balss komandu opcijas un varianti norādīti šeit: 4-3. tabula 102. lpp.. Ja nevēlaties izmantot balss komandu, sakiet "Cancel." Monitors iziet no klausīšanās režīma.
- 5. leklausieties, gaidot atbildi. Atskan skaņas signāls, ja komanda bijusi saistīta ar darbību, piemēram, "Alta, silence the alarms", vai arī tiek atskaņota atbilde, ja komanda bijusi saistīta ar informācijas pieprasījumu.
- 6. Ja balss komanda nav atpazīta, monitors atbild ar tekstu "Sorry, what was that?" Tādā gadījumā atkārtojiet pamodināšanas komandu un pieprasījumu vai izmēģiniet kādu no tabulā minētajām alternatīvajām komandu opcijām. Papildu problēmu novēršanas padomi, lai uzlabotu runas uztveršanu:
 - Skaļums: runājiet skaļāk un raidiet balsi uz mikrofona pusi
 - Izteiksmīgums: runājiet skaidri un precīzi izrunājiet katru vārdu
 - Kadence: izmantojiet sarunai atbilstošu runas ātrumu

Ja problēmas joprojām pastāv, pieskarieties skārienekrānam, lai mijiedarbotos ar monitoru.

UZMANĪBU

Nelietojiet balss komandas funkciju citu HemoSphere Alta uzlaboto monitoringa platformu tuvumā. Tādā gadījumā iespējams nejauši aktivizēt balss komandas šiem citiem monitoriem.

Komanda	Komandu opcijas		Paredzētais rezultāts
Trauksmes signālu iz- slēgšana	 acknowledge alarm mute alarms acknowledge mute the alarms acknowledge the acknowledge the acknowledge the acknowledge the quiet alarm acknowledge the quiet alarms acknowledge the quiet alarms alarms alarms alarm extnowled- alarm acknowled- ge alarm pause alarm silence hush 	silence alarm silence alarms silence the alarms pause alarm pause alarms pause the alarm pause the alarms	Apturēts skaņas sig- nāls un trauksmes
Trauksmes ziņojuma nolasīšana	 alarm readout alert readout alert readout tell me the alarms alarm endem give me the alarm endem give the alarm endem read the alarm endem read the alarm endem read the alarm endem readout the endem readout the alarm endem alarm endem what is the alarm endem alarm endem show me the endem show me the endem show me the endem show me the endem show the alarm endem <	what's causing alarm what's causing alarms what's causing alert what's causing the alarm what's causing the alarms what's causing the alert what's causing the alert what's causing on what's happe- ning what's the alarm what's the alarm what's the alarm what's the alarm what's the alarm what's the alarm what's wrong what's your alarm what's your alarm what's your alart why are you alar- ming why is the alarm going off	Atskaņota atbilde ar aktuālās trauksmes no- sacījumiem Ja nav nevienas aktī- vas trauksmes, atbilde ir "There are no active alarms."

4-3. tabula. HemoSphere Alta uzlabotās monitoringa platformas balss komandas (tikai angļu valodā)

Komanda	Komandu opcijas	Paredzētais rezultāts
Parametra nolasīšana	 [parametrs¹] show me [para- number metrs]* what is [viŋas/ viŋa/viŋu/mans] [parametrs] rea- dout [parametrs] rea- trs]* [parametrs] value [parametrs] value [parametrs] value [parametrs] value [parametrs] value [parametrs] value [parametrs] num- [tehnoloģija] [pa- rametrs] readout [tehnoloģija] [pa- rametrs] value [tehnoloģija] [pa- rametrs] readout [tehnoloģija] [pa- rametrs] value [tehnoloģija] [pa- rametrs] show me [viŋas/ what's [tehnolo- viŋa/viŋu/mans] [ja] [parametrs] what's current readout current trs] readout current trs] readout ter/his/ gija] [parametrs] what is [tehnolo- viŋa/viŋu/mans] trs] readout her/his/ tehnoloģija] [pa- rametrs] what is [tehnoloģija] [pa- rametrs] what is current tehnoloģija] [pa- rametrs] readout her/his/ tehnoloģija] [pa- rametrs] readout her/his/ tehnoloģija] [pa- rametrs] readout her/his/ tehnoloģija] [pa- rametrs] readout her/his/ tehnoloģija] [pa- rametrs] re	Atskaņota atbilde ar aktuālajām parametra vērtībām
Parametra vērtību no- lasīšana, kas iegūtas noteiktā laikā pagātnē	 Pievienojot visas tālāk norādītās opcijas, visas komandu opcijas, kas iekļautas sadaļā "Parametra nolasīšana" un atzīmētas ar zvaigznīti (*), var pieprasīt arī noteiktam laikam pagātnē. Piemēram, "Hey Alta, readout [parametrs] [laiks] ago." 	Atskaņota atbilde ar parametra vērtībām noteiktā laikā pagātnē

Komanda	Komandu opcijas	Paredzētais rezultāts
	 readout my/the patient's [para-metrs¹] [laiks] ago readout my/the patient's [tehno-metrs¹] [laiks] ago readout my/the patient's [tehno-metrs] [laiks] ago readout my/the metrs] [laiks] ago metrs] [laiks] ago metrs] [laiks] ago metrs] [laiks] ago show me my/the metrs] [laiks] ago metrs] [laiks] ago 	
Parametra nolasīšana noteiktā laika punktā	 Pievienojot visas tālāk norādītās opcijas, visas komandu opcijas, kas iekļautas sadaļā "Parametra nolasīšana" un atzīmētas ar zvaigznīti (*), var pieprasīt arī noteiktam laika punktam. Piemēram, "Hey Alta, readout [parametrs] at [laiks]." 	Atskaņota atbilde ar parametra vērtībām noteiktā laika punktā
	 readout my/the patient's [para- patient's [tehno- loģija¹] [parame- their [tehnoloģi- ia] at [laiks] readout my/the trs] at [laiks] readout my/the trs] at [laiks] readout my/the trs] at [laiks] patient's [tehno- what was [para- [laiks] loģija] [parame- metrs] [laiks] ago what was [tehno- patient's [para- metrs] at [laiks] what was [tehno- patient's [para- metrs] at [laiks] what was [tehno- patient's [para- metrs] at [laiks] what was [tehno- metrs] at [laiks] what was [tehno- metrs] at [laiks] what was [tehno- metrs] at [laiks] what was my/the loģija] [parame- metrs] at [laiks] what was my/the metrs] at [laiks] 	

4.6 Klīniskie rīki

Klīnisko rīku sānu panelī norādīti rīki, kas saistīti ar pašreiz pievienoto pārraudzības tehnoloģiju. Opcijai Klīniskie rīki var piekļūt, navigācijas joslā pieskaroties ikonai **Klīniskie Rīki**. Dažas klīnisko rīku opcijas ir pieejamas visās pārraudzības tehnoloģijās, un dažas sānu paneļa izvēlnes opcijas ir saistītas ar pašreizējo pārraudzības režīmu (piem., pārraudzībai izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli). Ar noteiktu pārraudzības tehnoloģiju saistītie klīniskie rīki:

- Asinsspiediena kalibrēšana (HemoSphere ClearSight tehnoloģija)
- iCO (HemoSphere Alta Swan-Ganz pacienta kabelis)

Tālāk minētie klīniskie rīki ir pieejami vairākumam pārraudzības tehnoloģiju.

4.6.1 HPI sekundārais ekrāns

Acumen Hypotension Prediction Index (HPI) programmatūru var aktivizēt, ja ir pievienots Acumen IQ sensors vai Acumen IQ manšete un sirds kontrolsensors (HRS). Lai iegūtu papildinformāciju, skatiet Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp..

4.6.2 Atbalstīta šķidrumu pārvaldība

Acumen atbalstītās šķidrumu pārvaldības (AFM) programmatūras funkcija sniedz atbalstu klīnisko lēmumu pieņemšanai par pacienta šķidrumu pārvaldību. Papildinformāciju par šo papildu funkciju skat. Atbalstīta šķidrumu pārvaldība 291. lpp..

4.6.3 Mērķtiecīga terapija

Uzlabotā parametru trasēšana sniedz lietotājam iespēju pārvaldīt galvenos parametrus optimālajā diapazonā. Lai iegūtu papildinformāciju, skatiet Uzlabota parametru trasēšana 327. lpp..

4.6.4 Šķidruma reakcijas tests

Izmantojot opciju **Šķidruma reakcijas tests** (**FRT**), ārstiem ir iespēja izvērtēt pirmsslodzes reakciju. Pirmsslodzes reakcija tiek izvērtēta, izsekojot izmaiņas **SV**, **SVI**, **CO** vai **CI** kā reakciju uz šķidruma pārbaudi (**Pasīva kājas pacelšana** vai **Bolus injekcijas šķidrums**). Lai iegūtu papildinformāciju, skatiet Šķidruma reakcijas tests 331. lpp..

4.6.5 Atvasinātās vērtības aprēķināšana

Darbība **legūtās vērtības aprēķināšana** sniedz lietotājam iespēju aprēķināt noteiktu hemodinamisko parametru vērtības un nodrošina ērtu veidu, kā parādīt šos parametrus vienreizēja aprēķina veikšanai.

Aprēķinātie parametri ir atkarīgi no pārraudzības režīma, un tie var būt šādi: DO₂/DO₂I, ESV/ESVI, SV/SVI, VO₂/VO₂I, VO₂e/VO₂Ie, SVR/SVRI, LVSWI (tikai indeksēti), RVSWI (tikai indeksēti) un PVR/PVRI.

1. Pieskarieties ikonai Klīniskie rīki

→ pogai **legūtās vērtības aprēķināšana**.

2. levadiet nepieciešamās vērtības, lai automātiski sāktu atvasināto vērtību aprēķinu.

3. Pieskarieties pogai **Reģistrēt vērtības**, lai ievadītu vērtības sistēmā, kur tās vēlāk varēs pārskatīt sānu panelī **Notikumi un lejaukšanās**. Skat. Notikumi un lejaukšanās 106. lpp.

4.6.6 Notikumi un lejaukšanās

Sānu panelī **Notikumi un lejaukšanās** ir saraksts, kurā minēti ar parametru saistīti un sistēmas notikumi pārraudzības laikā, un iekļauta arī izvēlne ar iejaukšanās veidiem, detalizēta informācija un piezīmju sadaļa.

Pieskarieties ikonai **Klīniskie rīki ____**→ pogai **N**o

→ pogai Notikumi un lejaukšanās.

4.6.6.1 Notikumu ritināšana

Sānu panelī **Notikumi un lejaukšanās** ir saraksts, kurā minēti ar parametru saistīti un sistēmas notikumi pārraudzības laikā. Tas attiecas arī uz visu kļūmju, trauksmju, fizioloģisko trauksmju vai sistēmas ziņojumu sākuma laiku un ilgumu. Tiek ierakstītas līdz 72 stundām ar notikumiem un trauksmēm, jaunākajam notikumam atrodoties saraksta sākumā.

Notikumu pārskata žurnālā ietverti tālāk uzskaitītie notikumi.

Identificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
AFM	Atmesta analīze	AFM sesija ir aktīva, bet bolus analīze ir noraidīta
	Bolus injekcijas šķidruma {0} ana- līze sākta	AFM sesija ir aktīva, un bolus analīze ir sākta {0} ir skaitlis, kas norāda bolus injekciju esošajā AFM sesijā Piezīme: {0}(skaitlis) ietver tās bolus injekcijas, kas ir sāktas pēc AFM algoritma ieteikuma, un lietotāja norādītās bolus injekcijas
	Bolus injekcijas šķidruma {0} ana- līze pabeigta	AFM sesija ir aktīva, un bolus analīze ir pabeigta {0} ir skaitlis, kas norāda bolus injekciju esošajā AFM sesijā Piezīme: {0}(skaitlis) ietver tās bolus injekcijas, kas ir sāktas pēc AFM algoritma ieteikuma, un lietotāja norādītās bolus injekcijas
	Negatīvi ietekmētas hemodina- miskās vērtības	Ir aktīva AFM sesija, un mērījumi ir ietekmēti
	Bolus injekcijas šķidrums {0} sākts (norāda lietotājs)	AFM sesija ir aktīva, un lietotāja norādītā bolus injekcija ir sākta {0} ir skaitlis, kas norāda bolus injekciju esošajā AFM sesijā Piezīme: {0}(skaitlis) ietver tās bolus injekcijas, kas ir sāktas pēc AFM algoritma ieteikuma, un lietotāja norādītās bolus injekcijas
	Bolus injekcijas šķidrums {0} bei- dzies (norāda lietotājs)	AFM sesija ir aktīva, un lietotāja norādītā bolus injekcija ir pabeigta {0} ir skaitlis, kas norāda bolus injekciju esošajā AFM sesijā Piezīme: {0}(skaitlis) ietver tās bolus injekcijas, kas ir sāktas pēc AFM algoritma ieteikuma, un lietotāja norādītās bolus injekcijas

4-4. tabula. Pārskatītie notikumi

ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
	bolus injekcijas šķidrums {0} leva- dīšana sākta	AFM sesija ir aktīva, un bolus injekcija ir sākta pēc AFM algoritma ieteikuma
		{0} ir skaitlis, kas norāda bolus injekciju esošajā AFM sesijā
		Piezīme: {0}(skaitlis) ietver tās bolus injekcijas, kas ir sāktas pēc AFM algoritma ieteikuma, un lietotāja norādītās bolus injekcijas
	Bolus injekcijas šķidrums {0} bei- dzies	AFM sesija ir aktīva, un AFM algoritma ieteiktā bolus injekcija ir pa- beigta
		{0} ir skaitlis, kas norāda bolus injekciju esošajā AFM sesijā
		Piezīme: {0}(skaitlis) ietver tās bolus injekcijas, kas ir sāktas pēc AFM algoritma ieteikuma, un lietotāja norādītās bolus injekcijas
	leteikta bolus injekcijas šķidruma izmantošana	AFM algoritms iesaka bolus injekciju
	Nav ieteikta bolus injekcijas šķid- ruma izmantošana	AFM algoritms neiesaka bolus injekciju
	šķidruma plūsmas ieteikumi no- raidīti	AFM sesija ir aktīva, bet lietotājs noraida AFM algoritma ieteikto bolus injekciju
	leteikta testa bolus injekcija	AFM algoritms iesaka testa bolus injekciju
	Drīz tiks sasniegts maksimālais iz- meklējuma tilpums	AFM sesija ir aktīva, bet sistēma ir apturējusi AFM bolus injekciju, jo trasētais izmeklējuma tilpums tuvojas maksimālajam izmeklējuma tilpumam
	ir pārsniegts maksimālais izmek- lējuma tilpums	AFM sesija ir aktīva, bet sistēma ir apturējusi AFM bolus injekciju, jo trasētais izmeklējuma tilpums pārsniedz maksimālo izmeklējuma tilpumu
	Mainīti iestatījumi: šķidruma plūs- mas stratēģija — {0}	AFM sesija ir aktīva, un lietotājs maina parametru Šķidruma plūsmas stratēģija, kur {0} ir 10%, 15% vai 20%
	Mainīti iestatījumi: ķirurģijas re- žīms — {0}	AFM sesija ir aktīva, un lietotājs maina parametru Ķirurģijas režīms , kur {0} ir Atvērts vai Laparoskopija/guļus uz vēdera
	Mainīti iestatījumi: maksimālais izmeklējuma tilpums — {0}	AFM sesija ir aktīva, un lietotājs maina parametru Maksimālais Izmeklējuma Tilpums, kur {0} ir jaunais maksimālais izmeklējuma tilpums, izteikts kā ml
	Mainīti iestatījumi: šķidruma plūs- mas veids — {0}	AFM sesija ir aktīva, un lietotājs maina parametru Šķidruma veids , kur {0} ir jaunais atlasītais šķidruma veids
	Mainīti iestatījumi: šķidruma tra- sēšanas režīms — {0}	AFM sesija ir aktīva, un lietotājs maina režīmu Šķidruma trasēšana , kur {0} ir Šķidruma mērītājs vai Manuāls
	Nevar analizēt	AFM sesija ir aktīva, šķidruma bolus injekcija nupat ir pabeigta, un analīze nav pieejama. Šķidruma bolus kritērijus un citus faktorus, kas ietekmē analīzi, skat. Šķidrumu ievadīšanas darbplūsma — manuālais režīms 304. lpp
	Pārtraukts	AFM sesija ir aktīva, bet AFM sesija ir pārtraukta
	Atsākts	AFM sesija ir aktīva, un AFM sesija ir atsākta pēc iepriekšējās pārtrauk- šanas

ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
	Sākts – šķidruma trasēšana: {0}, ķirurģijas režīms: {1}, šķidruma plūsmas stratēģija: {2}	Lietotājs sāk AFM sesiju
		{0} ir šķidruma trasēšanas veids (Manuāls)
		{1} ir pašreizējais ķirurģijas režīms
		{2} ir pašreizējā šķidruma plūsmas stratēģija
	Pabeigts Bolus injekcijas tilpums	Ir apturēta AFM sesija, kur kopējais trasētais tilpums AFM sesijas beigās norādīts sadaļā " Bolus injekcijas tilpums ."
Trauksme	Trauksme: {0} {1} pārmērīga pa- augstināšanās	Rodas trauksme, kur {0} norāda tehnoloģijas veidu (piemēram, Acumen IQ sensors) un {1} norāda parametru, kam radusies trauk-
	Trauksme: {0} {1} pārmērīga paze- mināšanās	sme. Papildinformaciju par trauksmem skat. Trauksmes stavokji/ mērķi 133. lpp
Trauksme	Trauksme: {0}	Rodas trauksme, kur {0} ir trauksmes ziņojums. Sistēmas trauksmju sarakstu skatiet 14. nodaļā, Problēmu novēršana 338. lpp
PO Nulle	Acumen IQ nullēšana — ART	Tiek nullēts pievienotais Acumen IQ sensors, kas pārrauga arteriālo spiedienu
	ClearSight sistēma kalibrēta — HRS	Tiek kalibrēts pievienotais sirds kontrolsensors (HRS)
	Nullēts FloTrac sensors - ART	Tiek nullēts pievienotais FloTrac vai FloTrac Jr sensors, kas pārrauga arteriālo spiedienu
	TruWave nullēts — ART	Pievienots TruWave spiediena devējs tiek nullēts, ja spiediena līkne ir
	TruWave nullēts — CVP	ART, CVP, PAP vai RVP
	TruWave nullēts — PAP	
	TruWave nullēts — RVP	
Asinsspiedie- na kalibrēšana	BP kalibrācija notīrīta (automā- tiski)	Esoša BP kalibrācija ir automātiski notīrīta
	BP kalibrācija notīrīta (manuāli)	Esošu BP kalibrāciju notīra lietotājs
	BP kalibrācija nesekmīga	Sākotnējā kalibrācija nesekmīga, vai sistēma pieprasa atkārtotu ka- librāciju
	BP kalibrācija sekmīga — atsauce: SYS {0}, DIA: {1}	Asinsspiediena kalibrēšana ir veiksmīgi pabeigta, ja {0} ir lietotāja ievadīta atsauces vērtība parametram SYS un {1} ir lietotāja ievadīta vērtība parametram DIA
ClearSight teh- noloģija	1. manšetes pārraudzība	Norādītajā manšetē ir aktīva neinvazīva pārraudzība
	2. manšetes pārraudzība	
	Sākta CO uzraudzība	Lietotājs sāk neinvazīvās sistēmas pārraudzību
	Sākta CO uzraudzība — nav HRS — {0}	Lietotājs sāk neinvazīvās sistēmas pārraudzību bez HRS, kur {0} ir pārbaudītā augstuma nobīde starp pārraudzīto pirkstu un sirdi.
	Apturēta CO uzraudzība	Lietotājs vai sistēma aptur neinvazīvās sistēmas pārraudzību
ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
--	--	--
	Turpina darbu bez HRS	Lietotājs pārslēdzies no neinvazīvas pārraudzības ar HRS uz neinvazī- vu pārraudzību bez HRS
	Turpina darbu ar HRS	Lietotājs pārslēdzies no neinvazīvas pārraudzības bez HRS uz neinva- zīvu pārraudzību ar HRS
	Sasniegts 72 stundu ierobežo- jums	Neinvazīvās sistēmas pārraudzība ir apturēta 72 stundu ierobežoju- ma dēļ
	Sasniegts manšetes 8 stundu ie- robežojums	Pārraudzība ar vienu manšeti ir notikusi 8 stundas pēc kārtas
	Manšetes spiediens samazināts	Notikusi manšetes spiediena atbrīvošana
	Manšetes spiediena atbrīvošana apstiprināta	Lietotājs pieskāries pogai Apstiprināt uznirstošajā paziņojumā " Gai- dāma spiediena mazināšana "
	Manšetes spiediena samazināša- na atlikta	Pārraudzība tiek pagarināta, lai aizkavētu pirksta manšetes spiediena samazināšanu
	Nomainīta manšete — notiek re- startēšana	Pārraudzība vienā pirksta manšetē apturēta un pārslēdzas uz citu pievienotu pirksta manšeti
legūtās vērtī- bas aprēķins	Vērtības reģistrētas	Parametru vērtības tiek ievadītas un reģistrētas atvasināto vērtību aprēķinātājā
A Kļūme	KJūme: {0}	Rodas kļūme, kur {0} ir kļūmes ziņojums. Sistēmas kļūmju sarakstu skatiet 14. nodaļā, Problēmu novēršana 338. lpp
	Bolus injekcijas sākumstāvoklis	Tiek sākts FRT sākumstāvokļa mērījums
ļļ	sakts	(šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
FRT	Bolus injekcijas sākumstāvoklis pabeigts	FRT sākumstāvokļa mērījums tiek pabeigts ar derīgu mērījumu (šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
	Nestabila sākumstāvokļa vērtība	FRT sākumstāvokļa mērījums tiek apturēts ar derīgu mērījumu, taču mērījums ir nestabils
		(šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
	Nepietiekami sākumstāvokļa dati	FRT bāzlīnijas mērījums tiek apturēts un ir nederīgs (šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
	Bolus injekcijas sākumstāvoklis	FRT bāzlīnijas mērījums tiek atcelts
	atcelts	(šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
	Bolus injekcija sākta	FRT pārbaudes mērījums ir sākts
		(šķidruma pārbaudes veids: Bolus injekcijas šķidrums)

ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
	Bolus injekcija atcelta	FRT pārbaudes mērījums tiek atcelts
		(šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
	Nepietiekami dati par bolus injek-	FRT pārbaudes mērījums tiek apturēts un ir nederīgs
	ciju	(šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
	Bolus injekcija pabeigta	FRT pārbaudes mērījums ir pabeigts ar derīgu mērījumu. Tas notiek pārbaudes beigās vai brīdī, kad lietotājs pieskaras pie Beigt Tagad . Tiek parādīti FRT rezultāti, tostarp analizētais parametrs, sākumstā- vokļa vērtība, rezultātā iegūtā (pārbaudes) vērtība un vērtības pro- centuālās izmaiņas.
		(šķidruma pārbaudes veids: Bolus injekcijas šķidrums)
	Pasīvas kājas pacelšanas sākum- stāvoklis sākts	Tiek sākts FRT sākumstāvokļa mērījums
•61		(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
FRT	Pasīvas kājas pacelšanas sākum- stāvoklis pabeigts	FRT sākumstāvokļa mērījums tiek pabeigts ar derīgu mērījumu
		(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
	Nestabila sākumstāvokļa vērtība	FRT sākumstāvokļa mērījums tiek apturēts ar derīgu mērījumu, taču mērījums ir nestabils
		(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
	Nepietiekami sākumstāvokļa dati	FRT bāzlīnijas mērījums tiek apturēts un ir nederīgs
		(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
	Pasīvas kājas pacelšanas sākum-	FRT bāzlīnijas mērījums tiek atcelts
	stavokiis atceits	(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
	Pasīva kājas pacelšana sākta	FRT pārbaudes mērījums ir sākts
		(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
	Pasīva kājas pacelšana atcelta	FRT pārbaudes mērījums tiek atcelts
		(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
	Nepietiekami pasīvas kājas pacel-	FRT pārbaudes mērījums tiek apturēts un ir nederīgs
	šanas datī	(šķidruma pārbaudes veids: Pasīva kājas pacelšana)
	Pasīva kājas pacelšana pabeigta	FRT pārbaudes mērījums ir pabeigts ar derīgu mērījumu. Tas notiek pārbaudes beigās vai brīdī, kad lietotājs pieskaras pie Beigt Tagad . Tiek parādīti FRT rezultāti, tostarp analizētais parametrs, sākumstā- vokļa vērtība, rezultātā iegūtā (pārbaudes) vērtība un vērtības pro- centuālās izmaiņas.
		(sķidruma parbaudes veids: Pasīva kājas pacelšana)
6A	Sākts	lr sākta GDT trasēšanas sesija
S	Pārtraukts	lr pauzēta GDT trasēšanas sesija
GDT	Atsākts	Ir atsākta GDT trasēšanas sesija
	lestatījumi mainīti	GDT trasēšanas sesijas mērķa rādītāji atjaunināti

ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
	Pabeigts	lr apturēta GDT trasēšanas sesija. Tiek parādīti trasētie parametri un atbilstošie Time-in-Target rezultāti.
НРІ	Parādīts brīdinājuma uznirstošais logs	Acumen Hypotension Prediction Index, HPI, trauksme ir aktivizēts. [Tikai HPI]
нрі	Trauksme: {0} — {1}, {2} — {3}	Acumen Hypotension Prediction Index, HPI: tiek aktivizēta šāda trauksme, kur {0} un {2} ir kategorijas; {1} un {3} ir trauksmes paramet- ri, kas saistīti ar šīm kategorijām
	Viedā tendence aktivizēta: izmai- ņu robežvērtība: {0}, izmaiņu in-	Acumen Hypotension Prediction Index, HPI, viedā tendence iniciali- zēta, kur
	tervāls: {1}, pirmsslodze: {2}, pēc-	{0} ir Δ Robežvērtība % izvēlnes iestatījums (10%, 15% vai 20%)
		 ir Δ Laika intervāls izvēlnes iestatījums (5 min, 10 min, 15 min vai 20 min)
		{2} ir pirmsslodzes parametrs (SVV, SVI vai PPV)
		{3} ir pēcslodzes parametrs (SVR)
		{4} ir kontraktilitātes parametrs (CI vai dP/dt)
	Viedās tendences konfigurācija atjaunināta: izmaiņu robežvērtī- ba: {0}, izmaiņu intervāls: {1}, pirmsslodze: {2}, pēcslodze: {3}, kontraktilitāte: {4}	Acumen Hypotension Prediction Index, HPI, viedā tendence atjauni- nāta, kur jaunie iestatījumi ir šādi:
		{0} ir Δ Robežvērtība % izvēlnes iestatījums (10%, 15% vai 20%)
		 ir Δ Laika intervāls izvēlnes iestatījums (5 min, 10 min, 15 min vai 20 min)
		{2} ir pirmsslodzes parametrs (SVV, SVI vai PPV)
		{3} ir pēcslodzes parametrs (SVR)
		{4} ir kontraktilitātes parametrs (CI vai dP/dt)
	Uznirstošais logs iespējots	HPI iestatījumu izvēlnē ieslēgts iestatījums "Vienmēr rādīt HPI un trauksmi"
	Uznirstošais logs atspējots	HPl iestatījumu izvēlnē izslēgts iestatījums "Vienmēr rādīt HPl un trauksmi"
	Viedās trauksmes iespējotas	HPl iestatījumu izvēlnē ieslēgts iestatījums "Viedo tendenču brīdinā- jumi"
	Viedās trauksmes atspējotas	HPI iestatījumu izvēlnē izslēgts iestatījums "Viedo tendenču brīdinā- jumi"
	Mainīta viedo brīdinājumu robež- vērtība: {0} {1} mainīts uz {2}	lr mainīta viedās tendences konfigurētā parametra trauksmes robež- vērtība, kur {0} ir kategorija (pirmsslodze, pēcslodze vai kontraktilitā- te), {1} ir saistītais parametrs un {2} ir jaunā robežvērtība
	Brīdinājums ir apstiprināts*	Acumen Hypotension Prediction Index, HPI, trauksme ir apstiprināts*. [Tikai HPI]
	Brīdinājums ir notīrīts (apstipri- nāts)*	Acumen Hypotension Prediction Index, HPI, trauksme ir notīrīts, jo HPI vērtība bija mazāka par 75 pēdējiem diviem secīgiem 20 sekunžu atjauninājumiem. Pirms trauksmes notīrīšanas HPI augstas vērtības trauksmes uznirstošais logs tika apstiprināts*. [Tikai HPI]

ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
	Brīdinājums ir notīrīts (nav apstip- rināts)*	Acumen Hypotension Prediction Index, HPI, trauksme ir notīrīts, jo HPI vērtība bija mazāka par 75 pēdējiem diviem secīgiem 20 sekunžu atjauninājumiem. Pirms trauksmes notīrīšanas HPI augstas vērtības trauksmes uznirstošais logs netika apstiprināts*. [Tikai HPI]
	lejaukšanās apakšveida darbība	Kad lietotājs reģistrē iejaukšanās datus
		Papildinformāciju par iejaukšanās veidiem skat. Iejaukšanās 114. lpp
lejaukšanās veids		
lejaukšanās atjaunināta	lejaukšanās veids {0} uz {1}	lejaukšanās ir atjaunināta uz parādīto atzīmi, kur {0} ir iepriekšējās iejaukšanās datu lauks un vērtība (veids, laiks, detalizēta informācija vai komentārs) un {1} ir šī datu lauka jaunā vērtība
	CVP ievadīts manuāli	CVP vērtība ir ievadīta manuāli
Pārraudzība	Bezpulsāciju režīms sākts	Aktīvā CO pārraudzība ir apturēta, lai izslēgtu trauksmes signālus un parametru pārraudzību. Asinsspiediena un audu oksimetrijas uzrau- dzība un trauksmes turpinās.
	Bezpulsāciju režīms pabeigts	Normāla CO pārraudzība atsākta. Tika aktivizēti trauksmes skaņas signāli un parametru pārraudzība.
	Sesija sākta	Sākta pacienta pārraudzības sesija
• •	Informācija atjaunināta	Lietotājs ir saglabājis atjauninātu pacienta demogrāfisko informāciju
Pacients	Automātisks restarts	lepriekšējā pacienta sesija automātiski restartēta
	Konstatēts ķīlis	Viedā ķīļa algoritms konstatē ķīlēšanās spiedienu plaušu artērijā
	Aprēķināts	Algoritms pabeidzis PAOP spiediena mērījumu
Viedais ķīlis	Pabeigts	Tiek parādīts PAOP spiediens un ķīlēšanās spiediena kvalitāte
^	Sākta CO uzraudzība	Kad tiek sākta invazīva (Alta Swan-Ganz pacienta kabelis) CO pārrau- dzība
Swan-Ganz	Apturēta CO uzraudzība	Kad lietotājs vai sistēma aptur invazīvu (Alta Swan-Ganz pacienta kabelis) CO pārraudzību
-~-	Sistēmas restarta atkopšana	Pēc izslēgšanas un ieslēgšanas sistēma ir atsākusi pārraudzību, nepa- rādot uzvedni
	Atjaunināšanas laiks	Tiek atjaunināts sistēmas pulkstenis
Sistēma	Datu eksportēšana nesekmīga.	Datu eksportēšanas laikā radās kļūda
	Datu lejupielāde nesekmīga	Datu eksportēšanas laikā radās kļūda
	Klīnisko datu dzēšana nesekmīga	Klīnisko datu dzēšanas procesa laikā radās kļūda
	CVP avots mainīts	Parametra CVP vērtības avots pārslēgts no manuālas ievades uz spie- dienkabeli vai no spiedienkabeļa uz manuālu ievadi
	CO vidējošana atjaunināta — {0}	CO/spiediena vidējošanas laiks mainīts uz norādīto vērtību ({0})

ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
	Sākta tHb pārraudzība	tHb pārraudzības sākšanas laiks
	tHb pārraudzība apturēta	Lietotājs vai sistēma aptur tHb uzraudzību
tHb	tHb kalibrācija sākta	Lietotājs pieskāries pogai Kalibrēšana tHb iestatījumu ekrānā
	tHb kalibrācija atcelta	tHb kalibrācija atcelta vai sasniegts taimauts. Tiek parādīta asins pa- rauga ņemšanas detalizēta informācija.
	tHb asins paraugs paņemts	Lietotājs pieskāries pogai Ņemt paraugu tHb kalibrēšanas vai atkār- totas kalibrēšanas ekrānā. Tiek parādīta asins parauga ņemšanas de- talizēta informācija.
	tHb kalibrācija pabeigta	tHb kalibrācija ir pabeigta un norādīta ievadītā hemoglobīna vērtība
	tHb atkārtota kalibrācija sākta	Lietotājs pieskāries pogai Atkārtota kalibrēšana tHb iestatījumu ekrānā
	tHb atkārtota kalibrācija atcelta	tHb atkārtota kalibrācija atcelta vai sasniegts taimauts
	tHb atkārtota kalibrācija pabeigta	tHb atkārtota kalibrācija ir pabeigta un norādīta ievadītā hemoglobī- na vērtība
	Komplekts sākts	Sākts transpulmonālās termodilūcijas komplekts
	Gatavs	lr noteikts sākumstāvoklis, un sistēma ir gatava atdzesēta bolus šķid- ruma injicēšanai
TPTD	Injektāts {0}	Notiek TPTD bolus šķidruma injekcija, kur {0} ir injektāta (bolus) nu- murs
	Aprēķināts	Ir analizēta TPTD izskalošanas līkne un izskaitļoti parametri
	Bolus injekcija {0} pabeigta	lr pabeigta TPTD bolus šķidruma injekcija, kur {0} ir injektāta (bolus) numurs
	Pārskatīšana pieņemta	Lietotājs pieskāries pogai Apstiprināt TPTD pārskatīšanas panelī
	Komplekts pabeigts	Ir pabeigts TPTD bolus komplekts
	CO/SV parametri kalibrēti	TPTD komplekta vērtības, kas izmantotas Acumen IQ sensora CO un SV parametru kalibrēšanai
	ln vitro — kalibrācija sākta	Ir sākts in vitro kalibrācijas process
	ln vitro — kalibrācijas kļūda	In vitro kalibrācijas procesa gaitā rodas kļūda
Venozā oksi- metrija	ln vitro kalibrācija – Noteikts sie- niņas artefakts vai ķīlis	ln vitro kalibrācijas procesa gaitā sistēma noteikusi sieniņas artefaktu vai ķīli
	ln vitro kalibrācija – Nestabils sig- nāls	In vitro kalibrācijas procesa gaitā konstatēts nestabils signāls
	ln vitro — sākta pārraudzība	Ir sākta venozās oksimetrijas pārraudzība
	ln vitro — kalibrācija pabeigta	In vitro kalibrācija ir sekmīgi pabeigta
	In vivo — kalibrācija sākta	Ir sākts in vivo kalibrācijas process
	ln vivo — paņemtas asinis	Lietotājs pieskāries pogai Ņemt paraugu , lai norādītu asins parauga paņemšanas laiku

ldentificējošā ikona un kate- gorija	Notikuma ziņojums	Laika reģistrēšanas brīdis
	ln vivo — kalibrācijas kļūda	In vivo kalibrācijas procesa gaitā rodas kļūda
	In vivo — sākta pārraudzība	Lietotājs pieskāries pogai Sākt pārraudzību , kad ir ievadīti paņemtā asins parauga laboratorijas rezultāti
	ln vivo — kalibrācija pabeigta	In vivo kalibrācija ir sekmīgi pabeigta
	Datu atsaukšana sekmīga	Ja lietotājs apstiprina atsauktus oksimetrijas kalibrēšanas datus
	Kalibrācija veikta ilgāk nekā pirms 24 stundām	Laiks, kādā tā sasniegusi 24 stundas kopš oksimetrijas kabeļa pēdējās kalibrēšanas
	Nav pieejami kalibrācijas dati	Lietotājs pieskāries pogai Atsaukt oksimetrijas datus , bet pievieno- tajam oksimetrijas kabelim nav pieejamu kalibrācijas datu
	HGB vērtība atjaunināta	Pēc HGB atjaunināšanas procesa tiek pabeigta oksimetrijas kabeļa atjaunināšana.
	Oksimetrijas kabeļa atiestatīšana	Lietotājs pieskāries pogai Oksimetrijas kabeļa atiestatīšana
	Jauns katetrs	Lietotājs pieskāries pogai Jauns katetrs
	Oksimetrija atvienota	lr noteikta oksimetrijas kabeļa atvienošana
·Ö·	Δ ctHb atiestatīšana sekmīga	Lietotājs pieskāries pogai Atiestatīt ΔctHb ekrānā ΔctHb rīki , un ΔctHb sākumstāvoklis ir sekmīgi atiestatīts
Audu oksime-	Sensora atrašanās vieta atjauni- nāta: {0}, {1}	lr atjaunināta audu oksimetrijas sensora atrašanās vieta, kur {0} ir sensora kanāls un {1} ir sensora atrašanās vieta
trija	Pacienta režīms atjaunināts: {0}	lr atjaunināts pacienta pārraudzības režīms, kur {0} ir Pediatrija vai Pieaugušie
	Vidējošana atjaunināta: {0}, {1}	Ir koriģēts vidējošanas laiks, ko izmanto pārraudzīto datu punktu izlī- dzināšanai, kur {0} ir audu oksimetrijas pieslēgvieta (A pieslēgvieta vai B pieslēgvieta) un {1} ir vidējošanas ātrums (Lēns, Normāls vai Ātrs)
	Atgādinājums par ādas pārbaudi	Ekrānā tiek parādīts uznirstošais paziņojums ar atgādinājumu par ādas pārbaudi
	Sensora izslēgšanas pārbaude ap- stiprināta	Lai apstiprinātu uznirstošo logu ar brīdinājumu par sensora izslēgša- nas pārbaudi, pieskarieties pie Apstiprināt
* Anctinrinājumo	tiek reģistrēts, kad lietotājs pieskaras i	iehlu voi pogai UDLaugsta trauksmo uzpirstočajā logā

* Apstiprinājums tiek reģistrēts, kad lietotājs pieskaras jebkurai pogai HPI augsta trauksme uznirstošajā logā.

4.6.6.2 lejaukšanās

Pieskarieties pogai **lejaukšanās** sānu paneļa Notikumi un lejaukšanās apakšā, lai skatītu iejaukšanās veidu izvēlni, detalizētu informāciju un piezīmju sadaļu.

Not	ikumi un Iejaukšanās 🛛 🗸
Jauns	
🔺 Pielāgo	ts notikums
🔺 Inotrop	s
🔺 Vazodil	ators
🔺 Vazopre	esors
🔺 Sarkani	ie asinsķermenīši
🔺 Koloīds	
🔺 Kristalo	bīds
PEEP	
🔺 Inducē	šana √
	Atpakaļ

4-12. attēls. Klīniskie rīki — izvēlne lejaukšanās

Lai ievadītu vienumu Jauna iejaukšanās, veiciet turpmāk norādītas darbības.

- 1. Atlasiet vienuma **lejaukšanās** veidu izvēlnē **Jauns**. Ritiniet uz augšu vai uz leju, lai skatītu visus pieejamos vienuma lejaukšanās veidus. Kategorijas norādītas šeit: 4-5. tabula 116. lpp..
- 2. Atlasiet iejaukšanās detalizēto informāciju. Opcijas: **Neprecizēts**, **Samazināt**, **Palielināt**, **Sākt** vai **Apturēt**. Šķidruma iejaukšanās veidiem opcijas ir Tilpuma apjoms vai Nav norādīts.
- 3. Pieskarieties rūtī Komentāri, lai piekļūtu tastatūrai un ievadītu piezīmes par iejaukšanos (pēc izvēles).
- 4. Pieskarieties pogai **Reģistrēt**, lai ievadītu iejaukšanos.
- 5. lejaukšanās tiks parādīta sānu paneļa **Notikumi un lejaukšanās** augšdaļā. Pieskarieties pogai **Atpakaļ**, lai atgrieztos galvenajā sānu panelī **Notikumi un lejaukšanās**. lejaukšanās tiks reģistrēta arī kopā ar citiem ar parametru saistītiem un sistēmas notikumiem.

Lai rediģētu iepriekš izmantotu vienumu lejaukšanās, veiciet turpmāk minētās darbības.

- 1. Atlasiet iejaukšanos citu ar parametru saistītu un dažādu sistēmas notikumu sarakstā, kas pieejams galvenajā sānu panelī **Notikumi un lejaukšanās**. Iejaukšanās ir apzīmētas ar krāsainu trīsstūri.
- 2. Lai mainītu atlasītās iejaukšanās laiku, pieskarieties pie Laika pielāgošana. Izmantojiet atgriešanās pogu

lai dzēstu laika ievadi, un ievadiet atjaunināto laiku, izmantojot tastatūru. Pieskarieties atzīmes

ikonai

→ pogai **Saglabāt**. Tiek parādīts šāds ziņojums: **"Iejaukšanās atjaunināta"**.

X

lai dzēstu

3. Lai mainītu datumu, pieskarieties pie Koriģēt datumu. Izmantojiet atgriešanās pogu

laika ievadi, un ievadiet atjaunināto laiku, izmantojot tastatūru. Pieskarieties atzīmes ikonai → pogai Saglabāt. Tiek parādīts šāds ziņojums: **"lejaukšanās atjaunināta"**.

4. Lai pievienotu, rediģētu vai noņemtu piezīmi, pieskarieties rūtij **Komentāri**; tādējādi var piekļūt tastatūrai

un atjaunināt piezīmes. Pieskarieties atzīmes ikonai → pogai **Saglabāt**. Tiek parādīts šāds ziņojums: **"Iejaukšanās atjaunināta"**.

lejaukšanās	Indikators	Tips	
lejaukšanās	(zaļš)	Inotrops Vazodilators Vazopresors	
Novietojums	(violets)	Pasīva kājas pacelšana Trendelenburga pozīcija	
Šķidrumi	(zils)	Sarkanie asinsķermenīši Koloīds Kristaloīds Bolus injekcijas šķidrums*	
Notikums	(dzeltens)	PEEP Inducēšana Kanilēšana CPB Krusteniskās spailes Kardioplēģija Sūkņa plūsma Asinsrites apstāšanās Sildīšana Dzesēšana Selektīva smadzeņu perfūzija	
Pielāgots	(pelēks)	Pielāgots notikums	
Sistēmas ģenerēts*	(balta)	BP kalibrēšana* Oksimetrijas kalibrēšana TPTD pabeigts	
* Sistēmas ģenerētie marķieri tiek parādīti tendenču diagrammā un notikumu izvēlnē, bet tos nevar rediģēt iejaukšanās rūts sarakstā "Jaunākie" .			

4-5. tabula. lejaukšanās veidi

Piezīme

lejaukšanās, kas sāktas no izvēlnes Klīniskie rīki, piemēram, **Venozā oksimetrija**, **BP kalibrēšana** vai šķidruma reakcijas testi, ģenerē sistēma, tās nevar ievadīt no iejaukšanās analīzes izvēlnes. Pēc iejaukšanās veida atlasīšanas visos grafikos vizuāli tiek attēloti marķieri iejaukšanās norādīšanai. Pieskarieties šiem marķieriem, lai piekļūtu iejaukšanās sānu panelim un saņemtu papildinformāciju, kā arī uzzinātu, kā rediģēt iepriekšējās iejaukšanās.

4.7 Vairāku sensoru uzlabotās pārraudzības režīms

lespējojot vairāku sensoru uzlaboto pārraudzību, lietotājs var iestatīt viena veida parametrus jebkuram pievienotā sensora avotam. Piemēram, sirds izsviedes (CO) opciju gadījumā tiek parādīts sekundārās atlases cilnes uznirstošais logs ar pieejamiem CO avotiem (A caurulīte [Acumen IQ vai FloTrac sensors], Swan-Ganz katetrs vai manšete [ClearSight vai Acumen IQ]). Skat. 4-5. att. 92. lpp. Lai iespējotu vai atspējotu šo režīmu, rīkojieties, kā norādīts tālāk.

- Pieskarieties iestatījumu ikonai → pogai Papildu iestatījumi un ievadiet Drošs lietotājs paroli. Visas paroles tiek iestatītas sistēmas inicializācijas laikā. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroli.
- 2. Pieskarieties pogai Parametru iestatījumi.
- 3. Pārslēdziet vairāku sensoru/vairāku tehnoloģiju uzlabotās pārraudzības režīma slēdzi ieslēgtā/izslēgtā stāvoklī.

Kad šī funkcija ir izslēgta, līdz ar katru jaunu pacienta sesiju ir jāatlasa pārraudzības režīms. Lai pārslēgtos starp

pārraudzības režīmiem, navigācijas joslā pieskarieties ikonai un atlasiet kādu no tālāk minētajiem vienumiem.

Minimāli invazīvā monitoringa režīma poga. Lietotājs var atlasīt šo pogu minimāli invazīvai hemodinamiskā stāvokļa pārraudzībai, izmantojot spiedienkabeli. Šajā režīmā ir pieejams arī monitorings ar TruWave vienreizlietojamo spiediena devēju.

Invazīva monitoringa režīma poga. Lietotājs var atlasīt šo pogu, lai veiktu invazīvu hemodinamiskā stāvokļa pārraudzību, izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli.

Neinvazīvas pārraudzības režīma poga. Lietotājs var atlasīt šo pogu, lai veiktu neinvazīvu hemodinamiskā stāvokļa pārraudzību, izmantojot ClearSight pārraudzības tehnoloģiju.

Oksimetrijas monitorings ir pieejams visos monitoringa režīmos. Burts "S" (**S**) tiek parādīts grafisko tendenču monitoringa skatā uz x ass vietā, kas atbilst monitoringa režīma pārslēgšanas laikam.

4.8 Statusa josla

Statusa josla tiek parādīta visos aktīvajos pārraudzības ekrānos. Tajā ir redzams lerīces ID, pašreizējais laiks, datums, akumulatora statuss, ekrāna spilgtuma izvēlnes saīsne, trauksmes signāla skaļuma izvēlnes saīsne, palīdzības ekrāna saīsne, notikuma pārskata saīsne un bloķēta ekrāna simbols. Veicot pārraudzību ar HemoSphere Alta Swan-Ganz pacienta kabeli, statusa joslā var tikt atainota asins temperatūra un sirdsdarbības frekvence no analogās ievades. Pārraudzības ar HemoSphere spiedienkabeli laikā statusa joslā var tikt atainots CO/spiediena vidējais laiks un HPI parametra vērtības. Informāciju par Acumen Hypotension Prediction Index (HPI), kas ir papildfunkcija, skatiet šeit: Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp. Veicot pārraudzību ar ClearSight tehnoloģiju, statusa joslā var būt redzamas HPI parametra vērtības un manšetes spiediena atbrīvošanas atskaites pulkstenis. Skat. Manšetes spiediena samazināšanas režīms 197. lpp.. 4-13. att. 119. lpp. parādīts statusa joslas piemērs brīdī, kad pārraudzība veikta ar HemoSphere Alta Swan-Ganz pacienta kabeli un vidējotiem EKG sirdsdarbības frekvences datiem no analogās ievades.

4-13. attēls. Statusa joslas — ikonas

10. Manšetes atbrīvošanas atskaite³

4.8.1 lerīces ID

lerīces ID ir ierīces identifikators. Lai iegūtu papildinformāciju, skatiet lerīces ID atlase 82. lpp..

4.8.2 Statusa joslas ātro iestatījumu izvēlne

Pieskarieties statusa joslas labajā pusē, lai piekļūtu izvēlnei, kurā pieejamas tālāk minētās funkcijas.

- Spilgtums: pieskarieties jebkurā skalas galā, lai pielāgotu ekrāna spilgtumu, vai pārslēdziet slēdzi Automātiski pielāgot tā, lai automātiski pielāgotu ekrāna spilgtumu vides apgaismojumam.
- Trauksme par tilpumu: pieskarieties jebkurā skalas galā, lai pielāgotu trauksmes signāla skalumu Zems līdz Augsts.
- Blokēt: atlasiet laika periodu, kādā ekrānam jāpāriet blokēšanas režīmā. Statusa joslā parādās ekrāna

1 Lai atbloķētu ekrānu, piekļūstiet statusa joslas izvēlnei un pieskarieties pogai bloķēšanas ikona Atbloķējiet ekrānu.

4-14. attēls. Statusa joslas ātro iestatījumu izvēlne

4.8.3 Akumulators

HemoSphere Alta uzlabotā monitoringa platforma nodrošina nepārtrauktu monitoringu elektroenerģijas padeves pārrāvuma laikā. Akumulatora darbības laiks ir parādīts statusa joslā ar simboliem, kas redzami šeit: 4-6. tabula 120. lpp. Lai nodrošinātu, ka akumulatora uzlādes statuss monitorā tiek attēlots pareizi, ieteicams veikt regulāras akumulatora stāvokļa pārbaudes, akumulatoru atjaunojot. Papildinformāciju par akumulatora apkopi un atjaunošanu skatiet šeit: Akumulatora apkope 416. lpp.

4-6. tabı	ula. Akum	ulatora	statuss
-----------	-----------	---------	---------

Akumulatora simbols	Nozīme
	Akumulatora uzlādes līmenis ir 100%.
	Akumulators ir uzlādēts līdz 100% un ir pieslēgts elektroapgādes tīklam (netiek uzlādēts).
	Atlikušais akumulatora uzlādes līmenis ir augstāks nekā 50%.
	Atlikušais akumulatora uzlādes līmenis ir augstāks ne 50%.
	Atlikušais akumulatora uzlādes līmenis ir zemāks nekā 20%.
	Akumulators tiek uzlādēts un ir pieslēgts elektroapgādes tīklam.
	Akumulators ir tukšs.

Akumulatora simbols	Nozīme
	Akumulators nav uzstādīts. Monitors nekonstatē savienojumu ar akumulatoru.

BRĪDINĀJUMS

Strāvas padeves traucējumu gadījumā un akumulatora iztukšošanās gadījumā pārraudzības ierīce tiks kontrolēti izslēgta.

4.8.4 Ekrāna tveršana

Izmantojot momentuzņēmumu ikonu, pašreizējā laikā tiek tverts ekrāna attēls. Lai saglabātu attēlu, vienai no HemoSphere Alta uzlabotā monitora USB pieslēgvietām (aizmugures panelī) ir jāpievieno USB zibatmiņa.

Pieskarieties momentuzņēmuma ikonai statusa joslā

•

4.9 Statusa josla — paziņojumi

Paziņojumu josla ir redzama visu aktīvo pārraudzības ekrānu augšpusē zem statusa joslas. Tajā tiek attēlotas kļūmes, brīdinājumi, trauksmes, daži brīdinājuma ziņojumi un paziņojumi. Ja ir vairāk nekā viena kļūme, brīdinājums vai trauksme, ziņojums ik pēc divām sekundēm pārmijas. Ziņojuma kārtas numurs un kopējais ziņojumu skaits redzams kreisajā pusē. Pieskarieties tam, lai pārslēgtu pašreizējos ziņojumus. Pieskarieties jautājuma zīmes ikonai, lai piekļūtu palīdzības ekrānam un skatītu nefizioloģisku trauksmju ziņojumus.

#1/1 🥐 Spiediens — pieslēgvieta 1 — pievienojiet spiediena se...

4-15. attēls. Statusa josla

4.10 Monitora ekrāna navigācija

Ekrānā ir pieejamas vairākas standarta navigācijas procedūras.

4.10.1 Vertikālā ritināšana

Dažos ekrānos ir vairāk informācijas, nekā vienlaikus iespējams iekļaut ekrānā. Ja pārskata saraksta augšā vai apakšā tiek parādīta vertikāla bultiņa, ar pirkstu ritiniet augšup un lejup sarakstā.

4.10.2 Navigācijas ikonas

Dažas pogas vienmēr veic vienu un to pašu funkciju.

Sākums. Pieskaroties sākuma ikonai, tiek atkal ieslēgts pēdējais skatītais pārraudzības ekrāns un tiek saglabātas visas ekrānā veiktās datu izmaiņas.

Atgriezties. Pieskaroties atgriešanās ikonai, tiek atkal ieslēgts iepriekš skatītais izvēlnes ekrāns un tiek saglabātas visas ekrānā veiktās datu izmaiņas.

leiet. Ievadīšanas ikona sniedz iespēju saglabāt visas ekrānā veiktās datu izmaiņas un atgriezties pārraudzības ekrānā vai atvērt nākamo izvēlnes ekrānu.

Atcelt. Pieskaroties atcelšanas ikonai, visas ievades tiek atmestas.

Dažos ekrānos, piemēram, Pacienta dati ekrānā, atcelšanas pogas nav. Tiklīdz pacienta dati tiek ievadīti, tie tiek saglabāti sistēmā.

Vērtības poga. Dažos ekrānos ir kvadrātveida pogas, tādas, kāda parādīta tālāk. Iespējamas noklusējuma vērtības vai tukši lauki. Pieskarieties šai pogai, lai atvērtu papildtastatūru.

Pārslēgšanas poga. Ja ir pieejamas divas opcijas, piemēram, ieslēgt/izslēgt, tiek parādīta pārslēgšanas poga.

Lai pārslēgtos starp opcijām, pieskarieties pogas pretējā pusē.

Papildtastatūra. Pieskarieties papildtastatūras taustiņiem, lai ievadītu datus skaitļu formā.

- 1. datu tips
- 2. vienības (pārslēdziet, ja atbilst)
- 3. ievadītās vērtības lodziņš
- 4. atcelt

- ievades diapazons (parādīts, ja ievadītā vērtība ir tukša)
- 6. atpakaļatkāpe (izmantojiet, lai dzēstu esošās vērtības)
- 7. decimāldaļskaitlis (ja atbilst)
- 8. ievadīt

Tastatūra. Pieskarieties tastatūras taustiņiem, lai ievadītu datus burtciparu veidā.

- 1. Datu tips
- 2. Atcelt
- 3. Kursors pa kreisi

- 4. Kursors pa labi
- 5. Atpakaļatkāpe (izmantojiet, lai dzēstu esošo tekstu)
- 6. levadīt

Lietotāja interfeisa iestatījumi

Saturs

lestatījumu izvēlnes navigācija un paroles aizsardzība	124
Pacienta dati	127
Monitora vispārīgie iestatījumi	129
Demonstrācijas režīms	130
Delta intervāli/vidējošana	130

5.1 lestatījumu izvēlnes navigācija un paroles aizsardzība

Navigācijas ceļš iestatījumu izvēlnē ir parādīts pašreizējā iestatījumu ekrāna augšdaļā. Piemēram, ceļš "Iestatījumi → Papildu iestatījumi → Pielāgoti trauksmes/mērķa iestatījumi" tiek parādīts tālāk norādītajā veidā.

Lai pārietu atpakaļ uz iestatījumu līmeni Papildu iestatījumi, pieskarieties ikonai Atpakaļ

Divas iestatījumu izvēlnes opcijas ir aizsargātas ar paroli: **Papildu iestatījumi** un **Eksportēt datus**. Šīs pogas ir

, kā parādīts šeit: 5-1. att. 125. lpp..

Iestatījumi		
Iestatījumi		
Spilgtums 80% \$¦: ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ >∳:	Demonstrācijas režīms	🏠 Papildu iestatījumi
Automātiski pielāgot 🗾 🔵	Eksportēt datus	達 Sistēmas statuss
Trauksme par tilpumu Vidēji augsts		
◀ _ = ≡ ≡ ◀≫	Pacienta trauksmes/mērķa ▼ iestatījumi	📐 Swan problēmu novēršana
Indeksētās vērtības 🗾	ClearSight	HemoSphere Remote lietotne
Tendenču mērķa krāsas 🔵 👘 👘		

5-1. attēls. Primāro iestatījumu ekrāns

HemoSphere Alta uzlabotajai monitoringa platformai ir trīs līmeņu paroles aizsardzība.

Līmenis	Nepieciešamais ciparu skaits	Lietotāja apraksts
Galvenais lietotājs	četri līdz septiņi	ārsti
Drošs lietotājs	astoņi	slimnīcas pilnvarots personāls
Edwards lietotājs	mainīga parole	Tikai Edwards iekšējai lietošanai

5-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas paroles līmeņi

Visi šajā rokasgrāmatā aprakstītie iestatījumi un funkcijas, kam nepieciešama parole, ir **Galvenais lietotājs** funkcijas. Sistēmas inicializēšanas laikā, pirmoreiz piekļūstot paroles ekrānam, ir jāatiestata **Galvenais lietotājs** un **Drošs lietotājs** paroles. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroles. Ja desmit reižu tiek ievadīta nepareiza parole, paroles tastatūra tiek bloķēta uz noteiktu laiku. Pārraudzība paliek aktīva. Ja esat aizmirsis paroles, sazinieties ar vietējo Edwards pārstāvi.

Lai piekļūtu opcijas Papildu iestatījumi funkcijām, kas aprakstītas 5-2. tabula 125. lpp., pieskarieties iestatījumu

ikonai → pogai **Papildu iestatījumi**. Visi trauksmju iestatījumi un **Papildu iestatījumi** ir aprakstīti šeit: Papildu iestatījumi 133. lpp..

5-2. tabula. Papildu iestatījumu izvēlnes navigācija un paroles aizsardzība

Atlase papildu iestatījumu izvēl- nē	Atlase apakšizvēlnē	Galvenais lieto- tājs	Drošs lietotājs	Edwards lietotājs
Pielāgoti trauksmes/	mērķa iestatījumi	•	•	•
Parametru iestatījum	ni	•	•	•
CVP		•	•	•
Vispārīgi	Datums un laiks	nav piekļuves	•	•
	Mērvienības	nav piekļuves	•	•

Atlase papildu iestatījumu izvēl- nē	Atlase apakšizvēlnē	Galvenais lieto- tājs	Drošs lietotājs	Edwards lietotājs
	Valoda	nav piekļuves	•	•
	Ekrāna momentuzņēmums	nav piekļuves	•	•
lerīces ID	•	nav piekļuves	•	•
Parole		nav piekļuves	•	•
Mijiedarbība		nav piekļuves	•	•
Programmatūras atj	auninājums	nav piekļuves	•	•
Savienojamība	Wi-Fi	nav piekļuves	•	•
	Seriālā pieslēgvieta	nav piekļuves	•	•
	HemoSphere Remote lietotne	nav piekļuves	•	•
Līdzekļu pārvaldība	•	nav piekļuves	•	•
Audu oksimetrija		nav piekļuves	•	•
AFM		nav piekļuves	•	•
lestatījumu profils		nav piekļuves	•	•
Trauksmes iestatījur	ni	nav piekļuves	•	•
Inženieris ¹		nav piekļuves	•	•
Datu dzēšana ¹		nav piekļuves	•	•
Atjaunot rūpnīcas n	oklusējuma vērtības ¹	nav piekļuves	•	•
¹ Šiem iestatījumiem nepieciešama pārraudzības pārtraukšana.Lai izmantotu opciju Inženieris. Datu dzēšana un Atiaunot				

¹Šiem iestatījumiem nepieciešama pārraudzības pārtraukšana.Lai izmantotu opciju **Inženieris, Datu dzēšana** un **Atjaunot rūpnīcas noklusējuma vērtības**, monitors jāizslēdz un jāieslēdz.

Lai piekļūtu opcijas **Eksportēt datus** funkcijām, kas aprakstītas 5-3. tabula 126. lpp., pieskarieties iestatījumu

ikonai → pogai **Eksportēt datus**. Visi opcijas **Eksportēt datus** iestatījumi ir aprakstīti šeit: Datu eksportēšana un savienojamības iestatījumi 141. lpp..

5-3. tabula. Datu eksportēšanas izvēlnes navigācija un paroles aizsardzība

Atlase datu eksportēšanas izvēlnē	Galvenais lietotājs	Drošs lietotājs	Edwards lietotājs
Izmeklējuma pārskats	•	•	•
Pārraudzības dati	•	•	•
GDT pārskats	•	٠	•
Diagnostikas žurnālfaili	•	•	•
Klīniskie dati	nav piekļuves	•	•

5.1.1 Paroļu maiņa

Lai mainītu paroles, ir nepieciešama **Drošs lietotājs** līmeņa piekļuve. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroli. Lai mainītu paroli, rīkojieties saskaņā ar turpmāk minēto.

- 1. Pieskarieties iestatījumu ikonai
- → pogai **Papildu iestatījumi**.
- 2. levadiet paroli laukā Drošs lietotājs.

- 3. Pieskarieties pogai Parole.
- 4. Abos vērtību lodziņos ievadiet jaunās **Galvenais lietotājs** un/vai **Drošs lietotājs** paroles ciparus, līdz aktivizējas poga **Apstiprināt**.
- 5. Pieskarieties pogai Apstiprināt.

5.2 Pacienta dati

Kad sistēma ir ieslēgta, lietotājs var turpināt iepriekšējā pacienta pārraudzību vai sākt jauna pacienta pārraudzību. Skat. 5-2. att. 127. lpp.

Piezīme

Ja pēdējā pārraudzītā pacienta dati ir vecāki par 12 stundām, vienīgā iespēja ir sākt jauna pacienta datu ievadīšanu.

		SK-19Y1234567	♥ bpm ₰ °C	(•••)	f 19:25:25 18.02.2025
Pacients				CI L/min/m²	
Pacients				EDVI ml/m²	
Pacienta ID Telpa Gulta	a Dzimums Vecums			RVEF % EFU	
	Vīrietis <u>33 g</u> .			SvO₂ %	
Augstums Svars =KVL 191 cm 72.6 kg 2.00	. (DuBois formula) m²				
Lietot pēdējo pacientu					
vai					
Jauns pacients					
Trauksme Pacients Nulle			لَّةً v n ▲ Klīniskie Ekrāns	? Palīdzība	Č Iestatījumi

5-2. attēls. Jauna vai iepriekšējā pacienta ekrāns

5.2.1 Jauns pacients

Sākot jaunu pacientu, visi iepriekšējie dati tiek izdzēsti. Tiek iestatītas brīdinājumu ierobežojumu un nepārtraukto parametru noklusējuma vērtības.

BRĪDINĀJUMS

Sākot jaunu pacienta sesiju, būtu jāpārbauda noklusējuma augstie/zemie fizioloģisko trauksmes signālu diapazoni, lai nodrošinātu, ka tie ir piemēroti attiecīgajam pacientam.

Lietotājs var ievadīt jaunu pacientu sistēmas sākotnējās palaišanas laikā vai sistēmas darbības laikā.

BRĪDINĀJUMS

Izpildiet darbību **Jauns pacients** vai dzēsiet pacienta datu profilu katru reizi, kad HemoSphere Alta uzlabotajai monitoringa platformai tiek pievienots jauns pacients. Pretējā gadījumā iepriekšējo datu attēlojumos var būt redzami iepriekšējā pacienta dati.

1. Pēc monitora ieslēgšanas tiek parādīts jauna vai iepriekšējā pacienta ekrāns (5-2. att. 127. lpp.). Pieskarieties pie **Jauns pacients** un pārejiet pie 2. darbības.

VAI

Pieskarieties pie **Izlaist**, lai sāktu pārraudzību, neievadot pacienta demogrāfiskos datus, un pārejiet pie 12. darbības.

VAI

^{Pacients} un turpiniet ar 2. darbību.

Piezīme

Ja lietotājs izlaiž pacienta demogrāfisko datu ievadi, var pārraudzīt tikai šos ierobežotos parametrus: StO₂, ΔctHb, SYS_{ART}, SYS_{PAP}, DIA_{ART}, DIA_{PAP}, MAP, PR, MPAP un CVP. CCO pārraudzība ar Swan-Ganz katetru ir atspējota. Venozās oksimetrijas kalibrēšana arī nav pieejama.

2. Tiek parādīts ekrāns Pacients. Skat. 5-3. att. 128. lpp.

	SK-19Y1234567 🚺 🛡 bpm 🖇 °C	: 🖃 🔅 🕬 🖬 ^{19:55:41} 18.02:2025
Pacients		CI L/min/m ²
Pacients		EDVI ml/m²
* Vecums * Augstums * Svars		RVEF % EFU
=KVL (DuBois formula) g. cm kg m²		SvO2 %
* Dzimums		
Vīrietis Sieviete		
Pacienta ID Telpa Gulta		
Sākt sesiju Izlaist		
Traukeme Pacients Nulle Säkt	H √ () A Klīniskie Ekrāns	Palīdzība Iestatījumi

5-3. attēls. Jauna pacienta datu ekrāns

- 3. Pieskarieties atzīmes ikonai uz papildtastatūras/tastatūras, lai saglabātu katru pacienta demogrāfisko atlases vērtību un atgrieztos pacienta datu ekrānā.
- 4. Pieskarieties pogai **Pacienta ID** un, izmantojot tastatūru, ievadiet pacienta slimnīcas ID.

- 5. Pieskarieties pogai **Augstums** un, izmantojot tastatūru, ievadiet pacienta auguma garumu. Valodas mērvienību noklusējums redzams tastatūras augšējā labajā stūrī. Pieskarieties tam, lai mainītu mērvienības.
- 6. Pieskarieties pie **Vecums** un, izmantojot tastatūru, ievadiet pacienta vecumu.
- 7. Pieskarieties pie **Svars** un, izmantojot tastatūru, ievadiet pacienta svaru. Valodas mērvienību noklusējums redzams tastatūras augšējā labajā stūrī. Pieskarieties tam, lai mainītu mērvienības.
- 8. Izmantojiet opcijas Dzimums radiopogas un atlasiet Vīrietis vai Sieviete.
- 9. KVL aprēķina pēc DuBois formulas, balstoties uz svaru un auguma garumu.
- 10. Ja vēlaties, aizpildiet laukus Telpa un Gulta par pacientu. Šīs informācijas ievadīšana nav obligāta.
- 11. Pieskarieties pogai Sākt sesiju.

Piezīme

Poga Sākt sesiju ir atspējota, kamēr nav ievadīti visi pacienta dati.

12. Atlasiet attiecīgo pārraudzības režīmu logā **Pārraudzības režīma atlase**. Skat. Vairāku sensoru uzlabotās pārraudzības režīms 117. lpp. Skatiet norādījumus par to, kā sākt pārraudzību ar vajadzīgo hemodinamiskā stāvokļa pārraudzības tehnoloģiju.

VAI

Ja ir iespējots vairāku tehnoloģiju uzlabotās pārraudzības režīms, pārejiet uz pārraudzības iestatīšanu, izmantojot pievienoto pārraudzības tehnoloģiju.

5.2.2 Pacienta uzraudzības turpināšana

Ja iepriekšējā pacienta dati ir jaunāki par 12 stundām, tad, ieslēdzot sistēmu, tiek attēloti pacienta demogrāfiskie dati un pacienta ID. Turpinot iepriekšējā pacienta uzraudzību, tiek ielādēti pacienta dati un tiek izgūti tendenču dati. Tiek attēlots pēdējais skatītais uzraudzības ekrāns. Pieskarieties pie **Lietot pēdējo pacientu**.

5.2.3 Pacienta datu skatīšana

2. Tiek parādīts pašreizējā pacienta datu ekrāns. Ja nepieciešams, pacienta demogrāfisko informāciju var

rediģēt. Izmantojiet papildtastatūras/tastatūras pogu Atpakaļ **kai par kai pašte**, lai dzēstu pašreizējā pacienta datus un ievadītu jaunu informāciju. Pieskarieties pogai **Saglabāt**, lai apstiprinātu izmaiņas.

Pieskarieties sākuma ikonai **kund**, lai atgrieztos pārraudzības ekrānā.

5.3 Monitora vispārīgie iestatījumi

Monitora vispārīgie iestatījumi ietekmē visus ekrānus. Šie iestatījumi ir parādīti iestatījumu ekrāna kreisajā pusē (skat. 5-1. att. 125. lpp.), un tie ir ekrāna spilgtums, trauksmes signāla skaļums, balss skaļums, parametru indeksa vērtības rādīšanas izvēle un mērķu tendences.

Piezīme

1.

3

Ja HemoSphere Alta uzlabotajai monitoringa platformai tiek pārtraukta un atkal atjaunota elektroenerģijas padeve, sistēmas iestatījumi, tai skaitā trauksmes iestatījumi, trauksmes signālu skaļums, mērķa iestatījumi,

uzraudzības ekrāns, parametru konfigurācija, valodas un mērvienību atlase, tiek atjaunoti iepriekšējā konfigurācijā.

5.4 Demonstrācijas režīms

Demonstrācijas režīms tiek izmantots, lai rādītu simulētus pacienta datus, kas palīdz veikt apmācību un demonstrēšanu. Demonstrācijas režīmā tiek rādīti dati no saglabātās kopas un tiek nepārtraukti atkārtoti rādīta iepriekš definēta datu kopa. Režīmā **Demonstrācijas režīms** tiek saglabāta pilnīga HemoSphere Alta uzlabotās monitoringa platformas lietotāja interfeisa funkcionalitāte. Lai demonstrētu atlasītā pārraudzības režīma funkcijas, ir jāievada simulēta pacienta demogrāfiskie dati. Lietotājs var pieskarties vadīklām tā, it kā tiktu veikts pacienta monitorings.

BRĪDINĀJUMS

Pārliecinieties, vai **Demonstrācijas režīms** nav aktivizēts klīniskā vidē, lai simulētos datus kļūdaini neuztvertu par klīniskiem datiem.

Izmantojot **Demonstrācijas režīms**, datu un notikumu tendences netiek attēlotas un tiek saglabātas, līdz tiek turpināta pacienta uzraudzība.

1. Pieskarieties iestatījumu ikonai

→ pogai **Demonstrācijas režīms**.

Piezīme

Kad HemoSphere Alta uzlabotā monitoringa platforma darbojas režīmā **Demonstrācijas režīms**, visi trauksmes skaņas signāli ir atslēgti. Informācijas joslā tiek parādīts karogs "Demonstrācijas režīms", brīdinot lietotāju, ka tiek izmantoti simulēti pacientu dati.

- 2. Apstiprināšanas ekrānā Demonstrācijas režīms pieskarieties pie Jā.
- 3. Pirms pacienta monitoringa ir jārestartē HemoSphere Alta uzlabotā monitoringa platforma.

Jāpārliecinās, ka **Demonstrācijas režīms** nav aktivizēts klīniskā vidē, lai simulētos datus kļūdaini neuztvertu par klīniskiem datiem.

5.4.1 Beigt demonstrācijas režīmu

Lai Demonstrācijas režīms tiktu pabeigts, izslēdziet un ieslēdziet monitoru.

Ja **Demonstrācijas režīms** sesijas laikā ir pievienoti kabeļi, tiek parādīts uznirstošais paziņojums **Beigt demonstrācijas režīmu**. Lai varētu pabeigt demonstrācijas režīmu un atjaunot pārraudzības iespējas, ir jāizslēdz monitors.

5.5 Delta intervāli/vidējošana

Ekrānā **Delta intervāli** lietotājs var atlasīt nepārtrauktu izmaiņu % vai vērtību intervālu. FloTrac sensora vai FloTrac Jr sensora pārraudzības laikā lietotājs var arī mainīt CO/spiediena vidējošanas laiku.

Piezīme

Ja divas minūtes netiks veikta darbība, ekrāns pārslēgsies pārraudzības skatā.

Radiopogas **CO/spiediena vidējais laiks** ir pieejamas tikai ar FloTrac sensoru pārraudzītajiem parametriem.

Pieskarieties jebkurai vietai parametra elementā → cilnei **Delta intervāli**.

5.5.1 Parametru vērtību izmaiņu attēlošana

Galveno parametru vērtību izmaiņas vai vērtību izmaiņas procentos atlasītajā laika diapazonā var tikt parādītas parametra grafiskajā tendenču diagrammā.

- 1. Pārslēdziet slēdzi lespējots ieslēgtā stāvoklī, lai parādītu šo funkciju.
- 2. Sadaļā Metode atlasiet laika periodu, kādam tiek parādīts izmaiņu intervāls: Laiks vai Atsauce.
 - Ja atlasīta opcija Laiks, atlasiet kādu no šīm laika intervāla opcijām:

•	1 min	•	15 min
•	3 min	•	20 min
•	5 min	•	25 min
•	10 min	•	30 min

- Atlasot opciju Atsauce, izmaiņu intervāls tiks aprēķināts no monitoringa sākuma. Šo sākuma vērtību var koriģēt sadaļā Atsauces vērtība.
- 3. Sadaļā Mērītā delta vērtība atlasiet formātu, kādam tiek parādīts izmaiņu intervāls.

5 min

Vērtība Δ. ↓12 Parametra vērtības izmaiņas tiek parādītas kā absolūta vērtība.

```
20 min
```

Procentuāli Δ. ↓1% Parametra vērtības izmaiņas tiek parādītas kā procentuālas izmaiņas.

5.5.2 CO/spiediena vidējošanas laiks — izvēlne tikai FloTrac sensoram un ClearSight manšetei

Šīs izvēlnes opcijas atlase pieejama tikai ar FloTrac sensoru un ClearSight manšeti uzraudzītajiem parametriem. Ir pieejamas šādas intervāla opcijas:

- 5 sek.
- 20 sek. (noklusējuma iestatījums un ieteicamais laika intervāls)
- 5 min

Parametra **CO/spiediena vidējais laiks** atlase ietekmē vidējo laiku, CO rādījuma atjaunināšanas ātrumu un citus papildu parametrus, kamēr darbība notiek minimāli invazīva monitoringa režīmā. Papildinformāciju par to, kuru parametru vidējošana un atjaunināšanas ātrums tiek ietekmēts atkarībā no izvēlnē veiktās atlases, skatiet šeit: 5-4. tabula 131. lpp.

	Parametra atjaunināšanas ātrums		
Atlase izvēlnē CO/spiediena vidējais laiks	5 s*	20 s	5 min*
Sirds izsviede (CO)	2 s	20 s	20 s
Sistoles tilpums (SV)	2 s	20 s	20 s
Sistoliskais spiediens (SYS)	2 s	20 s^	20 s^
Diastoliskais spiediens (DIA)	2 s	20 s^	20 s^
Vidējais arteriālais spiediens (MAP)	2 s	20 s^	20 s^

5-4. tabula. CO/spiediena vidējais laiks un rādījuma atjaunināšanas ātrums

	Parametra atjaunināšanas ātrums		
Atlase izvēlnē CO/spiediena vidējais laiks	5 s*	20 s	5 min*
Sirdsdarbības ātrums (PR)	2 s	20 s^	20 s^
Centrālais venozais spiediens (CVP)	2 s [†]	nav piemērojams [†]	nav piemērojams [†]
Vidējais pulmonālās artērijas spiediens (MPAP)	2 s [†]	nav piemērojams†	nav piemērojams [†]
Sistoles tilpuma variācija (SVV)	20 s**	20 s	20 s
Pulsa spiediena variācija (PPV)	20 s**	20 s	20 s

^{*}Ja Acumen IQ sensors/manšete ir pievienota, visi ar Acumen IQ sensoru/manšeti pārraudzītie parametri būs pieejami tikai ar 20 sekunžu vidējošanas intervālu/20 sekunžu atjaunināšanas ātrumu. Tie ir Acumen parametri: HPI, Ea_{dyn} un dP/dt.

[^]Izmantojot TruWave devēju vai bezpulsāciju režīmu (izņemot PR), ir pieejama tikai 5 sekunžu vidējošana ar 2 sekunžu atjaunināšanas ātrumu.

[†]Tālāk norādīto parametru vidējais laiks vienmēr ir 5 sekundes, un to atjaunināšanas ātrums ir 2 sekundes CVP un MPAP.

**Ja ir atlasīts vidējošanas intervāls, SVV un PPV ir pieejami tikai ar 20 sekunžu vidējošanu un 20 sekunžu atjaunināšanas ātrumu.

Piezīme

Reāllaika asinsspiediena līknei, kas tiek rādīta asinsspiediena līknes ekrānā (skat. Asinsspiediena reāllaika līknes rādīšana 91. lpp.) vai ekrānā Nulle un spiediena līkne (skat. Ekrāns Nulle un spiediena līkne 182. lpp.), atjaunināšanas ātrums vienmēr ir 2 sekundes.

Papildu iestatījumi

Saturs

Trauksmes stāvokļi/mērķi	133
CVP iestatījumi	139
Parametru iestatījumi	

6.1 Trauksmes stāvokļi/mērķi

HemoSphere Alta uzlabotās monitoringa platformas intelektiskajā trauksmes sistēmā ir pieejami divu tālāk norādīto veidu trauksmes stāvokļi.

- Fizioloģiskās trauksmes: šos trauksmes stāvokļus iestata ārsts, un tie norāda augšējo un/vai apakšējo trauksmes diapazonu konfigurētajiem nepārtrauktajiem galvenajiem parametriem.
- Tehniskie trauksmes stāvokļi: šie trauksmes stāvokļi ziņo par ierīces kļūmi vai brīdinājumu.

Fizioloģiskajiem trauksmes stāvokļiem ir vai nu vidēja, vai augsta prioritāte. Aktīvi trauksmes vizuālie un skaņas signāli ir tikai parametriem, kuri redzami uz elementiem (galvenie parametri).

Starp tehniskajiem trauksmes stāvokļiem kļūmēm ir vidēja prioritāte, un saistītā monitoringa darbība tiks apturēta. Brīdinājumiem ir zema prioritāte, tādēļ uzraudzība netiks apturēta.

Visiem trauksmes stāvokļa signāliem statusa joslā tiek parādīts saistīts teksts. Intelektiskā trauksmes sistēma statusa joslā pārmaiņus parāda visu aktīvo trauksmju tekstu. Turklāt trauksmes izraisa vizuālo trauksmes indikatoru rādīšanu, kā tas ir redzams tālāk šeit: 6-1. tabula 133. lpp. Papildinformāciju skatiet šeit: 14-1. tabula 339. lpp.

Trauksmes signālu prio- ritāte	Krāsa	Gaismas veids
Augsts	sarkans	Mirgo (IEDEGAS/NO- DZIEST)
Vidējs	dzeltens	Mirgo (IEDEGAS/NO- DZIEST)
Zema	dzeltens	DEG nepārtraukti

6-1. tabula. Vizuālā trauksmes stāvokļa indikatora krāsas

Vizuāls trauksmes stāvokļa indikators norādīs augstāko aktīvā trauksmes stāvokļa prioritāti. Statusa joslā parādītie trauksmes ziņojumi ir iezīmēti trauksmes prioritātes krāsā, kas norādīta šeit: 6-1. tabula 133. lpp. Tiks atskaņots ar augstākās prioritātes aktīvu trauksmes stāvokli saistīts skaņas signāls. Ja prioritātes līmeņi ir vienādi, fizioloģiskajiem trauksmes stāvokļiem būs augstāka prioritāte nekā kļūmēm un brīdinājumiem. Visi tehniskie trauksmes stāvokļu signāli tiek doti, līdzko trauksmes stāvokli konstatējusi sistēma; starp konstatēšanas brīdi un signāla došanas brīdi nav nekādas aizkaves. Fizioloģisko trauksmes stāvokļu gadījumā aizkave ir laika ilgums, kas nepieciešams nākamā fizioloģiskā parametra aprēķināšanai pēc tam, kad parametrs nepārtraukti piecas sekundes vai ilgāk ir ārpus diapazona.

• HemoSphere Alta Swan-Ganz pacienta kabeļa nepārtrauktais CO un saistītie parametri: atšķiras, taču parasti ir aptuveni 57 sekundes (skat. CO atskaites taimeris 153. lpp.)

- Ar HemoSphere spiedienkabeli mērītais nepārtrauktais parametrs CO un saistītie, ar FloTrac sensoru mērītie parametri: atšķiras atkarībā no atlases CO/spiediena vidējā laika izvēlnē un saistītā atjaunināšanas ātruma (skat. 5-4. tabula 131. lpp.)
- Ar HemoSphere spiedienkabeli mērītie arteriālā asinsspiediena parametri (SYS/DIA/MAP) arteriālā spiediena līknes rādīšanas laikā: 2 sekundes
- Ar HemoSphere spiedienkabeli ar TruWave vienreizlietojamo spiediena devēju mērītie parametri: 2 sekundes
- HemoSphere Alta ClearSight tehnoloģijas nepārtrauktais CO un saistītie hemodinamiskie parametri: 20 sekundes
- HemoSphere Alta ClearSight tehnoloģijas arteriālā asinsspiediena parametri (SYS/DIA/MAP) arteriālā spiediena līknes rādīšanas laikā: 5 sirdspuksti
- Oksimetrija: 2 sekundes

Visi konkrēta pacienta trauksmes stāvokļi tiek reģistrēti un saglabāti, un tiem var piekļūt, izmantojot funkciju Eksportēt datus (skat. Datu eksportēšana 141. lpp.). Funkcijas Eksportēt datus reģistrs tiek dzēsts, kad tiek sākts jauns pacienta ieraksts (skat. Jauns pacients 127. lpp.). Pašreizējā pacienta datiem var piekļūt līdz 12 stundām pēc sistēmas izslēgšanas.

BRĪDINĀJUMS

Nelietojiet trauksmes iestatījumus/sākotnējos iestatījumus, kas atšķiras no iestatījumiem tādā pašā vai līdzīgā aprīkojumā, kas tiek lietots tajā pašā telpā, piemēram, intensīvās terapijas nodaļā vai kardioloģijas operāciju zālē. Nesaskaņotas trauksmes var ietekmēt pacienta drošību.

Pirms sākat jaunu pārraudzības sesiju, pārliecinieties, ka trauksmes iestatījumi/iepriekšējie iestatījumi ir atbilstoši konfigurēti pacientam.

6.1.1 Trauksmes signālu izslēgšana

6.1.1.1 Fizioloģiskie trauksmes stāvokļa signāli

Fizioloģiskos trauksmes stāvokļa signālus var izslēgt tieši pārraudzības ekrānā, pieskaroties trauksmes stāvokļa

signālu izslēgšanas ikonai Trauksme. Fizioloģiskās trauksmes stāvokļa skaņas signālu var apklusināt uz lietotāja izvēlētās trauksmes pārtraukšanas laiku. Šajā trauksmes pārtraukšanas laikā netiks atskaņots neviens fizioloģiskās trauksmes, vidējas vai augstas prioritātes, stāvokļa signāls vai LED vizuālās trauksmes indikators (mirgojošs dzeltens vai sarkans), tostarp attiecībā uz šajā laikā saņemtiem jauniem fizioloģiskās trauksmes pārtraukšanas laikā tiek ģenerēts tehniskas trauksmes stāvokļa signāliem. Ja šajā trauksmes pārtraukšanas laikā trauksmes stāvokļa signālu atskaņošanu. Sistēmas lietotājs var arī manuāli atcelt trauksmes pārtraukšanas periodu, vēlreiz pieskaroties trauksmes stāvokļa skaņas signāla izslēgšanas pogai. Kad trauksmes pārtraukšanas periods pagājis, aktīvo fizioloģiskās trauksmes stāvokļu skaņas signāli tiks atkal atskaņoti.

Informāciju par fizioloģiskās trauksmes prioritātēm skatiet šeit: Trauksmju prioritātes līmeņi 407. lpp.

Piezīme

Var konfigurēt, lai fizioloģiskie parametri nesūtītu trauksmes stāvokļa signālus. Skat. sadaļu Visu mērķu konfigurēšana 138. lpp. un sadaļu Mērķu un trauksmju konfigurēšana vienam parametram 138. lpp..

BRĪDINĀJUMS

Neizslēdziet trauksmes stāvokļu skaņas signālus, ja var tikt apdraudēta pacienta drošība.

6.1.1.2 Tehniskie trauksmes stāvokļi

Skanot tehniskas trauksmes stāvokļa signālam, sistēmas lietotājs var izslēgt signālu (zemas, vidējas un augstas

prioritātes), pieskaroties trauksmes skaņas signālu izslēgšanas ikonai ^{Trauksme}. Vizuālais trauksmes stāvokļa indikators joprojām ir aktīvs. Skaņas signāls paliks izslēgts, ja vien netiks aktivizēts cits tehniskās vai fizioloģiskās trauksmes stāvoklis vai arī neatkārtosies sākotnējais tehniskās trauksmes stāvoklis, atkārtoti iedarbinot signālu.

6.1.2 Trauksmes stāvokļa skaņas signāla skaļuma iestatīšana

Trauksmes signāla skaļuma diapazonam ir 20% iedaļas, sākot ar zemu (20%) un beidzot ar augstu (100%), bet noklusējuma iestatījums ir vidēji augsts (80%). Tas attiecas uz fizioloģiskās trauksmes stāvokļiem, tehniskām kļūmēm un trauksmēm. Trauksmes signāla skaļumu jebkurā laikā var mainīt statusa joslā (skat. Statusa joslas ātro iestatījumu izvēlne 119. lpp.) vai galveno iestatījumu lapā (skat. Monitora vispārīgie iestatījumi 129. lpp.). Trauksmes signāla iestatījumi saglabājas arī pēc monitora izslēgšanas un ieslēgšanas.

BRĪDINĀJUMS

Nepazeminiet brīdinājuma signāla skaļumu līdz tādam līmenim, ka brīdinājumus vairs nevar pienācīgi uzraudzīt. Pretējā gadījumā var rasties situācija, kurā tiek apdraudēta pacienta drošība.

6.1.3 Mērķu iestatīšana

Mērķi ir vizuāli indikatori (laternas), ko iestata ārsts, lai norādītu, vai pacienta stāvoklis atrodas ideālajā mērķa zonā (zaļā), brīdinājuma zonā (dzeltenā) vai trauksmes mērķa zonā (sarkanā). Mērķa krāsas tiek rādītas kā noēnots oreols ap parametra elementu (skatiet 4-6. att. 93. lpp.). Mērķa zonu diapazonu lietošanu ārsts var iespējot vai atspējot. Trauksmes (augsta/zema līmeņa) atšķiras atkarībā no mērķa zonas veidā, kā trauksmes parametra vērtība mirgo un vai tai ir skaņas signāls.

Parametri, kuriem ir iespējama "Trauksme", ir norādīti iestatījumu ekrānā **Pielāgoti trauksmes/mērķa iestatījumi**. Augsta/zema līmeņa trauksmes pēc noklusējuma kļūst par šī parametra sarkanās piesardzības zonas diapazoniem.

Dažiem parametriem, piemēram, HPI algoritma parametriem, NAV spējas iestatīt augstas/zemas vērtības trauksmi. HPI algoritma parametru mērķa rādījumi un diapazons ir aprakstīti šeit: HPI informācijas joslā 246. lpp.

Krāsa	Nozīme
Zaļa	Pieņemams — zaļa mērķa zona apzīmē ārsta iestatīto ideālo diapazonu šim parametram.
Dzeltena	Dzeltena mērķa zona apzīmē brīdinājuma diapazonu un vizuāli norāda, ka pacienta stāvoklis vairs neietilpst ideālajā diapazonā, bet vēl nav sasniedzis ārsta iestatīto trauksmes vai piesardzības diapazonu.
Sarkana	Sarkana trauksmes un/vai mērķa zona uzskatāma par "Trauksme" parametru un ir norādīta ekrānā Pielāgoti trauksmes/mērķa iestatījumi . Augsta/zema līmeņa trauksmes pēc noklusējuma kļūst par šī parametra sarkanās piesardzības zonas diapazonu. Parametri, kurus NEVAR iestatīt augsta/ze- ma līmeņa trauksmei, netiek norādīti ekrānā Pielāgoti trauksmes/mērķa iestatījumi šim paramet- ram, tomēr tiem var iestatīt mērķa diapazonus. Trauksmes un/vai mērķa zonu diapazonus iestata ārsts.
Pelēks	Ja mērķis nav iestatīts, statusa indikators ir pelēks.

6-2. tabula. Mērķa statusa indikatoru krāsas

6.1.4 Pacienta un pielāgotu trauksmes/mērķa iestatījumu ekrāns

Ekrānā **Pacienta trauksmes/mērķa iestatījumi** ārsts var skatīt un iestatīt trauksmes stāvokļus un mērķus katram parametram. Šie iestatījumi ir derīgi tikai pašreizējai pacienta pārraudzības sesijai. Ekrānā **Pacienta trauksmes/mērķa iestatījumi**, kas atrodas galvenajā **lestatījumi** izvēlnē, lietotājs var pielāgot mērķus, iespējot/atspējot trauksmes skaņas signālus un mērķus un konfigurēt noteiktus iestatījumus visos parametros.

Ekrāns Pielāgoti trauksmes/mērķa iestatījumi ir līdzīgs ekrānam Pacienta trauksmes/mērķa iestatījumi, bet šie iestatījumi tiek lietoti vairākām pārraudzības sesijām un izveido monitoram pielāgotu trauksmes/mērķa iestatījumu kopu. Skat. 6-3. tabula 136. lpp., lai uzzinātu par šo divu iestatījumu izvēļņu izceltajām funkcijām.

Uzvedība	Pacienta trauksmes/mērķa iestatījumi	Pielāgoti trauksmes/mērķa iestatījumi
Trauksmes/mērķu konfigurā- cijas iestatījumi	Šajā izvēlnē konfigurētās trauksmes/mērķa vērtības ir paredzētas pašreizējai pacienta pārraudzības sesijai tikai kā Veiktas izmai- ņas iestatījums	Konfigurējiet parametra trauksmes/mērķa vērtības visās pārraudzības sesijās monitorā kā iestatījumu Pielāgotais noklusējums
Indeksēti/neindeksēti para- metri	Indeksētais vai neindeksētais iestatījums nav konfigurējams	lr pieejams pārslēgšanas iestatījums "lesta- tiet rādītājus atbilstoši indeksētām vērtī- bām"
Navigācijas ceļš	lestatījumu ikona → Pacienta trauksmes/mērķa iestatījumi	lestatījumu ikona → poga Papil- du iestatījumi → poga Pielāgoti trauk- smes/mērķa iestatījumi
Parole	Nav aizsargāts ar ieejas kodu	Aizsargāts ar ieejas kodu
Divu minūšu taimauts	Jā	Jā
Konfigurēt visu	Konfigurējiet visus mērķa rādītājus kā ie- slēgtus/izslēgtus, skaņas trauksmes signālus kā ieslēgtus/izslēgtus, Edwards noklusējuma iestatījumus vai pielāgotos noklusējuma ie- statījumus	Atjaunojiet visus pielāgotos noklusējuma iestatījumus uz tikai Edwards noklusējuma iestatījumiem
Parametru secība	Vispirms galvenie parametri, pēc tam ie- priekš definēta secība	lepriekš definēta secība
Kad lietotas izmaiņas	Pašreizējai pārraudzības sesijai	Turpmākām pārraudzības sesijām

6-3.	tabula.	Pacienta/pi	elāgotu tra	uksmes/mēr	ka iestati	jumu ekrāns
					,	

6.1.4.1 Trauksmju/mērķu modificēšana pašreizējai pārraudzības sesijai

Lai skatītu un modificētu parametru trauksmes/mērķa rādītājus tikai pašreizējai pārraudzības sesijai, rīkojieties, kā norādīts tālāk.

1.

- → pogai Pacienta trauksmes/mērķa iestatījumi.
- Pieskarieties iestatījumu ikonai Pieskarieties jebkurai vietai parametra mērka/trauksmes vērtības lodzinā, lai parādītu šīs vērtības 2. papildtastatūru un to attiecīgi pielāgotu. Parametrs tiks atzīmēts ar "Veiktas izmaiņas". Noklusējuma etiķetes skat. 6-4. tabula 136. lpp..
- 3. Pārslēdziet katra atsevišķā parametra slēdzi Mērķis vai Trauksmes signāla apklusināšana, lai izslēgtu šim parametram trauksmes/mērķu vērtības vai trauksmes skaņas signālus.

6-4. tabula. Mērķa noklusējuma vērtības

Noklusējuma nosaukums	Apraksts
Pielāgotais noklusējums	Parametram tika iestatīts pielāgots noklusējuma mērķa diapazons, un parametra mērķa diapazons no šā noklusējuma nav mainīts.
Edwards noklusējums	Parametra mērķa diapazona sākotnējie iestatījumi nav mainīti.

Noklusējuma nosaukums	Apraksts
Veiktas izmaiņas	Parametra mērķa diapazons šim pacientam ir mainīts. Šis ir tikai pacienta līmeņa iestatījums.

Piezīme

Vizuālie un trauksmes skaņas signāli ir piemērojami tikai attēlotajiem parametriem.

Trauksmes/mērķu iestatījumu ekrāniem ir divu minūšu neaktivitātes taimeris, un tie atgriežas galvenajā pārraudzības ekrānā.

Sarkanais, dzeltenais un zaļais diapazona taisnstūris ir fiksētas figūras, un to izmēru/formu nevar mainīt.

6.1.4.2 Trauksmju/mērķu modificēšana visās pārraudzības sesijās

Lai skatītu un modificētu parametru trauksmes/mērķa rādītājus pielāgotajiem noklusējumiem, kas jālieto visās pārraudzības sesijās, rīkojieties, kā norādīts tālāk.

- Pieskarieties iestatījumu ikonai 1.
- → pogai **Papildu iestatījumi** un ievadiet nepieciešamo paroli.
- Pieskarieties pogai Pielāgoti trauksmes/mērķa iestatījumi. 2.
- 3. Izmantojiet pārslēgšanas pogu, lai ieslēgtu opciju "lestatiet rādītājus atbilstoši indeksētām vērtībām". Tādējādi tiek parādīti visi parametri un trauksmes/mērķa vērtības atbilstoši to indeksētajām vērtībām, ja tas atbilst situācijai. Skat. 6-1. att. 137. lpp.

6-1. attēls. Pielāgotu trauksmes/mērķa iestatījumu ekrāns

- Pieskarieties jebkurai vietai parametra trauksmes/mērķa vērtības lodziņā, lai parādītu šīs vērtības 4. papildtastatūru un to attiecīgi pielāgotu. Parametrs tiks atzīmēts ar "Pielāgots". Noklusējuma etiķetes skat. 6-4. tabula 136. lpp.. Pieskarieties pogai Saglabāt izmaiņas, lai saglabātu pielāgotās noklusējuma datu kopas parametru izmaiņas.
- 5. Pārslēdziet katra atseviškā parametra slēdzi **Mērkis**, lai izslēgtu šim parametram trauksmes/mērku vērtības.

6. Pieskarieties pogai Atjaunot Edwards noklusējuma iestatījumus, lai visas konfigurētās noklusējuma vērtības atjaunotu uz Edwards noklusējuma iestatījumiem. Lai apstiprinātu, pieskarieties pie Atjaunot apstiprinājuma uznirstošajā logā. Tiks iespējoti visi mērķi.

Piezīme

Pielāgotie trauksmes/mērķu iestatījumi saglabā konfigurāciju un pēc monitora izslēgšanas un ieslēgšanas paliek tādi paši kā iepriekšējās sesijās.

Aktīvas pacienta pārraudzības laikā konfigurētie noklusējuma iestatījumi netiek lietoti pašreizējai pārraudzības sesijai, bet tiek lietoti turpmākajām pacienta pārraudzības sesijām.

Pielāgotie trauksmes mērķa iestatījumi parametram CPO/CPI ir konfigurējami tikai darbam ar CPO, nevis CPI.

6.1.5 Visu mērķu konfigurēšana

Trauksmes/mērķus var pavisam vienkārši konfigurēt vai mainīt pašreizējai pārraudzības sesijai visus vienlaikus. Ekrānā **Konfigurēt visu** lietotājs var:

- atjaunot visus parametru trauksmes signālus un mērķus uz pielāgotajiem noklusējuma iestatījumiem;
- atjaunot visus parametru trauksmes signālus un mērķus uz Edwards noklusējuma iestatījumiem;
- iespējot vai atspējot fizioloģisko trauksmju skaņas signālus visiem piemērojamiem parametriem;
- iespējot vai atspējot mērķus visiem piemērojamiem parametriem.

- 1. Pieskarieties iestatījumu ikonai → pogai **Pacienta trauksmes/mērķa iestatījumi**→ pogai **Konfigurēt visu**.
- 2. Lai iespējotu vai atspējotu visus fizioloģiskās trauksmes signālus visiem parametriem, pieskarieties pogai **Apklusiniet visus trauksmes signālus** lodziņā **Trauksmes signāls**.
- 3. Lai iespējotu vai atspējotu visus mērķus visiem parametriem, pieskarieties pogai **Visi mērķi** lodziņā **Trauksmes signāls**.
- 4. Lai atjaunotu visus iestatījumus uz pielāgotajiem noklusējuma iestatījumiem (konfigurēti ekrānā Pielāgoti trauksmes/mērķa iestatījumi), atlasiet radiopogu Pielāgotais noklusējums un pieskarieties pogai Atjaunot. Apstiprinājuma uznirstošajā logā tiek parādīts ziņojums "Pieskarieties pie Konfigurēt visu, lai atiestatītu visas pacienta mērķa rādītāju iestatījumu vērtības uz Pielāgots noklusējums". Pieskarieties pie Konfigurēt visu, lai apstiprinātu atjaunošanu.
- 5. Lai visiem iestatījumiem atjaunotu Edwards noklusējuma vērtības, atlasiet radio pogu Edwards noklusējums un pieskarieties pogai Atjaunot. Apstiprinājuma uznirstošajā logā tiek parādīts ziņojums "Pieskarieties pie Konfigurēt visu, lai atiestatītu visas pacienta mērķa rādītāju iestatījumu vērtības uz Edwards noklusējums". Pieskarieties pie Konfigurēt visu, lai apstiprinātu atjaunošanu.

6.1.6 Mērķu un trauksmju konfigurēšana vienam parametram

Ekrāns **lestatīt mērķa rādītājus** ļauj lietotājam iestatīt trauksmes un mērķa vērtības attiecīgajam parametram. Lietotājs arī var iespējot vai atspējot trauksmes skaņas signālus parametru mērķa diapazonos. Pielāgojiet mērķa iestatījumus, izmantojot cipartastatūru vai ritināšanas pogas, ja nepieciešami nelieli pielāgojumi.

- 1. Pieskarieties elementā, lai atvērtu parametru konfigurācijas izvēlni.
- 2. Pieskarieties cilnei lestatīt mērķa rādītājus.
- 3. Lai atspējotu parametra trauksmes signālu, pieskarieties pārslēgšanas slēdzim **Trauksmes signāla apklusināšana**.

Piezīme

Acumen Hypotension Prediction Index, HPI vai globālās hipoperfūzijas indeksa GHI trauksmes robežvērtības nav pielāgojamas. Parametra HPI mērķa rādījumi un diapazons ir aprakstīts šeit: HPI trauksme 245. lpp. Parametra GHI mērķa rādījumi un diapazons ir aprakstīts šeit: GHI trauksme 283. lpp.

- 4. Lai atspējotu parametra vizuālos mērķus, pieskarieties pārslēgšanas slēdzim **Mērķis**. Šī parametra mērķa indikators kļūs pelēks.
- 5. Izmantojiet bultiņas, lai pielāgotu zonas iestatījumus, vai pieskarieties vērtības pogai, lai atvērtu cipartastatūru.

$\widehat{}$	Parametru i	estatījumi				
			Izvēlieties parametru	Iestatīt mērķa rādītājus Trauksmes Signāls: IESLĒGTS	Y skala 0.0-12.0	Delta intervāli Izslēgts
×	CI	3.9				raukamaa siduāla auklusiuāžana
X	SvO₂	74			·	Mērkis
×	SVV	7				,
×	Ea _{dyn}	1.4		60		
X	HPI	15		0.0		
				- 4.0		
				- 2.0	T	
				- 1.0	V A	
				•		
				Atiestatīt nok	lusējuma vērtības	

6-2. attēls. Atsevišķu parametru trauksmju un mērķa rādītāju iestatīšana

6. Lai atjaunotu trauksmes/mērķa vērtības kā Edwards noklusējumu, pieskarieties pogai **Atiestatīt** noklusējuma vērtības.

7. Lai atceltu, pieskarieties iziešanas ikona

BRĪDINĀJUMS

Vizuālie un skaņas fizioloģiskās trauksmes signāli tiek aktivizēti tikai, ja parametrs ir konfigurēts ekrānos kā galvenais parametrs (1.–8. parametrs parametru elementos). Ja parametrs nav atlasīts un attēlots kā galvenais parametrs, skaņas un vizuālie fizioloģisko brīdinājumu signāli šim parametram netiek aktivizēti.

6.2 CVP iestatījumi

CVP vērtības var iegūt šādi:

- Veicot tiešo pārraudzību ar TruWave spiediena devēju un HemoSphere spiedienkabeli (skat. Spiedienkabeļa monitorings, izmantojot TruWave spiediena devēju 171. lpp.)
- kā statisku vērtību, kuru lietotājs ievada manuāli (skat. CVP ieraksts (tikai SVR/SVRI) 94. lpp.)

Ja netiek noteikts vai ievadīts neviens avots, monitors piešķir CVP noklusējuma vērtību. Monitora konfigurētā noklusējuma vērtība tiek izmantota visām pacientu pārraudzības sesijām. Lai mainītu šo noklusējuma CVP veiciet tālāk norādītās darbības.

- 1. Pieskarieties iestatījumu ikonai → pogai **Papildu iestatījumi** un ievadiet nepieciešamo paroli.
- 2. Pieskarieties pogai CVP.
- 3. Pieskarieties noklusējuma CVP vērtības pogai, lai ievadītu CVP vērtību (mmHg).

6.3 Parametru iestatījumi

6.3.1 20 sekunžu plūsmas parametru iestatījumi

Šis parametru iestatījums automātiski pārslēdz 20 sekunžu plūsmas parametru (CO_{20s}, CI_{20s}, SV_{20s}, SVI_{20s}) rādīšanu uz standarta vidējo ekvivalentu (CO, CI, SV un SVI), ja PA spiediena signāls ir slikts. Vairāk informācijas par 20 sekunžu plūsmas parametriem skatiet šeit: 20 sekunžu plūsmas parametri 153. lpp.

- 1. Pieskarieties iestatījumu ikonai → pogai **Papildu iestatījumi** un ievadiet nepieciešamo paroli.
- 2. Pieskarieties pogai Parametru iestatījumi.
- 3. Sadaļā **"20 sekunžu plūsmas parametri"** pieskarieties pārslēgšanas pogai, lai pārslēgtu iestatījumu uz Ieslēgts vai Izslēgts.

Piezīme

1.

20 sekunžu plūsmas parametri ir pieejami, veicot uzraudzību ar HemoSphere Alta Swan-Ganz pacienta kabeli, un PA (plaušu artērijas) spiediena signāls arī tiek uzraudzīts, izmantojot pievienoto HemoSphere spiedienkabeli, TruWave vienreizlietojamo spiediena devēju un CCOmbo V katetru (modeļi 777F8 un 774F75). Turklāt 20 sekunžu plūsmas parametru funkcijai ir jābūt aktivizētai. Lai saņemtu papildinformāciju par šīs uzlabotās funkcijas iespējošanu, sazinieties ar vietējo Edwards pārstāvi.

6.3.2 Vairāku sensoru uzlabotās pārraudzības režīms

lespējojot vairāku sensoru uzlaboto pārraudzību, lietotājs var iestatīt viena veida parametrus jebkuram pievienotā sensora avotam. Piemēram, sirds izsviedes (CO) opciju gadījumā tiek parādīts sekundārās atlases cilnes uznirstošais logs ar pieejamiem CO avotiem (A caurulīte [Acumen IQ vai FloTrac sensors], Swan-Ganz katetrs vai manšete [ClearSight vai Acumen IQ]). Skat. 4-5. att. 92. lpp. Lai iespējotu vai atspējotu šo režīmu, rīkojieties, kā norādīts tālāk.

→ pogai **Papildu iestatījumi** un ievadiet nepieciešamo paroli.

- 2. Pieskarieties pogai Parametru iestatījumi.
- 3. Pārslēdziet vairāku sensoru/**Vairāku tehnoloģiju uzlabotās pārraudzības režīms** slēdzi ieslēgtā/izslēgtā stāvoklī.

Datu eksportēšana un savienojamības iestatījumi

Saturs

Datu eksportēšana	.141
Bezvadu iestatījumi	. 143
HemoSphere attālā savienojamība	144
Kiberdrošība	. 146

7.1 Datu eksportēšana

Ekrānā **Eksportēt datus** ir uzskaitītas vairākas datu eksportēšanas funkcijas, kas pieejamas HemoSphere Alta uzlabotajā monitoringa platformā. Šis ekrāns ir aizsargāts ar paroli. Šajā ekrānā ārsti var eksportēt diagnostikas pārskatus vai pārraudzības datu pārskatus. Pārraudzītos pacienta datus lietotājs, izmantojot ekrānu **Eksportēt datus**, var eksportēt USB ierīcē Windows Excel XML 2007 formātā.

Piezīme

Ja divas minūtes netiks veikta darbība, ekrāns pārslēgsies pārraudzības skatā.

- 1. Pieskarieties iestatījumu ikonai → pogai **Eksportēt datus**.
- 2. Kad tiek parādīta uzvedne, ievadiet paroli. Visas paroles tiek iestatītas sistēmas inicializācijas laikā. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroli.
- 3. Pārliecinieties, ka ir ievietota USB ierīce.
- 4. Izmantojiet izvēles rūtiņas, lai no pieejamajām opcijām atlasītu lejupielādējamo datu veidu veidu var būt Izmeklējuma pārskats, GDT pārskats, Pārraudzības dati vai Diagnostikas žurnālfaili. Tālāk skatiet šo opciju detalizēto informāciju.
- Izmantojiet nolaižamo izvēlni blakus vienumam "Atlasīt lejupielādējamo sesiju", lai atlasītu vienumu Tiešsaistes sesija (pašreizējā sesija) vai jebkuru pārraudzības sesiju no pēdējām 72 stundām.
- 6. Izmantojiet pārslēgšanas pogu **Slēpt pacienta identitāti**, lai anonimizētu pacienta demogrāfiskos datus un izslēgtu tos no datu eksportēšanas.

Piezīme

Ja tiek pārsniegts 4 GB datu apjoms, USB atmiņas ierīcē nevajadzētu izmantot FAT32 formatēšanu.

UZMANĪBU

Lai novērstu inficēšanos ar vīrusu vai ļaunprātīgu programmatūru, pirms pievienošanas veiciet vīrusu skenēšanu ikvienai USB zibatmiņai.

7. Pieskarieties pogai **Lejupielādēt**. Uznirstošajā logā tiek parādīts katra datu eksportam atlasītā vienuma lejupielādes progress.

7.1.1 Pārraudzības dati

Lai izveidotu novēroto pacienta datu izklājlapu, rīkojieties, kā tālāk norādīts.

- 1. Atlasiet lodziņu blakus opcijai Pārraudzības dati
- 2. Sadaļā **Intervāls** atlasiet radiopogu blakus lejupielādējamo datu vēlamajam biežumam. Ja biežums ir mazāks, datu apjoms ir lielāks. Opcijas ir šādas:
 - 20 sekundes (noklusējums)
 - 1 minūte;
 - 5 minūtes
- 3. Izmantojiet pārslēgšanas pogu **Slēpt pacienta identitāti**, lai anonimizētu pacienta demogrāfiskos datus un izslēgtu tos no datu eksportēšanas.
- 4. Pieskarieties pogai Lejupielādēt, lai eksportētu.

Piezīme

Visi konkrēta pacienta trauksmes stāvokļi tiek reģistrēti un saglabāti, un tiem var piekļūt, lejupielādējot Pārraudzības dati. Trauksmes datu reģistrācijas laikā, kad žurnāls kļūst pilns, tiek atmesti vecākie dati. Pārraudzības dati tiek dzēsts, kad tiek sākta jauna pacienta pārraudzība. Pašreizējā pacienta datiem var piekļūt līdz 12 stundām pēc sistēmas izslēgšanas. Šis žurnāls ietver arī datus par trauksmes stāvokļiem ar laika zīmogiem un sistēmas izslēgšanas laiku.

7.1.2 Izmeklējuma pārskats

Lai izveidotu galveno parametru pārskatu PDF formātā, veiciet tālāk norādītās darbības.

1. Atlasiet lodziņu blakus tekstam Izmeklējuma pārskats

- 2. Izmantojiet rediģēšanas ikonu
- 3. Sarakstā atlasiet vēlamos parametrus. Var atlasīt ne vairāk kā desmit parametrus.
- 4. Izmantojiet pārslēgšanas pogu **Slēpt pacienta identitāti**, lai anonimizētu pacienta demogrāfiskos datus un izslēgtu tos no datu eksportēšanas.

, lai skatītu izmeklējuma pārskata parametru atlases izvēlni.

5. Pieskarieties pogai Lejupielādēt, lai eksportētu PDF failu.

7.1.3 GDT pārskats

Lai izveidotu GDT trasēšanas sesiju pārskatu PDF formātā, veiciet tālāk norādītās darbības.

- Atlasiet lodziņu blakus tekstam GDT pārskats 1.
- lai skatītu GDT trasēšanas sesiju sarakstu. 2. Izmantojiet rediģēšanas ikonu
- 3. Sarakstā atlasiet vajadzīgās GDT trasēšanas sesijas. Lai atlasītu vecākas trasēšanas sesijas, ritiniet sarakstu.
- 4. Izmantojiet pārslēgšanas pogu Slēpt pacienta identitāti, lai anonimizētu pacienta demogrāfiskos datus un izslēgtu tos no datu eksportēšanas.
- 5. Pieskarieties pogai Lejupielādēt, lai eksportētu PDF failu.

Piezīme

Neatvienojiet USB ierīci, kamēr nav parādīts ziņojums "Lejupielāde sekmīga".

Ja tiek parādīts ziņojums, ka USB ierīcē nepietiek vietas, ievietojiet citu USB ierīci un atsāciet lejupielādi.

7.1.4 Diagnostikas rādītāju eksportēšana

Visi notikumi, trauksmes un pārraudzības aktivitāte tiek reģistrēti, ja nepieciešami izmeklējumi vai detalizēta informācija problēmu novēršanai. Eksportēšanas opcija Diagnostikas žurnālfaili iestatījumu izvēlnē Eksportēt datus ir pieejama, ja šo informāciju var lejupielādēt diagnostikas nolūkiem. Šo informāciju var pieprasīt Edwards apkopes personāls, lai palīdzētu novērst problēmas. Papildus šajā tehniskās informācijas sadaļā ir sniegta detalizēta pievienoto platformas komponentu programmatūras versijas informācija.

- 1. Pieskarieties iestatījumu ikonai
- 2. levadiet paroli laukā Galvenais lietotājs. Visas paroles tiek iestatītas sistēmas inicializācijas laikā. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroli.

→ pogai **Eksportēt datus**.

- Atlasiet lodziņu blakus opcijai Diagnostikas žurnālfaili 3.
- levietojiet Edwards apstiprinātu USB zibatminas disku vienā no pieejamajiem monitora USB portiem. 4.
- Pieskarieties pie Lejupielādēt un uzgaidiet, līdz diagnostikas datu eksportēšana ir pabeigta, kā norādīts 5. ekrānā.

Diagnostikas dati USB zibatmiņas diskā tiks ievietoti mapē, kas apzīmēta ar monitora sērijas numuru.

7.2 Bezvadu iestatījumi

HemoSphere Alta monitoru var savienot ar pieejamiem bezvadu tīkliem. Lai uzzinātu informāciju par savienojuma izveidi ar bezvadu tīklu, sazinieties ar vietējo Edwards pārstāvi.

Wi-Fi savienojuma statuss norādīts informācijas joslā ar simboliem, kas redzami šeit: 7-1. tabula 144. lpp.

Wi-Fi simbols	Nozīme
(?	ļoti spēcīgs signāls
	vidēji spēcīgs signāls
	vājš signāls
	ļoti vājš signāls
(((-	signāla nav
1.	nav savienojuma

7-1. tabula. Wi-Fi savienojuma statuss

7.3 HemoSphere attālā savienojamība

HemoSphere Alta uzlabotā monitoringa platforma var veidot interfeisu ar HemoSphere Remote tīmekļa lietotni, lai skatītu jebkura pievienotā monitora reāllaika straumētos datus aktivizētā vietā. HemoSphere attālajam starpniekserverim jābūt pareizi instalētam un uzstādītam, pirms to var savienot pārī ar HemoSphere Alta uzlaboto monitoringa platformu. Ja jums ir jautājumi par HemoSphere Remote servera uzstādīšanu savā iestādē, sazinieties ar Edwards pārstāvi. Lai iegūtu papildinformāciju, sazinieties ar vietējo Edwards pārstāvi.

7.3.1 HemoSphere Remote tīmekļa lietotne

HemoSphere Remote tīmekļa lietotne paredzēta datu rādījuma nodrošināšanai no pievienotā HemoSphere Alta uzlabotā monitora vai monitoriem saderīgā tīmekļa pārlūkā. Tā veicina attālu informācijas rādījumu no pievienotā(-ajiem) HemoSphere Alta monitora(-iem) norādītā fiziskā zonā (piem., slimnīcas tīklā), kur lietotājs var piekļūt savienotā monitora reāllaika rādījumiem un veikt neatkarīgu pārskatīšanu. Pacientu pārraudzības sesiju reāllaika straumēšanā parādīts, kas tiek skatīts monitorā, tostarp hemodinamiskie parametri un saistītie dati, piemēram, trauksmes paziņojumi un parametra spiediena līknes dati. HemoSphere Remote tīmekļa lietotne ir izstrādāta lietotāju ērtībām un nekontrolē pievienoto HemoSphere Alta monitoru, kā arī nemaina monitora nodrošinātos datus.

Ja kādā brīdī monitorā tiek skatīta aizsargāta informācija par veselību vai pacienta demogrāfiskā informācija, šī informācija netiek pārsūtīta uz HemoSphere Remote lietotni. Papildinformāciju par HemoSphere Remote tīmekļa lietotni lūdziet Edwards pārstāvim.

7.3.2 HemoSphere Remote pāra savienojuma izveide

HemoSphere Alta uzlabotajai monitoringa platformai jāizveido savienojums pārī ar HemoSphere Remote serveri, lai iespējotu HemoSphere Remote savienojamību.

- Pieskarieties iestatījumu ikonai → pogai Papildu iestatījumi un ievadiet Drošs lietotājs paroli. Visas paroles tiek iestatītas sistēmas inicializācijas laikā. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroli.
- 2. Pieskarieties pogai **Savienojamība** → pogai **HemoSphere Remote**. Cilnē Savienošana pārī tiek parādīts pašreizējais savienojuma statuss.
- 3. Importējiet servera un klienta sertifikātus, izmantojot cilnes Servera sertifikāti un Klienta sertifikāti.
- 4. levadiet HemoSphere Remote lietotnes parametrus **Resursdatora nosaukums** un **Pieslēgvieta**. Pieskarieties pogai **Pievienot**.
- 5. Kad savienošana pārī ir veiksmīgi pabeigta, HemoSphere Remote savienojuma ekrānā un informācijas joslā

ir redzama zaļa bultiņa un monitora simbols **eta k**. Informāciju par iespējamu savienošanas problēmu novēršanu skatiet šeit: HemoSphere Remote lietotnes savienojamības kļūdas 346. lpp.

HemoSphere Remote lietotnes savienojamības statuss norādīts informācijas joslā ar simboliem, kas redzami šeit: 7-2. tabula 146. lpp..

Lai saņemtu palīdzību saistībā ar šo procesu, sazinieties ar Edwards pārstāvi.

Informācijas joslas sim- bols	Savienojuma statuss	Nozīme
nav simbola	Nav savienoti pārī	HemoSphere Alta uzlabotajai monitoringa platformai nav izveidots savienojums pārī ar HemoSphere Remote lietotnes serveri
	Pievienots	HemoSphere Alta uzlabotajai monitoringa platformai ir sekmīgi izveidots savienojums ar HemoSphere Remote lietotnes serveri
ţ	Kļūda	Mēģinot savienot HemoSphere Alta uzlaboto monitoringa platfor- mu pārī ar HemoSphere Remote lietotni vai vēlāk, radās savienoju- ma kļūda
	Nav savienots	lepriekš pievienots HemoSphere Remote lietotnes serveris ir atvie- nots

7-2. tabula. HemoSphere Remote li	ietotnes savienojamības statuss
-----------------------------------	---------------------------------

7.3.3 Fizioloģiskās trauksmes un ierīces kļūmes

HemoSphere Alta uzlabotā monitoringa platforma nosūta pašlaik parādītās fizioloģiskās trauksmes un ierīces kļūmes uz pievienoto HemoSphere Remote lietotni. Visas trauksmes un mērķa iestatījumi tiek konfigurēti HemoSphere Alta uzlabotajā monitoringa platformā.

BRĪDINĀJUMS

Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu kā dalītās signalizācijas sistēmas komponentu. HemoSphere Alta uzlabotā monitoringa platforma nav saderīga ar attālajām signalizācijas uzraudzības/ pārvaldības sistēmām. Dati tiek reģistrēti un pārraidīti tikai ar nolūku veikt diagrammu veidošanu.

7.4 Kiberdrošība

Šajā nodaļā ir aprakstīti veidi, kādos pacienta datus var pārsūtīt uz HemoSphere Alta uzlaboto monitoringa platformu un no tās. Ņemiet vērā, ka ikvienai iestādei, kurā tiek izmantota HemoSphere Alta uzlabotā monitoringa platforma, ir jānodrošina pacientu personiskās informācijas konfidencialitāte saskaņā ar valsts tiesību aktiem un atbilstoši iestādes politikai saistībā ar šādas informācijas pārvaldību. Darbības, ko var veikt šīs informācijas aizsardzībai un vispārējai HemoSphere Alta uzlabotās monitoringa platformas drošībai, ir šādas.

- **Fiziskā piekļuve**: nodrošiniet, lai HemoSphere Alta uzlaboto monitoringa platformu lietotu tikai pilnvaroti lietotāji. HemoSphere Alta uzlabotajai monitoringa platformai ir paroles aizsardzība atsevišķiem konfigurēšanas ekrāniem. Paroles ir jāaizsargā. Lai iegūtu papildinformāciju, skatiet lestatījumu izvēlnes navigācija un paroles aizsardzība 124. lpp.
- Aktīvā lietošana: monitora lietotājiem ir jāveic nepieciešamie pasākumi, lai ierobežotu pacientu datu glabāšanu. Pacienta dati ir jādzēš no monitora, tiklīdz pacients ir aizvests un pacienta uzraudzība ir beigusies.
- **Tīkla drošība**: iestādei ir jāveic nepieciešamie pasākumi, lai nodrošinātu visu to koplietojamo tīklu drošību, kam monitors var tikt pievienots.
- lerīces drošība: lietotājiem jāizmanto tikai Edwards apstiprināti piederumi. Turklāt jānodrošina, lai nevienā pievienotajā ierīcē nebūtu ļaunprogrammatūras.

Jebkura HemoSphere Alta uzlabotās monitoringa platformas interfeisa lietošana tādiem mērķiem, kam tas nav paredzēts, rada kiberdrošības apdraudējumu. HemoSphere Alta uzlabotās monitoringa platformas savienojumi nav paredzēti citu ierīču darbību vadīšanai. Visi pieejamie interfeisi ir parādīti šeit: HemoSphere Alta uzlabotās monitoringa platformas savienojumu pieslēgvietas 74. lpp.; šo interfeisu specifikācijas ir uzskaitītas šeit: A-5. tabula 383. lpp.

7.4.1 Kiberdrošības atjauninājumi

Ja HemoSphere Alta monitoram nepieciešams kiberdrošības atjauninājums, Edwards laiž klajā un nodrošina ārkārtas ielāpus klientiem 60 dienu laikā pēc kiberdrošības incidenta identificēšanas un kiberdrošības ielāpus 120 dienu laikā pēc kiberdrošības incidenta identificēšanas. Visas pārējās ievainojamības tiek risinātas regulārajos atjauninājumos, un par tām tiek paziņots klientiem pēc pieprasījuma. Lai uzturētu ierīces drošību, ieteicams ieviest kiberdrošības vadības pasākumus, piemēram (bet ne tikai), iekšējās stiprināšanas metodes, lomu piekļuves vadību (role-based access control — RBAC) un HemoSphere Alta monitora pievienošanu apakštīklam, kas atvēlēts medicīniskajām ierīcēm. Lai saņemtu papildu ieteikumus par ierīču drošības uzturēšanu, sazinieties ar vietējo Edwards pārstāvi vai Edwards tehniskā atbalsta dienestu.

7.4.2 levainojamības pārvaldība

Edwards regulāri veic monitora ievainojamības pārbaudes, lai nodrošinātu, ka HemoSphere Alta monitora programmatūra joprojām ir droša. Ja tiek atklāta kritiska un/vai īpaši izmantojama ievainojamība, Edwards tiešā veidā informē klientus, 30 dienu laikā nosūtot e-pasta ziņojumu, un attiecīgā gadījumā tiek nodrošināts ielāps. Klienti var arī piekļūt Edwards produktu drošības vietnei https://www.edwards.com/healthcare-professionals/ products-services/support/product-security, lai pārskatītu kiberdrošības biļetenus. Lai saņemtu papildu palīdzību, sazinieties ar vietējo Edwards pārstāvi vai Edwards tehniskā atbalsta dienestu.

7.4.3 Reakcija uz kiberdrošības incidentu

Ja noticis kiberdrošības incidents vai radušās aizdomas par kiberdrošības incidentu, kas ir ietekmējis HemoSphere Alta monitoru, sazinieties ar vietējo Edwards pārstāvi vai Edwards tehniskā atbalsta dienestu. Ieteicams ieviest iekšējo plānu reaģēšanai uz kiberdrošības incidentiem, kurā iekļauta (bet ne tikai) politika reaģēšanai uz incidentu, reaģēšanas procedūras pēc incidentiem, organizācijas īstermiņa un ilgtermiņa mērķi un rādītāji, kas ļauj mērīt plāna sekmīgumu. Šīm darbībām līdz ar Edwards sniegtajiem ieteikumiem par ietekmes mazināšanu vajadzētu panākt, ka produktu atkal var droši lietot.

7.4.4 HIPAA

1996. gada likumā par veselības apdrošināšanas informāciju (The Health Insurance Portability and Accountability Act of 1996 — HIPAA), ko ieviesa ASV Veselības ministrija, minēti svarīgi standarti personu identificējošas medicīnas informācijas aizsardzībai. Ja piemērojami, šie standarti ir jāievēro monitora lietošanas laikā.

HemoSphere Alta Swan-Ganz pārraudzība

Saturs

HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana	.148
Nepārtraukta sirds izsviede	. 150
Intermitējoša sirds izsviede	.154
EDV/RVEF monitorings	. 160
SVR	. 164
Globālās hipoperfūzijas indeksa (GHI) algoritma funkcija	. 164

8.1 HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana

HemoSphere Alta Swan-Ganz pacienta kabelis ir saderīgs ar visiem apstiprinātajiem Edwards Swan-Ganz plaušu artērijas katetriem. HemoSphere Alta Swan-Ganz pacienta kabelis iegūst signālus, kas tiek sūtīti uz saderīgu Edwards Swan-Ganz katetru CO, iCO un EDV/RVEF pārraudzībai, kā arī no tā. Šajā sadaļā ir sniegts pārskats par HemoSphere Alta Swan-Ganz pacienta kabeļa savienojumiem. Skat. 8-1. att. 149. lpp.

BRĪDINĀJUMS

Atbilstība standartam IEC 60601-1 tiek saglabāta tikai tad, ja HemoSphere Alta Swan-Ganz pacienta kabelis (savienojums daļai, kas saskaras ar pacientu, drošs pret defibrilāciju) ir savienots ar saderīgu pārraudzības platformu. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam.

Izstrādājumu nedrīkst nekādā veidā pārveidot, veikt tā apkopi vai mainīt. Veicot izstrādājuma apkopi, pārveidojot vai mainot to, var tikt negatīvi ietekmēta pacienta/lietotāja drošība un/vai izstrādājuma veiktspēja.

- 1. Saderīgs Swan-Ganz/Swan-Ganz Jr katetrs
- 2. Termiskā kvēldiega savienotājs
- **3.** Termistora savienojums

- 4. Injektāta temperatūras zondes savienojums
- 5. HemoSphere Alta Swan-Ganz pacienta kabelis
- 6. HemoSphere Alta uzlabotais monitors
- 8-1. attēls. Pārskats par HemoSphere Alta Swan-Ganz pacienta kabeļa savienojumiem

Piezīme

Katetru un injektāta sistēmu izskats šajā nodaļā ir sniegts tikai kā piemērs. Faktiskais izskats var atšķirties atkarībā no katetra un injektāta sistēmas modeļa.

Pulmonālo artēriju katetri ir CF TIPA defibrilācijai piemērotas DAĻAS, KAS SASKARAS AR PACIENTU. Pacientu kabeļi, kas savienojami ar katetru, piemēram, pacienta CCO kabelis, nav paredzēti kā daļas, kas saskaras ar pacientu, taču tie var saskarties ar pacientu un tiem jāatbilst attiecīgajām prasībām, kas saskaņā ar standartu IEC 60601-1 ir noteiktas daļām, kas saskaras ar pacientu.

- 1. levietojiet HemoSphere Alta Swan-Ganz pacienta kabeli HemoSphere Alta uzlabotajā monitorā.
- 2. Nospiediet ieslēgšanas pogu, lai ieslēgtu HemoSphere Alta uzlaboto monitoringa platformu, un izpildiet pacienta datu ievadīšanas darbības. Skat. Pacienta dati 127. lpp.
- 3. Pievienojiet saderīgo Swan-Ganz katetru HemoSphere Alta Swan-Ganz pacienta kabelim. Pieejamos parametrus un nepieciešamos savienojumus skatiet šeit: 8-1. tabula 149. lpp.

8-1. tabula. Pieejamie HemoSphere Alta Swan-Ganz pacienta kabeļa parametri un nepieciešamie savienojumi

Parametrs	Nepieciešamais savienojums	Skatiet
СО	termistora un termiskā kvēldiega savienojums	Nepārtraukta sirds izsviede 150. lpp.

Parametrs	Nepieciešamais savienojums	Skatiet
CO, CI, SV, SVI	termistors un injektāta (sistēmai pieslēgta) zonde CVP signāls no spiedienkabeļa augšstilba artērijas spiediena signāls no spiedienkabeļa	Transpulmonālas termodilūcijas algo- ritms 321. lpp.
CO _{20s} , CI _{20s} , SV _{20s} , SVI _{20s}	termistora un termiskā kvēldiega savienojums *PAP signāls no spiedienkabeļa	20 sekunžu plūsmas parametri 153. lpp.
iCO	termistors un injektāta (vannas vai sistēmai pieslēgta) zon- de	Intermitējoša sirds izsviede 154. lpp.
EDV/RVEF (SV)	termistora un termiskā kvēldiega savienojums *HR analogā ievade HemoSphere Alta uzlabotajā monito- ringa platformā vai PR no ART spiediena līknes (spiedienka- belis vai ClearSight manšete)	EDV/RVEF monitorings 160. lpp.
SVR	termistora un termiskā kvēldiega savienojums * MAP un CVP ievade HemoSphere Alta uzlabotajai monito- ringa platformai	SVR 164. lpp.
CFI, iCO, iCI, EVLW, ELWI, GEF, GEDV, GE- DI, ITBV, ITBI, PVPI, iSV, iSVI, iSVR, iSVRI	termistors un injektāta (sistēmai pieslēgta) zonde CVP signāls no spiedienkabeļa augšstilba artērijas spiediena signāls no spiedienkabeļa	Transpulmonālas termodilūcijas algo- ritms 321. lpp.

Piezīme

Plaušu artērijas spiediena dati ir pieejami, ja ir pievienots HemoSphere spiedienkabelis. Lai iegūtu papildinformāciju, skatiet Spiedienkabeļa pārraudzība ar Alta Swan-Ganz pacienta kabeli 173. lpp.

4. Izpildiet pārraudzībai nepieciešamos norādījumus. Skatiet Nepārtraukta sirds izsviede 150. lpp., Intermitējoša sirds izsviede 154. lpp. vai EDV/RVEF monitorings 160. lpp..

Piezīme

Iepriekšējām saderīgām pārraudzības platformām pirms pārraudzības bija jāveic pacienta CCO kabeļa tests. Šī darbība nav jāveic, ja tiek izmantots HemoSphere Alta Swan-Ganz pacienta kabelis.

8.2 Nepārtraukta sirds izsviede

HemoSphere Alta uzlabotā monitoringa platforma nepārtraukti mēra sirds izsviedi, ievadot asins plūsmā nelielus enerģijas impulsus un mērot asins temperatūru, izmantojot plaušu artērijas katetru. Tā termiskā kvēldiega maksimālā virsmas temperatūra, kas izmantots, lai atbrīvotu asinīs šos enerģijas impulsus, ir 48 °C. Sirds izsviede tiek aprēķināta, izmantojot apstiprinātus algoritmus, kas iegūti no siltuma nezūdamības principiem, un indikatora atšķaidīšanas līknes, kas iegūtas, savstarpēji korelējot enerģijas ievades un asins temperatūras līknes. Pēc inicializēšanas HemoSphere Alta uzlabotā monitoringa platforma nepārtraukti mēra un parāda sirds izsviedi litros minūtē, operatoram neveicot nekādu kalibrēšanu vai iejaukšanos.

8.2.1 Pacienta kabeļu pievienošana

1. Savienojiet HemoSphere Alta Swan-Ganz pacienta kabeli ar monitoru, kā iepriekš aprakstīts šeit: HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana 148. lpp..

- 2. Pievienojiet pacienta kabeļa katetra galu Swan-Ganz katetra termistora un termiskā kvēldiega savienotājiem. Šie savienotāji ir izcelti ar cipariem (2) un (3) 8-2. att. 151. lpp..
- 3. Pārliecinieties, ka CCO katetrs ir pareizi ievietots pacienta ķermenī.

- 1. Swan-Ganz CCO katetrs
- 2. Termiskā kvēldiega savienotājs
- 3. Termistora savienojums

- 4. HemoSphere Alta Swan-Ganz pacienta kabelis
- 5. HemoSphere Alta uzlabotais monitors

8-2. attēls. Pārskats par CO savienojumu

8.2.2 Monitoringa sākšana

BRĪDINĀJUMS

CO uzraudzība vienmēr ir jāpārtrauc, ja tiek apturēta asins plūsma ap termisko kvēldiegu. Klīniskās situācijas, kurās ir jāpārtrauc CO uzraudzība, var būt šādas (bet ne tikai):

- laika periods, kurā pacientam tiek nodrošināta kardiopulmonālā šuntēšana;
- daļēja katetra izvilkšana, lai termistors būtu ārpus plaušu artērijas;
- katetra izvilkšana no pacienta.

Kad sistēma ir pareizi pievienota, pieskarieties uzraudzības sākšanas ikonai sakt navigācijas joslā, lai sāktu CO pārraudzību. Uzraudzības apturēšanas ikonā parādīsies CO atskaites taimeris. Aptuveni pēc 5 līdz 12 minūtēm, kad ir iegūti pietiekami dati, parametra elementā tiek parādīta CO vērtība. Ekrānā redzamā CO vērtība tiek atjaunināta aptuveni ik pēc 60 sekundēm.

Piezīme

CO vērtība netiek attēlota, kamēr nav pieejami pietiekami dati par vidējām vērtībām noteiktā laikā.

8.2.3 Termiskā signāla stāvokļi

Dažās situācijās, kurās pacienta stāvoklis vairāku minūšu laikā izraisa lielas plaušu artērijas asins temperatūras izmaiņas, sākotnējā CO mērījuma iegūšanai monitoram var būt nepieciešams vairāk par 6 minūtēm. CO uzraudzības laikā CO mērījuma atjaunināšanu var aizkavēt arī nestabila pulmonālās artērijas asins temperatūra. Atjauninātas CO vērtības vietā tiek parādīta pēdējā CO vērtība un mērījuma laiks. 8-2. tabula 152. lpp. parāda trauksmes/kļūmes ziņojumus, kas ir redzami ekrānā dažādos laika punktos, kamēr signāls stabilizējas. Papildinformāciju par CO kļūmēm un trauksmēm skatiet šeit: 14-9. tabula 347. lpp.

Stāvoklis	Paziņojums	Trauksme	Kļūme	
	Swan-Ganz sistēma — no- tiek CO aprēķināšana	Swan-Ganz sistēma — mē- rījuma izgūšana	Swan-Ganz sistēma — CO – termiskā signāla zudums*	
Uzraudzības uzsākšana : laiks kopš uzsākšanas bez CO mērījuma	3½ minūtes	6–15 minūtes	30 minūtes	
Notiek monitorings : laiks kopš pēdējā CO atjaunināju- ma	5 sekundes kopš CO atskaites taimera beigām	6 minūtes	20 minūtes	
* Fiksācijas kļūme				

Kļūmes stāvoklis pārtrauc monitoringu. Kļūdas stāvokli var izraisīt katetra gala nokļūšana mazā asinsvadā, tādējādi neļaujot termistoram precīzi uztvert termisko signālu. Pārbaudiet katetra novietojumu un mainiet to, ja nepieciešams. Pēc pacienta statusa un katetra pozīcijas pārbaudes varat atsākt CO monitoringu, pieskaroties

UZMANĪBU

Neprecīzus sirds izsviedes mērījumus var izraisīt:

- nepareizs katetra novietojums vai pozīcija;
- pārmērīgas pulmonālās artērijas asins temperatūras izmaiņas; BT izmaiņas izraisa, piemēram, bet ne tikai:
 - * stāvoklis pēc kardiopulmonālās šuntēšanas,
 - * centrāli ievadīti atdzesēti vai sasildīti asins produktu šķīdumi,
 - * secīgās kompresijas ierīču izmantošana,
- trombu veidošanās uz termistora;
- anatomiskas novirzes (piemēram, sirds šunts);
- pārmērīgas pacienta kustības;
- elektrokoagulācijas vai elektroķirurģijas ierīču traucējumi;
- straujas sirds izsviedes izmaiņas.

8.2.4 CO atskaites taimeris

CO atskaites taimeris atrodas monitoringa apturēšanas ikonā ^{0:50}. Šis taimeris brīdina lietotāju, kad tiek veikts nākamais CO mērījums. Laiks līdz nākamajam CO mērījumam var atšķirties no 60 sekundēm līdz 3 minūtēm vai ilgāk. Hemodinamiski nestabils termiskais signāls var aizkavēt CO aprēķinus.

8.2.5 STAT CO

Ilgākiem laika posmiem starp CO mērījumiem ir pieejama STAT CO funkcija. STAT CO (sCO) ir ātrs CO vērtības aprēķins, kas tiek atjaunināts ik pēc 60 sekundēm. Lai skatītu STAT CO vērtības, kā galveno parametru atlasiet sCO. Skatot grafisko/tabulāro tendenču dalīto ekrānu, atlasiet CO un sCO kā galvenos parametrus, un CO monitorētie dati tiks grafiski izkārtoti blakus tabulārajiem/skaitliskajiem datiem, kas attiecas uz sCO STAT vērtībām. Skat. Ekrāns Dalīt 94. Ipp.

8.2.6 20 sekunžu plūsmas parametri

20 sekunžu plūsmas parametri ir pieejami, veicot uzraudzību ar HemoSphere Alta Swan-Ganz pacienta kabeli, un PA (plaušu artērijas) spiediena signāls arī tiek uzraudzīts, izmantojot pievienoto HemoSphere spiedienkabeli, TruWave vienreizlietojamo spiediena devēju un CCOmbo V katetru (modeļi 777F8 un 774F75). Līdz ar CCO termodilūcijas algoritmu tiek izmantota plaušu artērijas spiediena signāla impulsu kontūra līknes analīze, lai ātrāk aprēķinātu šādus parametrus: CO, CI, SV un SVI. 20 sekunžu plūsmas parametri ir marķēti ar "20s" (CO_{20s}, Cl_{20s}, SV_{20s}, SVI_{20s}). Šie parametri ir pieejami tikai tad, ja ir iespējota 20s plūsmas parametru funkcija. Lai saņemtu papildinformāciju par šīs uzlabotās funkcijas iespējošanu, sazinieties ar vietējo Edwards pārstāvi. Vairāk informācijas par PA monitoringu skatiet šeit: Spiedienkabeļa pārraudzība ar Alta Swan-Ganz pacienta kabeli 173. lpp..

UZMANĪBU

Neprecīzus 20 sekunžu plūsmas parametru mērījumus var izraisīt šādi cēloņi:

- Nepareizs katetra novietojums vai pozīcija
- Nepareizi nullēts un/vai nolīmeņots devējs
- pārāk daudz vai nepietiekami slāpēta spiediena līnija;

K

PAP līnijas korekcijas pēc uzraudzības sākšanas.

8.2.6.1 PAP līknes problēmu novēršana

20 sekunžu plūsmas parametru aprēķināšana ir lielā mērā atkarīga no labas plaušu arteriālā spiediena līknes.

۰**0**۰

Nulle Izmantoiiet navigācijas ikonu Nulle lai skatītu spiediena līknes ekrānu. Pieskarieties izvēršanas ikonai 7

Ы lai skatītu un novērtētu PAP spiediena līkni. Labas līknes īpašības ir šādas:

- dikrotisks robojums ar minimālu kritumu starp sistoli un diastoli;
- skaidrs signāls bez trokšņa vai augstas frekvences artefaktiem;
- minimāli "artefakti", ko izraisa katetra uzgaļa kustības labajā kambarī;
- asa līknes morfoloģija un minimāla pārmērīga slāpēšana, ko izraisa burbulīši vai caurulītes izliekšanās.

PAP spiediena līknes, kam nav iepriekš minētās īpašības, nav validētas. Šādu spiediena līkņu rezultātā var tikt zaudēts aprēkinātais 20 sekunžu plūsmas parametrs.

8.2.7 Labā sirds kambara izsviedes algoritms

Labā sirds kambara sirds izsviede (CO_{RV}) un sistoles tilpums (SV_{RV}) ir pieejams, pārraugot labā sirds kambara spiedienu (RVP) ar spiedienkabeli un Swan-Ganz IQ katetru. RVCO algoritms var izmantot no iCO termodilūcijas kopas iegūtās iCO vērtības kā pēc izvēles izmantojamu ievadi RVCO parametru aprēķināšanai. Darbības skat. Intermitējoša sirds izsviede 154. lpp.. Kad ir veikts un pieņemts iCO mērījums, RVCO parametra elementos tiek parādīts teksts "CAL", norādot, ka tie ir kalibrēti. Papildinformāciju un algoritma klīnisko apstiprinājumu skat. Labā sirds kambara izsviedes algoritms 318. lpp..

8.3 Intermitējoša sirds izsviede

HemoSphere Alta Swan-Ganz pacienta kabelis mēra sirds izsviedi intermitējoši, izmantojot bolus termodilūcijas metodi. Izmantojot šo metodi, caur katetra injektāta pieslēgvietu tiek injicēts neliels daudzums sterila fizioloģiskā škīduma (fizioloģiskais šķīdums vai dekstroze), kuram ir zināms tilpums un temperatūra, kas ir zemāka nekā asins temperatūra, un iegūtais asins temperatūras kritums tiek mērīts, izmantojot plaušu artērijā (PA) ievietoto termistoru. Vienā sērijā var veikt līdz sešām bolus injekcijām. Tiek attēlota vidējā sērijas injekciju vērtība. Ikvienas sērijas rezultātus var pārskatīt, un lietotājs var noņemt atseviškus iCO (bolus) mērījumus, kas varētu būt neprecīzi (piemēram, pacienta kustības, diatermijas vai operatora kļūdas dēļ).

8.3.1 Pacienta kabelu pievienošana

- Savienojiet HemoSphere Alta Swan-Ganz pacienta kabeli ar monitoru, kā iepriekš aprakstīts šeit: 1. HemoSphere Alta Swan-Ganz pacienta kabela pievienošana 148. lpp..
- Pievienojiet pacienta kabela katetra galu Swan-Ganz, Swan-Ganz IQ vai Swan-Ganz Jr iCO katetra termistora 2. savienotājam, kā norādīts ar atzīmi (2) šeit: 8-3. att. 155. lpp..
- Pārliecinieties, ka katetrs ir pareizi ievietots pacienta ķermenī. 3.

- 1. Swan-Ganz/Swan-Ganz Jr/Swan-Ganz IQ katetrs
- 2. Termistora savienojums
- 3. Injektāta temperatūras zondes savienojums
- 4. HemoSphere Alta Swan-Ganz pacienta kabelis
- 5. HemoSphere Alta uzlabotais monitors

8-3. attēls. Pārskats par iCO savienojumu

8.3.1.1 Zondes izvēlēšanās

Ar injektāta temperatūras zondi nosaka injektāta temperatūru. Izvēlētā zonde tiek savienota ar pacienta CCO kabeli (8-3. att. 155. lpp.). Var izmantot vienu no divām zondēm.

- Sistēmai pieslēgta zonde tiek savienota ar CO-Set/CO-Set+ injektāta ievadīšanas sistēmas caurplūdes korpusu.
- Ar vannas zondi mēra injektāta šķīduma temperatūru. Vannas zondes ir paredzētas parauga šķīduma temperatūras mērīšanai; šis šķīdums tiek turēts tādā pašā temperatūrā kā sterilais fizioloģiskais šķīdums, kas izmantots injektātam, aprēķinot bolus sirds izsviedi.

Pievienojiet injektāta temperatūras zondi (sistēmai pieslēgto vai vannas zondi) pacienta CCO kabeļa injektāta temperatūras zondes savienotājam, kā norādīts ar atzīmi (3) (8-3. att. 155. lpp.).

8.3.2 Konfigurācijas iestatījumi

Operators var izvēlēties ievadīt HemoSphere Alta uzlabotā monitoringa platformā konkrētu aprēķina konstanti vai konfigurēt HemoSphere Alta Swan-Ganz kabeli, lai tas automātiski noteiktu aprēķina konstanti, atlasot injektāta tilpumu un katetra izmēru. Turklāt lietotājs var atlasīt parametru attēlošanas veidu un bolus režīmu.

8-4. attēls. iCO sānu panelis — jauna kopas konfigurācijas izvēlne

UZMANĪBU

Skatiet pielikumu E, lai pārliecinātos, ka aprēķina konstante ir tāda pati, kā norādīts uz katetra iepakojuma ieliktņa. Ja aprēķina konstante atšķiras, ievadiet nepieciešamo aprēķina konstanti manuāli.

Piezīme

HemoSphere Alta Swan-Ganz pacienta kabelis automātiski nosaka izmantotās temperatūras zondes tipu (ledus vannas vai sistēmai pieslēgtā zonde). Pēc tam šī informācija modulī tiek izmantota, lai noteiktu aprēķina konstanti.

Ja monitors nenosaka injektāta temperatūras (IT) zondi, tiek parādīts ziņojums **"Kļūme: Swan-Ganz sistēma —** injektāta zondes savienojuma kļūda".

8.3.2.1 Injektāta tilpuma atlasīšana

Atlasiet parametra Injicējamās vielas tilpums vērtību. Ir pieejamas šādas izvēles:

- 10 ml
- 5 ml
- 3 ml (tikai vannas zondei)

Kad vērtība ir atlasīta, aprēķina konstante tiek iestatīta automātiski.

8.3.2.2 Katetra izmēra atlasīšana

Atlasiet katetra izmēru izvēlnē Katetra izmērs. Ir pieejamas šādas izvēles:

- 5,5 F
- 6 F
- 7F
- 7,5 F
- 8 F

Kad vērtība ir atlasīta, aprēķina konstante tiek iestatīta automātiski.

8.3.2.3 Aprēķina konstantes atlasīšana

Lai manuāli ievadītu aprēķina konstanti, pārslēdziet atlasi **Automātiski** izslēgtā stāvoklī attiecībā uz parametru **Aprēķina konstante**. Pieskarieties vērtības pogai **Aprēķina konstante** un ievadiet vērtību, izmantojot tastatūru. Ja aprēķina konstante tiek ievadīta manuāli, injektāta tilpums un katetra izmērs tiek iestatīts automātiski un vērtības ievades iestatījums ir **Automātiski**.

8.3.2.4 Bolus režīma atlasīšana

leslēdziet vai izslēdziet opciju **Automātiski** parametram **Bolus režīms**. Noklusējuma ieslēgtais režīms ir **Automātiski**. Režīmā **Automātiski** HemoSphere Alta uzlabotā monitoringa platforma automātiski izceļ ziņojumu **Injicēt**, tiklīdz tiek sasniegta asins bāzes temperatūra. Lai pārietu uz manuālo režīmu, pārslēdziet **Automātiski** izslēgtā pozīcijā opcijai **Bolus režīms**. Manuālais režīms darbojas līdzīgi kā režīms **Automātiski**, tikai lietotājam jāpieskaras pogai **Injicēt** pirms katras injicēšanas reizes. Nākamajā nodaļā ir sniegti abu šo bolus režīmu norādījumi.

8.3.3 Bolus mērījumu režīmu norādījumi

HemoSphere Alta Swan-Ganz pacienta kabeļa bolus mērījumu rūpnīcas iestatījums ir režīms **Automātiski**. Šajā režīmā HemoSphere Alta uzlabotā monitoringa platforma izceļ ziņojumu **Injicēt**, tiklīdz tiek sasniegta asins bāzlīnijas temperatūra. Manuālā režīma laikā operators nosaka, kad veikt injekciju, pieskaroties pogai **Injicēt**. Kad injicēšana ir pabeigta, modulis aprēķina vērtību un ir gatavs nākamās bolus injekcijas apstrādei. Vienā sērijā var veikt līdz sešām bolus injekcijām.

Turpmāk sniegti detalizēti bolus sirds mērījumu norādījumi, sākot ar iCO jaunas kopas konfigurēšanas sānu paneli.

 Pēc termodilūcijas konfigurācijas iestatījumu atlasīšanas pieskarieties pogai Sākt iestatīšanu iCO jaunas kopas konfigurēšanas sānu paneļa apakšdaļā.

Poga ir atspējota šādos gadījumos:

- ja injektāta apjoms nav derīgs vai nav atlasīts;
- ja nav pievienota injektāta temperatūra (Ti);
- ja nav pievienota asiņu temperatūra (Tb);
- ja ir aktīva iCO kļūme.

Ja notiek nepārtraukta CO mērīšana, parādīsies uznirstošais logs, lai apstiprinātu CO uzraudzības apturēšanu. Pieskarieties pogai **Jā**, lai pārietu uz iCO mērījumiem.

Piezīme

Bolus CO mērīšanas laikā nebūs pieejami parametri, kas aprēķināti, izmantojot EKG ievades signālu (HR_{avg}).

2. Jaunās iCO ekrāns ar tekstu Uzgaidiet tiek parādīts virs statusa joslas sānu paneļa augšdaļā.

Uzgaidiet

Piezīme

Automātiskās bolus injekcijas režīmā sānu panelis ir bloķēts, līdz kopa ir pabeigta vai atcelta. Manuālajā režīmā sānu panelis ir bloķēts bolus ievadīšanas un termodilūcijas mērījuma laikā.

- 3. Kad ir sasniegts automātiskais režīms un termiskā bāzlīnija, sānu paneļa statusa joslas augšdaļā tiek parādīts teksts **Injicēt**, norādot, kad var sākt bolus injekciju sēriju.
 - VAI

Izmantojot manuālo režīmu, sānu paneļa augšdaļā tiek parādīts ziņojums **Gatavs**, kad termiskā bāzlīnija ir izveidota. Pieskarieties pogai **Injicēt**, kad esat gatavs veikt injekciju, un pēc tam ekrānā tiek parādīts ziņojums **Injicēt**.

4. Lietojiet strauju, vienmērīgu un nepārtrauktu paņēmienu, lai veiktu iepriekš atlasītā tilpuma bolus injekciju.

UZMANĪBU

Pēkšņas izmaiņas PA asins temperatūrā, piemēram, pacienta kustību vai bolus zāļu ievadīšanas radītas izmaiņas, var izraisīt iCO vai iCI vērtības aprēķināšanu. Lai izvairītos no kļūdaini aktivizētām līknēm, veiciet injekciju, cik drīz vien iespējams, pēc ziņojuma **Injicēt** parādīšanas.

Tiklīdz bolus injekcija ir veikta, ekrānā parādās termodilūcijas izskalošanas līkne, virs statusa joslas tiek parādīts ziņojums **Aprēķināšana** un tiek attēlots iegūtais iCO mērījums.

5. Kad termālās izskalošanas līkne ir pabeigta, HemoSphere Alta uzlabotajā monitoringa platformā tiek izcelts ziņojums Uzgaidiet, un pēc tam, kad atkal ir sasniegta stabila termiskā bāzlīnija, tiek izcelts ziņojums Injicēt vai Gatavs manuālajā režīmā. Atkārtojiet 2.–4. darbību līdz sešām reizēm pēc nepieciešamības. Izceltie ziņojumi tiek atkārtoti, kā norādīts tālāk.

Automātiski: Uzgaidiet → Injicēt → Aprēķināšana

Manuāls: Gatavs → Injicēt → Aprēķināšana

Piezīme

Ja iestatīts bolus režīms **Automātiski**, maksimālais pieļaujamais laiks starp ziņojuma **Injicēt** parādīšanos un bolus injekcijas veikšanu ir četras minūtes. Ja šajā laika periodā injekcija netiek noteikta, ziņojums **Injicēt** pazūd un atkārtoti tiek parādīts ziņojums **Uzgaidiet**.

Ja bolus režīma **Automātiski** pārslēgs ir izslēgts (manuālā režīmā), pēc pieskaršanās pogai **Injicēt** operatoram ir ne vairāk kā 30 sekundes laika bolus injekcijas veikšanai. Ja injekcija netiek noteikta šī perioda laikā, poga **Injicēt** tiek iespējota atkārtoti, un ziņojums **Injicēt** pazūd.

Ja bolus mērījums ir neprecīzs, par ko liecina trauksmes ziņojums, ekrānā attēlotās CO/CI vērtības vietā tiek

Lai apturētu iCO (bolus) mērījumus, pieskarieties atcelšanas ikonai

- Kad sasniegts nepieciešamais bolus injekciju skaits, pārskatiet izskalošanas līkņu kopu, pieskaroties pogai Pārskatīšana iestatīta.
- 7. Izdzēsiet jebkuru no sešām injekcijām no kopas, pieskaroties tai pārskata ekrāna sarakstā un pieskaroties

Virs spiediena līknes parādās sarkans "X", norādot, ka tā ir noņemta no vidējās CO/CI vērtības.

Ja spiediena līkne ir neregulāra vai neskaidra, blakus spiediena līknes datu kopai redzams simbols

Ja nepieciešams, pieskarieties atcelšanas ikonai **k**anu paneļa apakšdaļā, lai dzēstu visu bolus kopu. Lai apstiprinātu, pieskarieties pogai **Jā**.

8. Kad bolus injekcijas, kas jāizmanto vidējai CO/CI vērtībai, ir pārskatītas, pieskarieties pogai **Apstiprināt**

vai pievienošanas pogai **servinas ⁺ostruktu**, lai atsāktu sēriju un pievienotu papildu bolus injekcijas (ne vairāk kā sešas) vidējās vērtības iegūšanai.

CO pārraudzība. Ja sistēma ir pareizi savienota nepārtraukta CO uzraudzības veikšanai, pieskarieties

uzraudzības sākšanas ikonai, saktu CO uzraudzību jebkurā laikā.

8.3.4 Termodilūcijas kopsavilkuma ekrāns

Kad kopa ir pieņemta, sānu panelī Notikumi un lejaukšanās notikuma veidā ar laikspiedolu tiek parādīts kopsavilkums par kopu. Šim kopsavilkuma ekrānam jebkurā laikā var piekļūt, pieskaroties ikonai **Klīniskie rīki**

→ pogai **Notikumi un lejaukšanās**. Ritiniet notikumu sarakstu un atlasiet vēlamo termodilūcijas kopu, lai skatītu kopsavilkumu.

٨	🚯 iCO termodilūcija 🗸 🗸				
Swan-G	anz sistēma 06.02.2025	a iCO – Aut 20:36:21	omātiski		
1 ic	0% 0.5 ^{0 L/min}	5.2 iCI L/m	0% 2 in/m ²		
isvr	↓23% 580 dyn-s/cm ^s	11(iSVRI dyn-:	↓23% 50 s-m²/cm⁵		
	25 7 BT °C MAP r	9 4	ImHg		
# Bolus	iCO	iCI			
1	8.0	4.0	20:36		
2	9.0	4.5	20:37		
3	10.0	5.0	20:38		
4	11.0	5.5	20:39		
5	12.0	6.0	20:39		
6	13.0	6.5	20:40		
Atgriezties galvenajā ekrānā					

8-5. attēls. Termodilūcijas kopsavilkuma ekrāns

8.4 EDV/RVEF monitorings

Labā kambara beigu diastoliskā tilpuma (EDV) pārraudzība ir pieejama kopā ar CO pārraudzības režīmu, izmantojot Swan-Ganz CCOmbo V katetru un EKG signāla ievadi. Spiedienkabeļa vai ClearSight manšetes pārraudzītās arteriālās spiediena līknes sirdsdarbības ātrumu (PR) var izmantot EKG sirdsdarbības ātruma (HR) signāla vietā, ja šie lielumi ir pieejami. EDV monitoringa laikā HemoSphere Alta uzlabotā monitoringa platforma nepārtraukti rāda EDV un labā kambara izsviedes frakcijas (RVEF) mērījumus. EDV un RVEF ir laika vidējās vērtības, kuras var attēlot ciparu veidā parametru elementos, kā arī grafiski parādīt to tendences laika gaitā.

Turklāt, atlasot sEDV un sRVEF kā galvenos parametrus, ar aptuveni 60 sekunžu intervālu tiek aprēķinātas un attēlotas EDV un RVEF vērtību prognozes.

8.4.1 Pacienta kabeļu pievienošana

- 1. Pievienojiet HemoSphere Alta Swan-Ganz pacienta kabeli, kā iepriekš aprakstīts šeit: HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana 148. lpp..
- 2. Pievienojiet pacienta kabeļa katetra galu Swan-Ganz CCOmbo V katetra termistora un termiskā kvēldiega savienotājiem. Šie savienotāji ir izcelti ar (2) un (3) šeit: 8-6. att. 161. lpp..
- 3. Pārliecinieties, ka katetrs ir pareizi ievietots pacienta ķermenī.

- Termiskā kvēldiega savienotājs
- 3. Termistora savienojums

- 5. HemoSphere Alta uzlabotais monitors
- 6. EKG signāla ievade no ārējā monitora

8.4.2 EKG interfeisa kabeļa pievienošana

Pievienojiet EKG interfeisa kabeļa ¼" miniatūro tālruņa spraudni EKG monitora ievadei HemoSphere Alta

ECG

uzlabotā monitora aizmugurējā panelī.

Pievienojiet saskarnes kabeļa otru galu pie gultas novietojamā monitora EKG signāla izvadei. Tādējādi HemoSphere Alta uzlabotajā monitoringa platformā tiek nodrošināts vidējās sirdsdarbības frekvences (HR_{avg}) mērījums EDV un RVEF mērījumu iegūšanai. Spiedienkabeļa vai ClearSight manšetes pārraudzītās arteriālās spiediena līknes sirdsdarbības ātrumu (PR) var izmantot EKG sirdsdarbības ātruma (HR) signāla vietā, ja šie lielumi ir pieejami. Lai iegūtu informāciju par saderīgiem EKG saskarnes kabeļiem, sazinieties ar vietējo Edwards pārstāvi.

Piezīme

SVARĪGI! HemoSphere Alta uzlabotā monitoringa platforma ir saderīga ar analogo EKG ievadi no jebkura ārējā pacienta monitora, kam ir analogā izvades pieslēgvieta, kas atbilst šīs lietotāja rokasgrāmatas pielikumā A, A-5. tabula 383. lpp. norādītajām EKG signāla ievades specifikācijām. EKG signāls tiek izmantots, lai iegūtu sirdsdarbības datus, ko pēc tam izmanto, lai aprēķinātu papildu hemodinamikas rādītājus attēlošanai. Tā ir papildu funkcija, kas neietekmē HemoSphere Alta uzlabotās monitoringa platformas primārās funkcijas — sirds izsviedes (ar HemoSphere Alta Swan-Ganz pacienta kabeli) un venozā skābekļa piesātinājuma (ar HemoSphere oksimetrijas kabeli) uzraudzību. Ierīces veiktspējas pārbaude tika veikta, izmantojot EKG ievades signālus.

BRĪDINĀJUMS

PACIENTI AR ELEKTROKARDIOSTIMULATORU. Pulsa mērītāji var turpināt mērīt elektrokardiostimulatora ritmu sirds apstāšanās vai aritmijas gadījumā. Nepaļaujieties tikai uz pulsa rādījumu. Pacienti ar kardiostimulatoru rūpīgi jāuzrauga. Informāciju par ierīces iespējām noraidīt kardiostimulatora impulsus skatiet šeit: A-5. tabula 383. lpp.

Lai iegūtu sirdsdarbības frekvenci un ar sirdsdarbības frekvenci saistītos parametrus, HemoSphere Alta uzlaboto monitoringa platformu nedrīkst izmantot pacientiem, kuriem nepieciešams iekšēja vai ārēja kardiostimulatora atbalsts, turpmāk norādītajos apstākļos:

- kardiostimulatora pulsa sinhronizācijas izvade no pie gultas novietojamā monitora ietver kardiostimulatora pulsu, taču raksturlielumi ir ārpus kardiostimulatora pulsa noraidīšanas iespēju specifikācijām, kā norādīts A-5. tabulā;
- kardiostimulatora pulsa sinhronizācijas izvades raksturlielumi no pie gultas novietojamā monitora nav nosakāmi.

Ņemiet vērā visas sirdsdarbības ātruma (HR_{avg}) neatbilstības ar pacienta monitora HR un EKG spiediena līknes attēlojumu, kad tiek interpretēti atvasinātie parametri, piemēram, SV, EDV, RVEF, un saistītie indeksa parametri.

EKG signāla ievade un visi parametri, kas atvasināti no sirdsdarbības mērījumiem, nav izvērtēti pediatrijas pacientiem, tādēļ šim pacientu lokam nav pieejami.

Piezīme

Pirmo reizi nosakot EKG ievades savienojumu vai tā neesamību, statusa joslā tiek parādīts īss informatīvs ziņojums.

SV ir pieejams ar jebkuru saderīgu Swan-Ganz katetru un EKG signāla ievadi. EDV/RVEF uzraudzības gadījumā nepieciešams Swan-Ganz CCOmbo V katetrs.

8.4.3 Mērījumu sākšana

BRĪDINĀJUMS

CO uzraudzība vienmēr ir jāpārtrauc, ja tiek apturēta asins plūsma ap termisko kvēldiegu. Klīniskās situācijas, kurās ir jāpārtrauc CO uzraudzība, var būt šādas (bet ne tikai):

- laika periods, kurā pacientam tiek nodrošināta kardiopulmonālā šuntēšana;
- daļēja katetra izvilkšana, lai termistors būtu ārpus plaušu artērijas;
- katetra izvilkšana no pacienta.

Kad sistēma ir pareizi pievienota, pieskarieties uzraudzības sākšanas ikonai, swandanz lai sāktu CO uzraudzību. Uzraudzības apturēšanas ikonā parādīsies CO atskaites taimeris. Pēc aptuveni 5 līdz 12 minūtēm, kad iegūts pietiekams datu apjoms, parametru laukos būs redzama EDV un/vai RVEF vērtība. Ekrānā redzamās EDV un RVEF vērtības tiek atjauninātas aptuveni ik pēc 60 sekundēm.

Piezīme

EDV vai RVEF vērtība netiek attēlota, kamēr nav pieejami pietiekami dati par vidējām vērtībām noteiktā laikā.

Dažās situācijās, kurās pacienta stāvoklis vairāku minūšu laikā izraisa lielas pulmonālās artērijas asins temperatūras izmaiņas, monitoram var būt vajadzīgas vairāk nekā 9 minūtes, lai iegūtu sākotnējo EDV vai RVEF mērījumu. Šādos gadījumos 9 minūtes pēc uzraudzības sākšanas tiek parādīts šāds trauksmes ziņojums:

Trauksme: Swan-Ganz sistēma — EDV — mērījuma izgūšana

Uzraudzība tiek turpināta, un lietotāja darbības nav nepieciešamas. Iegūstot nepārtrauktus EDV un RVEF mērījumus, trauksmes ziņojums tiek noņemts un pašreizējās vērtības tiek attēlotas un sakārtotas grafikā.

Piezīme

CO vērtības var būt pieejamas arī tad, ja EDV un RVEF vērtības nav pieejamas.

8.4.4 Aktīva EDV pārraudzība

EDV pārraudzības laikā nepārtraukto EDV un RVEF mērījumu atjaunināšanu var aizkavēt nestabila pulmonālās artērijas asins temperatūra. Ja vērtības netiek atjauninātas 8 minūšu laikā, tiek parādīts šāds ziņojums:

Trauksme: Swan-Ganz sistēma — EDV — mērījuma izgūšana

Ja vidējā sirdsdarbības frekvence pārsniedz diapazona robežas (piemēram, mazāk nekā 30 sitieni minūtē vai vairāk nekā 200 sitieni minūtē) vai sirdsdarbību nevar noteikt, tiek parādīts šāds ziņojums:

Trauksme: Swan-Ganz sistēma — EDV — sirdsdarbības frekvences signāls ārpus diapazona

Nepārtrauktās EDV un RVEF uzraudzības vērtības vairs netiek rādītas. Šo stāvokli var izraisīt fizioloģiskas izmaiņas pacienta stāvoklī vai EKG analogā signāla zudums. Pārbaudiet EKG interfeisa kabeļa savienojumus un, ja nepieciešams, atjaunojiet tos. Pēc pacienta stāvokļa un kabeļu savienojuma pārbaudes EDV un RVEF pārraudzība tiks automātiski atsākta.

Piezīme

SV, EDV un RVEF vērtības ir atkarīgas no precīziem pulsa aprēķiniem. Jāpievērš uzmanība, lai tiktu parādītas precīzas pulsa vērtības un lai netiktu pieļauta divkārša skaitīšana, it īpaši AV kardiostimulācijas gadījumā.

Ja pacientam ir priekškambaru vai atrioventrikulārais kardiostimulators, lietotājam jānovērtē, vai nav divkāršas konstatācijas (lai precīzi noteiktu HR, vienā sirds ciklā jākonstatē tikai viens kardiostimulatora impulss vai viena kontrakcija). Divkāršas konstatācijas gadījumā lietotājam jārīkojas šādi:

- jāmaina atsauces pievada novietojums, lai samazinātu priekškambaru impulsu noteikšanu;
- jāatlasa atbilstoša pievadu konfigurācija, lai maksimāli palielinātu HR trigerus un samazinātu priekškambaru impulsu noteikšanu; un
- jānovērtē kardiostimulācijas līmeņu atbilstība miliampēros (mA).

Nepārtrauktās EDV un RVEF noteikšanas precizitāte ir atkarīga no stabila EKG signāla, ko nodrošina pie gultas novietotais monitors. Papildinformāciju par problēmu novēršanu skatiet šeit: 14-10. tabula 349. lpp. un 14-13. tabula 353. lpp.

Ja EDV pārraudzība tiek apturēta, pieskaroties pārraudzības apturēšanas ikonai ^{0:50}, EDV un/vai RVEF mērķa indikators parametra elementā kļūst pelēks un zem vērtības tiek novietots laikspiedols, kurā norādīts pēdējās vērtības mērīšanas laiks.

Piezīme

Nospiežot pārraudzības apturēšanas ikonu

, tiek apturēta EDV, RVEF un CO pārraudzība.

Ja EDV pārraudzība tiek atsākta, tendenču grafika līnijā ir redzama atstarpe, norādot laika periodu, kurā tika pārtraukta nepārtrauktā pārraudzība.

0:50

8.4.5 STAT EDV un RVEF

Hemodinamiski nestabils termiskais signāls pēc monitoringa sākšanas HemoSphere Alta uzlabotajā monitoringa platformā var izraisīt EDV, EDVI un/vai RVEF RVEF vērtības parādīšanas aizkavi. Ārsts var izmantot STAT vērtības, kas nodrošina EDV vai EDVI prognozes, kā arī RVEF vērtības, kas tiek atjauninātas aptuveni 60 sekundes. Lai skatītu STAT vērtības, kā galveno parametru atlasiet sEDV, sEDVI vai sRVEF.

8.5 SVR

Veicot CO pārraudzību, HemoSphere Alta uzlabotā monitoringa platforma var arī aprēķināt parametru SVR, izmantojot MAP un CVP spiediena signāla ievades no pievienotajiem spiedienkabeļiem vai CVP ievadi CVP vērtībām. Papildinformāciju par CVP avotiem un sistēmas prioritāšu noteikšanu skatiet šeit: CVP ieraksts (tikai SVR/SVRI) 94. lpp.

8.6 Globālās hipoperfūzijas indeksa (GHI) algoritma funkcija

Globālās hipoperfūzijas indeksa (GHI) algoritmu var aktivizēt invazīvās pārraudzības režīmā, ja ir pievienots Swan-Ganz katetrs un oksimetrijas kabelis. GHI algoritms izmanto CCO vai RVCO ievadi un oksimetrijas algoritmus, lai noteiktu GHI vērtību. Globālās hipoperfūzijas indeksa(GHI) algoritms sniedz ārstam fizioloģiskos datus par iespējamību, ka pacientam varētu izveidoties hemodinamiska nestabilitāte. Gaidāma hemodinamiskā nestabilitāte korelē ar gadījumiem, kad jaukto venozo asiņu skābekļa piesātinājums (SvO₂) samazinās līdz 60% vai mazāk uz vienu minūti. Papildinformāciju par GHI algoritmu skat. Globālās hipoperfūzijas indeksa (GHI) algoritma funkcija 280. lpp..

Pārraudzība, izmantojot HemoSphere spiedienkabeli

Saturs

Pārskats par spiedienkabeli	165
FloTrac sensora, FloTrac Jr sensora un Acumen IQ sensora pārraudzība	168
Spiedienkabeļa monitorings, izmantojot TruWave spiediena devēju	171
Spiedienkabeļa pārraudzība ar Alta Swan-Ganz pacienta kabeli.	173
Ekrāns Nulle un spiediena līkne	182
Spiediena signāla izvade	183

9.1 Pārskats par spiedienkabeli

HemoSphere spiedienkabelis ir atkārtoti lietojama ierīce, kuras viens gals tiek pievienots HemoSphere Alta uzlabotajam monitoram (4), bet otrs gals — jebkuram Edwards apstiprinātam vienam vienreizlietojamam spiediena devējam (DPT) vai sensoram (1). Skat. 9-1. att. 166. lpp. HemoSphere spiediena kabelis iegūst un apstrādā vienu spiediena signālu no saderīga Edwards vienreizlietojamā spiediena devēja, piemēram, TruWave vienreizlietojamā spiediena devēja vai FloTrac sensora. FloTrac vai Acumen IQ sensors ir pievienots esošam arteriālajam katetram, lai nodrošinātu minimāli invazīvu hemodinamisko parametru mērījumu. TruWave devēju var pievienot jebkuram saderīgam spiediena monitoringa katetram, lai nodrošinātu no atrašanās vietas atkarīgu intravaskulārā spiediena mērījumu. Konkrētus norādījumus par katetra ievietošanu un lietošanu, kā arī saistītos brīdinājumus, piesardzības pasākumus un piezīmes skatiet katra katetra komplektācijā ietvertajos lietošanas norādījumos. Pievienotās tehnoloģijas veids tiek parādīts parametru elementa augšdaļā (skat. 4-2. att. 85. lpp.). Trīs pieejamo tehnoloģiju veidu pamatā ir pārī savienotais sensors/devējs: **FloTrac** sensors, **FloTrac Jr** sensors, **Acumen IQ** sensors (**IQ sensors**) vai **TruWave** sensors. Parametru konfigurācijas izvēlnē parametri ir kategorizēti pēc tehnoloģijas. HemoSphere spiedienkabeļa izskats un savienojumu vietas ir redzamas šeit: 9-1. att. 166. lpp.

Spiediena veida krāsas ieliktnis. Ja vēlaties, varat spiedienkabelim izmantot atbilstošas krāsas ieliktni, lai norādītu pārraudzītā spiediena veidu (tikai HemoSphere spiedienkabelim, HEMPSC100). Skatiet apzīmējumu (3) šeit: 9-1. att. 166. lpp. Ir pieejamas šādas krāsas:

- Sarkanā krāsa arteriālajam spiedienam (ART)
- Zilā krāsa centrālajam venozajam spiedienam (CVP)
- Dzeltenā krāsa plaušu artērijas spiedienam (PAP)
- Zaļā krāsa cita veida pārraudzītajam spiedienam (piemēram, RVP)

4. HemoSphere Alta uzlabotā monitora savienojums

5. spiediena izvades savienojums (tikai HEMAPSC200)

- 1. spiediena devēja/sensora savienojums
- 2. nullēšanas poga/statusa LED indikators (tikai HEMPSC100)
- 3. spiediena veida krāsas ieliktnis (tikai HEMPSC100)

Pieejamie	Spiedienkabeļa konfigurācija						
galvenie rā- dītāji	FloTrac/ FloTrac Jr/ Acumen IQ sensors	FloTrac/ FloTrac Jr/ Acumen IQ sensors ar CVP ievadī- to vai pār- raudzības laikā iegūto CVP	FloTrac/ Acumen IQ sensors ar CVP ar ieva- dīto vai pār- raudzības laikā iegūto CVP un oksi- metrijas ka- beli	TruWave de- vējs, kas ir pievienots arteriālajai caurulītei	TruWave de- vējs, kas ir pievienots centrālajai caurulītei	TruWave de- vējs, kas ir pievienots plaušu artē- rijas ka- tetram	TruWave de- vējs pievie- nots katetram labā sirds kambara līme- nī
CO/CI	•	•	•				
CPO/CPI	•	•	•				
SV/SVI	•	•	•				
SVV/PPV	•	•	•				
SVR/SVRI		•	•				
SvO ₂ /ScvO ₂			•				
PR	•	•	•	•			
SYS _{ART}	•	•	•	•			
DIA _{ART}	•	•	•	•			
MAP	•	•	•	•			
MPAP						•	
SYS _{PAP}						•	
DIA _{PAP}						•	

9-1. tabula. HemoSphere spiedienkabeļa konfigurācijas un pieejamie galvenie parametri

Pieejamie	Spiedienkabeļa konfigurācija						
galvenie rā- dītāji	FloTrac/ FloTrac Jr/ Acumen IQ sensors	FloTrac/ FloTrac Jr/ Acumen IQ sensors ar CVP ievadī- to vai pār- raudzības laikā iegūto CVP	FloTrac/ Acumen IQ sensors ar CVP ar ieva- dīto vai pār- raudzības laikā iegūto CVP un oksi- metrijas ka- beli	TruWave de- vējs, kas ir pievienots arteriālajai caurulītei	TruWave de- vējs, kas ir pievienots centrālajai caurulītei	TruWave de- vējs, kas ir pievienots plaušu artē- rijas ka- tetram	TruWave de- vējs pievie- nots katetram labā sirds kambara līme- nī
CVP		•	•		•		
HPI*	•	•	•				
dP/dt*	•	•	•				
Ea _{dyn} *	•	•	•				
MRVP							•
SYS _{RVP}							•
DIA _{RVP}							•
PR _{RVP}							•
RV EDP							•
RV dP/dt							•

Piezīme

* Parametrs Acumen Hypotension Prediction Index (HPI) tiek pārraudzīts, izmantojot Acumen IQ sensoru, kas pievienots spieķkaula artērijas katetram. Lai iegūtu papildinformāciju, skatiet Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp..

BRĪDINĀJUMS

Nesterilizējiet un nelietojiet atkārtoti nevienu FloTrac sensoru, FloTrac Jr sensoru, Acumen IQ sensoru, TruWave devēju vai katetru; skatiet katetra "lietošanas norādījumus".

Nelietojiet FloTrac sensoru, FloTrac Jr sensoru, Acumen IQ sensoru, TruWave devēju vai katetru, ja tas ir mitrs vai bojāts vai tam ir atklāti elektriskie kontakti.

Izstrādājumu nedrīkst nekādā veidā pārveidot, veikt tā apkopi vai mainīt. Veicot izstrādājuma apkopi, pārveidojot vai mainot to, var tikt negatīvi ietekmēta pacienta/lietotāja drošība un/vai izstrādājuma veiktspēja.

Konkrētus norādījumus par piederuma novietošanu un lietošanu, kā arī saistītos paziņojumus ar apzīmējumiem BRĪDINĀJUMS un UZMANĪBU un specifikācijas skatiet katra piederuma komplektācijā ietvertajos norādījumos.

Kad spiediena kabelis netiek lietots, sargājiet atklāto kabeļa savienotāju no šķidruma. Savienotājā iekļuvis mitrums var izraisīt kabeļa darbības traucējumus vai neprecīzus spiediena mērījumus.

Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja HemoSphere spiediena kabelis (lietojamās daļas piederums, drošs pret defibrilāciju) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam.

UZMANĪBU

Nelietojiet FloTrac sensoru, FloTrac Jr sensoru, Acumen IQ sensoru vai TruWave devēju pēc tā etiķetē norādītā "derīguma termiņa." Ja izstrādājumi tiek lietoti pēc šī datuma, var būt apdraudēta devēja vai caurulīšu veiktspēja vai sterilitāte.

Pārmērīga HemoSphere spiediena kabeļa nomešana var izraisīt kabeļa bojājumus un/vai nepareizu darbību.

9.2 FloTrac sensora, FloTrac Jr sensora un Acumen IQ sensora pārraudzība

HemoSphere spiedienkabelis tiek izmantots Edwards FloTrac sensora savienošanai ar HemoSphere Alta uzlaboto monitoringa platformu. HemoSphere spiedienkabelis, kam ir pievienots FloTrac, FloTrac Jr vai Acumen IQ sensors, izmanto pacienta esošo arteriālā spiediena līkni, lai nepārtraukti mērītu sirds izsviedi (FloTrac arteriālā spiediena automātiski kalibrēto sirds izsviedi [FT-CO]). Izmantojot ievadīto informāciju par pacienta augumu, svaru, vecumu un dzimumu, tiek noteikta specifiskā asinsvadu atbilstība. FloTrac algoritma automātiskās asinsvadu tonusa regulēšanas funkcija nodrošina asinsvadu pretestības un atbilstības izmaiņu noteikšanu un atbilstošu korekciju veikšanu. Nepārtraukti tiek rādīta sirds izsviede, kas tiek iegūta, reizinot sirdsdarbības ātrumu un aprēķināto sirds sistolisko tilpumu, kura noteikšanai tiek izmantota spiediena līkne. FloTrac, FloTrac Jr vai Acumen IQ sensors mēra arteriālā spiediena variācijas attiecībā pret sirds sistoles tilpumu.

HemoSphere spiedienkabelis un FloTrac, FloTrac Jr vai Acumen IQ sensors izmanto pacienta esošo arteriālā spiediena līkni, lai nepārtraukti mērītu sistoles tilpuma variāciju (SVV). SVV ir jutīgs pacienta pirmsslodzes reaģētspējas indikators, kad pacientam tiek veikta 100% mehāniskā elpināšana ar nemainīgu ātrumu un elpošanas tilpumu un bez spontāniem elpas vilcieniem. SVV vienmēr ir ieteicams izmantot kopā ar sistoles tilpuma un sirds izsviedes novērtējumu.

Izmantojot Acumen IQ sensoru, pacienta esošā arteriālā spiediena līkne tiek izmantota, lai nepārtraukti mērītu sistolisko kritumu (dP/dt) un dinamisko artēriju elastīgumu (Ea_{dyn}). Ea_{dyn} ir mērs, kas raksturo arteriālās sistēmas radīto kreisā kambara pēcslodzi (arteriālo elastību) attiecībā pret kreisā kambara elastību (dinamisko arteriālo elastību). Informāciju par Acumen IQ sensoru un Acumen Hypotension Prediction Index (HPI) funkciju skatiet šeit: Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp. Acumen HPI funkcijas aktivizēšana ir pieejama tikai noteiktās teritorijās. Lai saņemtu papildinformāciju par šīs uzlabotās funkcijas iespējošanu, sazinieties ar vietējo Edwards pārstāvi.

Izmantojot FloTrac tehnoloģiju, ir pieejami šādi parametri: sirds izsviede (CO), sirds indekss (CI), sirds jaudas izvade (CPO), sirds jaudas indekss (CPI), sistoles tilpums (SV), sistoles tilpuma indekss (SVI), sistoles tilpuma variācija (SVV), sistoliskais spiediens (SYS), diastoliskais spiediens (DIA), vidējais arteriālais spiediens (MAP) un sirdsdarbības ātrums (PR). Ja izmanto Acumen IQ sensoru un Acumen HPI funkcija ir aktivizēta, ir pieejami šādi papildu parametri: dinamiskais arteriālais elastīgums (Ea_{dyn}), sistoliskais kritums (dP/dt), pulsa spiediena variācija (PPV) un parametrs Acumen Hypotension Prediction Index (HPI). Ja FloTrac, FloTrac Jr vai Acumen IQ sensors ir savienots pārī ar pacienta centrālo venozo spiedienu (CVP), ir pieejama arī sistēmiskā asinsvadu pretestība (SVR) un sistēmiskās asinsvadu pretestības indekss (SVRI).

UZMANĪBU

FT-CO mērījumu efektivitāte pediatrijas pacientiem, kuri jaunāki par 12 gadiem, nav novērtēta.

Neprecīzus FT-CO mērījumus var izraisīt šādi faktori:

- nepareizi nullēts un/vai līmeņots sensors/devējs;
- pārmērīga vai nepietiekama spiediena izlīdzināšana spiediena caurulītēs;
- pārmērīgas asinsspiediena variācijas. BP variācijas izraisa tostarp šādi faktori:
 - * intraaortālie balonsūkņi;

- jebkura klīniskā situācija, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu aortas spiedienam, tostarp šādas situācijas:
 - izteikta perifērā vazokonstrikcija, kas izraisa kļūdainu radiālā arteriālā spiediena līkni;
 - * hiperdinamisks stāvoklis, kas ir raksturīgs pēc aknu transplantēšanas;
- pārmērīgas pacienta kustības;
- elektrokoagulācijas vai elektroķirurģijas ierīču traucējumi.

Regurgitācija aortas vārstulī var izraisīt pārāk lielas sirds sistoliskā tilpuma/sirds izsviedes vērtības aprēķināšanu atkarībā no vārstuļu slimības smaguma pakāpes un atpakaļ kreisajā kambarī ieplūdušā tilpuma.

9.2.1 FloTrac, FloTrac Jr vai Acumen IQ sensora pievienošana

- 1. Pievienojiet vienu spiedienkabeļa galu HemoSphere Alta uzlabotā monitoringa platformai.
- 2. Lai atgaisotu un uzpildītu intravenozās sistēmas infūzijas maisu un FloTrac, FloTrac Jr vai Acumen IQ sensoru: apgrieziet otrādi fizioloģiskā šķīduma intravenozās sistēmas infūzijas maisu (antikoagulācija atbilstoši iestādes politikai). Caurduriet intravenozās sistēmas infūzijas maisu ar šķidruma ievades komplektu, turot pilienu kameru stateniskā stāvoklī. Turiet intravenozās sistēmas infūzijas maisiņu apgrieztu otrādi un ar vienu roku uzmanīgi izspiediet no maisiņa gaisu, vienlaikus ar otru roku velkot skalošanas izcilni (Snap-Tab), līdz no intravenozās sistēmas infūzijas maisiņa ir izvadīts viss gaiss un pilienu kamera ir piepildīta līdz pusei.
- 3. levietojiet intravenozās sistēmas infūzijas maisiņu spiediena maisiņā un pakariet to uz infūzijas statīva (NEPIEPILDIET TO).
- 4. Skalojiet FloTrac/FloTrac Jr sensoru tikai gravitācijas spēka ietekmē (neradot spiediena maisiņā spiedienu), turot spiediena caurulīti stateniskā stāvoklī, lai spiediena caurulītē paceltos šķidruma līmenis, izspiežot no tās gaisu, līdz šķidrums sasniedz caurulītes galu.
- 5. Radiet spiediena maisiņā paaugstinātu spiedienu, līdz tas sasniedz 300 mmHg.
- 6. Veiciet FloTrac/FloTrac Jr sensora ātro skalošanu un piesitiet pie caurulītes un noslēgkrāniem, lai izvadītu visus atlikušos burbuļus.
- 7. Veicot taisna virziena kustību uz iekšu vai uz āru, pievienojiet uzpildītā FloTrac/FloTrac Jr sensora zaļo savienotāju. Ap spiedienkabeļa nullēšanas pogu esošais LED indikators (skatiet (2): 9-1. att. 166. lpp.) mirgo zaļā krāsā, norādot, ka spiediena sensors ir noteikts. Ja indikators ir dzeltenā krāsā, ir radusies kļūme. Ja tā notiek, skatiet statusa joslā informāciju par konkrēto kļūmi.
- 8. Pievienojiet caurulīti arteriālajam katetram un pēc tam aspirējiet un skalojiet sistēmu, lai nodrošinātu, ka tajā nav palikuši burbulīši.
- 9. Izpildiet periodiskās devēja kalibrēšanas procedūras (atbilstoši iestādes politikai), lai nodrošinātu, ka tiek pārraidīti pareizi spiediena signāli. Skatiet FloTrac, FloTrac Jr vai Acumen IQ sensora lietošanas instrukciju.
- 10. Izpildiet pacienta datu ievades darbības. Skat. Pacienta dati 127. lpp.
- 11. Izpildiet turpmāk sniegtos norādījumus par FloTrac, FloTrac Jr vai Acumen IQ sensora nullēšanu.

UZMANĪBU

Pievienojot vai atvienojot kabeli, vienmēr satveriet savienotāju, nevis kabeli.

Nesavērpiet un nesalieciet savienotājus.

9.2.2 Vidējošanas laika iestatīšana — tikai FloTrac sensoram

- 1. Pieskarieties ar FloTrac sensora palīdzību uzraudzīta parametra elementa iekšpusē, lai piekļūtu elementa konfigurācijas izvēlnei.
- 2. Pieskarieties cilnei Delta intervāli.
- 3. Atlasiet radiopogu sadaļā CO/spiediena vidējais laiks. Ir pieejamas tālāk norādītās opcijas.
 - 5 sek.
 - 20 sek. (noklusējuma iestatījums un ieteicamais laika intervāls)
 - 5 min

Lai iegūtu papildinformāciju par izvēlnes **CO/spiediena vidējais laiks** opcijām, skatiet šeit: Delta intervāli/ vidējošana 130. lpp.. Acumen IQ sensora vidējošanas laika noklusējums ir 20 sekundes.

9.2.3 Arteriālā spiediena nullēšana

Lai nodrošinātu precīzu pārraudzību, FloTrac, FloTrac Jr vai Acumen IQ sensors ir jānullē līdz atmosfēras spiedienam.

 Pieskarieties ikonai Nulle Nulle navigācijas joslā. VAI

۰**0**۰

Nospiediet fizisko nullēšanas pogu, kas atrodas tieši uz spiedienkabeļa (tikai modelim HEMPSC100), un turiet to nospiestu trīs sekundes (skat. 9-1. att. 166. lpp.).

UZMANĪBU

Lai novērstu kabeļu bojājumus, nelietojiet pārlieku spēku uz spiediena kabeļa nullēšanas pogu.

- 2. Ekrānā tiek parādīta pašreizējā arteriālā spiediena līkne, un tā tiek nepārtraukti atjaunināta. Tas nozīmē, ka nullēšana ir veiksmīgi izpildīta.
- 3. Atlasiet **ART** (arteriālais) blakus norādītajai pieslēgvietai, pie kuras ir pievienots aktīvais spiedienkabelis. Ir iespējams vienlaikus pievienot līdz četriem spiedienkabeļiem un vienu oksimetrijas kabeli.
- 4. Pārliecinieties, vai sensors ir līmeņots attiecībā pret pacienta flebostatiskās ass pozīciju, kā tas ir norādīts lietošanas instrukcijā.

Piezīme

Lai nodrošinātu sirds izsviedes mērījuma precizitāti, ir svarīgi vienmēr uzturēt FloTrac, FloTrac Jr vai Acumen IQ sensoru vajadzīgajā līmenī attiecībā pret flebostatisko asi.

5. Atveriet FloTrac/FloTrac Jr sensora noslēgkrāna vārstu, lai mērītu atmosfēras gaisa spiedienu. Spiediena rādījumam ir jābūt taisnai horizontālai līnijai.

۰**0**،

6. Nospiediet fizisko nullēšanas pogu

kas atrodas tieši uz spiedienkabeļa (tikai HEMPSC100), un turiet

to nospiestu trīs sekundes vai pieskarieties nullēšanas pogai ekrānā. Kad nullēšana ir veiksmīgi pabeigta, atskan skaņas signāls un tiek parādīts ziņojums **"Nullēšanas laiks"** kopā ar reālo laiku un datumu virs pievienotā spiedienkabeļa pieslēgvietas līknes diagrammas.

- 7. Pārliecinieties, vai nulles līmeņa spiediena vērtība ir nemainīga, un pagrieziet noslēgkrānus tā, lai devēji mērītu pacienta intravaskulāro spiedienu.
- 8. Lai sāktu CO monitoringu, pieskarieties sākuma ikonai. **Kad** ir aprēķināta nākamā CO vērtība, tā tiek parādīta, un vērtības atjaunināšana tiek turpināta atbilstoši iestatījumam **CO/spiediena vidējais laiks**. Ar Acumen IQ uzraudzītie parametri tiek atjaunināti ik pēc 20 sekundēm.

Kad ir aktivizēta CO pārraudzība, asinsspiediena līkni jebkurā laikā var skatīt, pieskaroties ikonai **Nulle** navigācijas joslā. Atvienojot HemoSphere spiedienkabeli no saderīgas pārraudzības ierīces vai sensorus no spiedienkabeļa, vienmēr velciet aiz savienojuma vietas. Nevelciet aiz kabeļiem un neizmantojiet atvienošanai citus rīkus.

9.2.4 SVR pārraudzība

Ja HemoSphere spiedienkabelis ir savienots pārī ar FloTrac, FloTrac Jr vai Acumen IQ sensoru, to var izmantot sistēmiskās asinsvadu pretestības (SVR) un sistēmiskās asinsvadu pretestības indeksa (SVRI) pārraudzībai, izmantojot ar spiedienkabeli pārraudzītu CVP vai lietotāja manuāli ievadītu pacienta CVP vērtību. Papildinformāciju par CVP pārraudzību ar pievienotu spiedienkabeli skatiet šeit: Spiedienkabeļa monitorings, izmantojot TruWave spiediena devēju 171. lpp. Informāciju par CVP avota prioritātes noteikšanu skatiet šeit: 4-1. tabula 94. lpp. Lai manuāli ievadītu pacienta CVP vērtību, veiciet tālāk norādītās darbības.

- 1. Pieskarieties jebkurā SVR/SVRI parametra elementa vietā → pieskarieties cilnei CVP ieraksts.
- 2. levadiet CVP vērtību.

3.

Pieskarieties "X" ikonai **et al.**, lai atgrieztos galvenajā pārraudzības ekrānā.

Ja nav noteikts neviens CVP avots, piešķirtā noklusējuma vērtība ir 5 mmHg. Kā mainīt noklusējuma vērtību, skatiet CVP iestatījumi 139. lpp.. Izmantojot Acumen Hypotension Prediction Index (HPI) funkciju, SVR ir pieejams HPI algoritma sānu panelī.

9.3 Spiedienkabeļa monitorings, izmantojot TruWave spiediena devēju

HemoSphere spiedienkabeli var pievienot vienam TruWave spiediena devējam, lai nodrošinātu no atrašanās vietas atkarīgu intravaskulārā spiediena mērījumu. Pieejamie spiedieni, kuru mērīšanai izmantots TruWave vienreizlietojamais spiediena devējs, ir norādīti tālāk.

- CVP: centrālā venozā caurulīte ar centrālo venozo spiedienu (CVP)
- ART: arteriālā caurulīte ar diastolisko spiedienu (DIA_{ART}), sistolisko spiedienu (SYS_{ART}), vidējo arteriālo spiedienu (MAP) un sirdsdarbības ātrumu (PR)
- PAP: plaušu arteriālā caurulīte ar diastolisko spiedienu (DIA_{PAP}), sistolisko spiedienu (SYS_{PAP}), vidējo plaušu arteriālo spiedienu (MPAP)
- RVP: labā sirds caurulīte ar diastolisko spiedienu (DIA_{RVP}), sistolisko spiedienu (SYS_{RVP}), vidējo labā sirds kambara spiedienu (MRVP), labā sirds kambara sirdsdarbības ātrumu (PR_{RVP}), labā sirds kambara beigu diastolisko spiedienu (RV EDP) un labā sirds kambara sistolisko kritumu (RV dP/dt).

Pieejamo parametru sarakstu skat. 9-1. tabula 166. lpp..

9.3.1 TruWave vienreizlietojamā spiediena devēja pievienošana

- 1. Pievienojiet vienu spiedienkabeļa galu HemoSphere Alta uzlabotā monitoringa platformai.
- 2. Lai atgaisotu un uzpildītu intravenozās sistēmas infūzijas skalošanas šķīduma maisu un TruWave devēju: apgrieziet otrādi parasto fizioloģiskā šķīduma maisu (antikoagulācijas procedūra atbilstoši iestādes politikai). Caurduriet intravenozās sistēmas infūzijas maisiņu ar šķidruma ievades komplektu, turot pilienu kameru stateniskā stāvoklī. Turiet intravenozās sistēmas infūzijas maisiņu apgrieztu otrādi un ar vienu roku uzmanīgi izspiediet no maisiņa gaisu, vienlaikus ar otru roku velkot skalošanas izcilni (Snap-Tab), līdz no intravenozās sistēmas infūzijas maisiņa ir izvadīts viss gaiss un pilienu kamera ir piepildīta līdz vajadzīgajam līmenim (½ no kopējā tilpuma vai pilna).
- 3. levietojiet skalošanas šķīduma maisiņu spiediena infūzijas maisiņā (NEPIEPILDIET TO) un pakariet to uz infūzijas statīva vismaz 60 cm (2') augstumā virs devēja.
- 4. Skalojiet TruWave devēju tikai gravitācijas spēka ietekmē (neradot spiediena maisiņā spiedienu), turot spiediena caurulīti stateniskā stāvoklī, lai spiediena caurulītē paceltos šķidruma līmenis, izspiežot no tās gaisu, līdz šķidrums sasniedz caurulītes galu (skalošana ar spiedienu izraisa turbulenci un palielina burbuļu rašanos).
- 5. Radiet spiediena maisiņā paaugstinātu spiedienu, līdz tas sasniedz 300 mmHg.
- 6. Veiciet devēja caurulītes ātro skalošanu, piesitot pie caurulītes un noslēgkrāniem, lai izvadītu visus atlikušos burbuļus.
- 7. Veiciet taisna virziena kustību uz iekšu vai uz āru, lai pievienotu TruWave vienreizlietojamo spiediena devēju HemoSphere spiediena kabelim. Ap spiediena kabeļa nullēšanas pogu esošais LED indikators (skatiet (2): 9-1. att. 166. lpp.) mirgo zaļā krāsā, norādot, ka spiediena sensors ir noteikts. Ja indikators ir dzeltenā krāsā, ir radusies kļūme. Ja tā notiek, skatiet statusa joslā informāciju par konkrēto kļūmi.
- 8. Pievienojiet caurulīti katetram un pēc tam aspirējiet un skalojiet sistēmu, lai pārliecinātos, ka katetrs ir intravaskulārs, un izvadītu atlikušos burbuļus.
- 9. Izpildiet periodiskās devēja kalibrēšanas procedūras (atbilstoši iestādes politikai), lai nodrošinātu, ka tiek pārraidīti pareizi spiediena signāli. Skatiet TruWave spiediena devēja lietošanas instrukcijas.
- 10. Izpildiet pacienta datu ievades darbības. Skat. Pacienta dati 127. lpp.
- 11. Izpildiet turpmāk sniegtos norādījumus, lai nullētu devēju.

9.3.2 Intravaskulārā spiediena nullēšana

Lai nodrošinātu precīzu monitoringu, TruWave vienreizlietojamais spiediena devējs ir jānullē līdz atmosfēras spiedienam.

Pieskarieties ikonai **Nulle** navigācijas joslā.

sekundes (tikai HEMPSC100, skatiet 9-1. att. 166. lpp.).

VAI

1.

Nospiediet fizisko nullēšanas pogu

UZMANĪBU

Lai novērstu kabeļu bojājumus, nelietojiet pārlieku spēku uz spiediena kabeļa nullēšanas pogu.

2. Ekrānā tiek parādīta pašreizējā intravaskulārā spiediena līkne, un tā tiek nepārtraukti atjaunināta. Tas nozīmē, ka nullēšana ir veiksmīgi izpildīta.

- Izmantojiet pievienotā spiediena kabeļa pieslēgvietas spiediena veidu pogu (1, 2, 3, 4 vai 5), lai atlasītu izmantotā spiediena sensora veidu/atrašanās vietu. Šīs līknes krāsa atbildīs atlasītajam spiediena veidam. Ir pieejamas šādas iestatījuma Spiediena devējs opcijas:
 - **ART** (sarkans)
 - CVP (zils)
 - **PAP** (dzeltens)
 - **RVP** (purpurkrāsas)

Izmantojot vairākus spiedienkabeļus, spiediena veids, kas konfigurēts pirmajam kabelim, nav pieejams atlasei otrajam spiedienkabelim.

- 4. Līmeņojiet tieši virs TruWave devēja esošo noslēgkrāna vārstu (ventilācijas atveri) atbilstoši pacienta flebostatiskās ass pozīcijai, kā tas ir aprakstīts lietošanas instrukcijās.
- 5. Atveriet noslēgkrāna vārstu, lai novērtētu atmosfēras apstākļus. Spiediena rādījumam ir jābūt taisnai horizontālai līnijai.
- 6. Nospiediet fizisko nullēšanas pogu

·**O**·

kas atrodas tieši uz spiedienkabeļa, un turiet to nospiestu trīs

sekundes (tikai HEMPSC100) vai pieskarieties nullēšanas pogai ekrānā. Kad nullēšana ir veiksmīgi pabeigta, atskan skaņas signāls un tiek parādīts ziņojums **"Nullēšanas laiks"** kopā ar reālo laiku un datumu pa labi no pievienotā spiedienkabeļa pieslēgvietas līknes diagrammas.

- 7. Pārliecinieties, vai nulles līmeņa spiediena vērtība ir nemainīga, un pagrieziet noslēgkrānus tā, lai devēji mērītu pacienta intravaskulāro spiedienu.
- 8. Pieskarieties jebkur ārpus paneļa Nulle, lai atgrieztos pārraudzības ekrānā. Informāciju par to, kuri galvenie rādītāji ir pieejami atkarībā no konfigurācijas veida, skatiet šeit: 9-1. tabula 166. lpp.

Kad ir aktivizēta spiedienkabeļa pārraudzība, asinsspiediena līkni jebkurā laikā var skatīt, pieskaroties ikonai

Nulle

4

^{Nulle} navigācijas joslā.

To parametru vērtībām, kuru monitoringam tiek izmantots TruWave vienreizlietojamais spiediena devējs, vidējā vērtība tiek aprēķināta par 5 sekunžu intervālu, un šīs vērtības tiek parādītas ik pēc 2 sekundēm. Skat. 5-4. tabula 131. lpp.

9.4 Spiedienkabeļa pārraudzība ar Alta Swan-Ganz pacienta kabeli

HemoSphere spiedienkabeli pievieno vienai Swan-Ganz plaušu artērijas spiediena pieslēgvietai, lai nodrošinātu plaušu artērijas spiediena (PAP) vai labā sirds kambara spiediena (RVP) mērīšanu. Pieejams arī plaušu ķīlēšanās spiediens līdz ar viedā ķīļa algoritmu. Skat. Viedā ķīļa algoritms 174. lpp.

Izmantojot HemoSphere Alta Swan-Ganz pacienta kabeli, spiedienkabeli var pievienot TruWave vienreizlietojamam spiediena devējam, kas ir pievienots plaušu artērijas caurulītei. Veicot PAP pārraudzību, kamēr notiek pārraudzība ar HemoSphere Alta Swan-Ganz pacienta kabeli, var arī pārraudzīt 20 sekunžu parametru vērtības. Skat. 20 sekunžu plūsmas parametri 153. lpp.

- 1. Pievienojiet vienu spiedienkabeļa galu HemoSphere Alta uzlabotā monitoringa platformai.
- Veiciet taisnvirziena kustību uz iekšu vai uz āru, lai pievienotu vai atvienotu TruWave vienreizlietojamo spiediena devēju. Norādījumus par gaisa izvadi no sistēmas skatiet TruWave spiediena devēja lietošanas instrukcijās un 2.–6. darbības aprakstā sadaļā 9.3.1. TruWave vienreizlietojamā spiediena devēja pievienošana 172. lpp..
- 3. Izpildiet periodiskās devēja kalibrēšanas procedūras (atbilstoši iestādes politikai), lai nodrošinātu, ka tiek pārraidīti pareizi spiediena signāli.

Pieskarieties ikonai **Nulle sulle navigācijas joslā**.

VAI

Nospiediet fizisko nullēšanas pogu , kas atrodas tieši uz spiedienkabeļa, un turiet to nospiestu trīs sekundes (skat. 9-1. att. 166. lpp.).

UZMANĪBU

Lai novērstu kabeļu bojājumus, nelietojiet pārlieku spēku uz spiediena kabeļa nullēšanas pogu.

- 5. Izmantojot spiediena veida pogu, atlasiet PAP vai RVP.
- 6. Līmeņojiet tieši virs TruWave devēja esošo noslēgkrāna vārstu (ventilācijas atveri) atbilstoši pacienta flebostatiskās ass pozīcijai, kā tas ir aprakstīts lietošanas instrukcijās.
- 7. Atveriet noslēgkrāna vārstu, lai novērtētu atmosfēras apstākļus. Spiediena rādījumam ir jābūt taisnai horizontālai līnijai.
- 8. Nospiediet fizisko nullēšanas pogu

kas atrodas tieši uz spiedienkabeļa, un turiet to nospiestu trīs

K 7

sekundes vai pieskarieties nullēšanas pogai ekrānā. Kad nullēšana ir veiksmīgi pabeigta, atskan skaņas signāls un tiek parādīts ziņojums **"Nullēšanas laiks"** kopā ar reālo laiku un datumu pa labi no pievienotā spiedienkabeļa pieslēgvietas līknes diagrammas.

- 9. Pārliecinieties, vai nulles līmeņa spiediena vērtība ir nemainīga, un pagrieziet noslēgkrānus tā, lai devēji mērītu pacienta intravaskulāro spiedienu.
- 10. Lai palīdzētu pareizi novietot katetra galu plaušu artērijā, pieskarieties izvēršanas ikonai un novērtētu PAP spiediena līkni. Parādās esošā spiediena līkne kopā ar grafisku palīglīdzekli ar līkņu piemēriem dažādiem katetra gala stāvokļiem.
- 11. Pieskarieties jebkur ārpus paneļa Nulle, lai atgrieztos pārraudzības ekrānā. Jebkurā laikā atgriezieties ekrānā Nulle, lai skatītu PAP datus.

9.4.1 Viedā ķīļa algoritms

Viedā ķīļa algoritms izstrādāts tā, lai nodrošinātu izelpas beigu vērtību plaušu artērijas oklūzijas spiediena (PAOP) signālam, ko dēvē arī par plaušu ķīlēšanās spiedienu, plaušu kapilāru ķīlēšanās spiedienu (PCWP) vai plaušu artērijas ķīlēšanās spiedienu (PAWP), un novērtēt plaušu artērijas oklūzijas spiediena mērījumu.

Lietošanas indikācijas. Lietojot kombinācijā ar Swan-Ganz katetru, kas pievienots spiedienkabelim un spiediena devējam, Edwards Lifesciences viedā ķīļa algoritms mēra plaušu artērijas oklūzijas spiedienu, nodrošina tā rādījumu un novērtē plaušu artērijas oklūzijas spiediena mērījuma kvalitāti. Viedā ķīļa algoritms ir paredzēts lietošanai intensīvās aprūpes pacientiem, kuru vecums ir vairāk nekā 18 gadi un kuriem tiek veikta uzlabota hemodinamiskā stāvokļa pārraudzība. Viedā ķīļa algoritms tiek uzskatīts par papildu kvantitatīvo informāciju saistībā ar pacienta fizioloģisko stāvokli, un tā tiek nodrošināta tikai kā atsauce. Terapeitiskus lēmumus nedrīkst pieņemt, pamatojoties tikai uz viedā ķīļa algoritma parametru.

Viedā ķīļa algoritms ir paredzēts lietošanai ar Swan-Ganz plaušu artērijas katetru, kas pievienots pie HemoSphere spiedienkabeļa un TruWave spiediena devēja.

Lai mērītu PAOP, vispirms plaušu artērijā tiek ievadīts Swan-Ganz katetrs. Kad Swan-Ganz katetrs ir novietots kādā no mazākajām plaušu artērijām, piepildītais katetra balons īslaicīgi noslēdz artēriju, tāpēc var izmērīt PAOP signālu, kā parādīts šeit: 9-2. att. 175. lpp..

1. plaušu artērijas spiediens (mmHg)

3. PAOP mērījuma signāls

2. laiks (s)

9-2. attēls. PAOP mērījuma ilustrācija

PAOP mērījumā ir iekļautas intratorakālā spiediena izmaiņas, kas rodas elpošanas cikla gaitā. Elpošanas modelis mehāniskās ventilācijas (pozitīvs spiediens) un spontānas elpošanas (negatīvs spiediens) gadījumā atšķiras, tāpēc algoritmam tas ir jāzina, lai aprēķinātu izelpas beigu PAOP vērtības, kā parādīts šeit: 9-3. att. 175. lpp..

Viedā ķīļa algoritms izmanto pacienta elpošanas veidu un plaušu artērijas spiediena (PAP) signālu, kas iegūts no TruWave spiediena devēja, kam izveidots savienojums ar Swan-Ganz katetru, un tas pārtop par PAOP signālu, kad balons tiek piepildīts (ieķīlēts). Viedā ķīļa algoritms konstatē iespējamus ķīlēšanās notikumus, mēra PAOP un nodrošina PAOP kvalitātes novērtēšanu.

1. plaušu artērijas spiediens (mmHg)

3. PAOP mērījuma signāls

2. laiks (s)

9-3. attēls. Viedā ķīļa PAOP mērījuma piemērs ar spontānās elpošanas (A) un mehāniskās ventilācijas (B) ievades datiem 9-3. att. 175. lpp.: PAOP mērījumu piemēri ar dažādiem elpošanas veidiem. Klīniski lietderīgākie PAOP mērījumi tiek veikti izelpas beigās ^{1 2 3} (baltas raustītas līnijas norāda viedā ķīļa PAOP mērījuma izvadi izelpas beigās atbilstoši elpošanas veidam). A) Spontānas elpošanas ievade pēc noklusējuma izmanto PAOP mērījumu PAOP spiediena līknes augšpusē, ko apzīmē pārrauta balta līnija. B) Mehāniski ventilēta ievade pēc noklusējuma izmanto PAOP mērījuma izmanto PAOP mērījumu PAOP spiediena līknes apakšdaļā, ko apzīmē pārrauta balta līnija.

- 1. Cengiz M, Crapo RO, Gardner RM. The effect of ventilation on the accuracy of pulmonary artery and wedge pressure measurements. Crit Care Med. 1983;11(7):502-507.
- 2. Bootsma IT, Boerma EC, de Lange F, Scheeren TWL. The contemporary pulmonary artery catheter. Part 1:placement and waveform analysis. J Clin Monit Comput. 2022;36(1):5-15.
- 3. Ragosta M, Kennedy JLW. Chapter 2 Normal Waveforms, Artifacts, and Pitfalls. In: Ragosta M, ed. Textbook of Clinical Hemodynamics (Second Edition). Second Edition. Elsevier; 2018:17-55.

BRĪDINĀJUMS

Konkrētus norādījumus par piederuma novietošanu un lietošanu, kā arī saistītos paziņojumus ar apzīmējumiem BRĪDINĀJUMS un UZMANĪBU un specifikācijas, skatiet katra piederuma komplektācijā ietvertajos norādījumos.

9.4.1.1 PAOP mērījumi un problēmu novēršana

Tālāk minētajos piesardzības pasākumu elementos identificēts katetru un sensoru novietojums un ieguves faktori, kas var ietekmēt mērījumu rezultātus.

Piesardzības pasākums. levietošana augšstilba artērijā var izraisīt katetra garuma redundanci labajā priekškambarī un grūtības iegūt plaušu artērijas ķīļa (oklūzijas) pozīciju.

UZMANĪBU

Neprecīzu PAOP mērījumu iespējamie cēloņi:

- Nepareizs katetra novietojums vai pozīcija
- Katetra balons nav pilnībā uzpildīts vai ir pārāk pilns
- Nepareizi nullēts un/vai nolīmeņots devējs
- Pārāk daudz vai nepietiekami slāpēta spiediena līnija
- PAP līnijas korekcijas pēc uzraudzības sākšanas

Plaušu artērijas oklūzijas spiediena (PAOP) vērtības, ko izmanto sirds funkcijas novērtēšanai, ietekmē šādi faktori:

- Šķidruma statuss⁴
- Miokarda kontraktilitāte⁴
- Vārstuļa un plaušu asinsrites integritāte³
 - 4. Mitchell, Joshua D., and David L. Brown. "Invasive hemodynamic monitoring." Cardiac Intensive Care. Elsevier, 2018. 465-477.

Lai iegūtu PAOP mērījumu, Swan-Ganz katetrs tiek ievadīts plaušu artērijā atbilstoši slimnīcas politikai un katetra lietošanas instrukcijai. Kad Swan-Ganz katetrs ir ievietots kādā no mazākajām plaušu artērijām, piepildītais katetra balons nosprosto artēriju, tāpēc algoritms var reģistrēt intratorakālā spiediena izmaiņas, kas rodas elpošanas cikla laikā, un iegūt PAOP mērījumu.

Klīniski noderīgākās PAOP vērtības tiek iegūtas elpošanas cikla beigās, kad intratorakālais spiediens ir salīdzinoši vienmērīgs.¹²³

Viedā ķīļa algoritmu var izmantot plaušu artērijas oklūzijas spiediena (PAOP) noskaidrošanai. Tas ir ieteiktais mērījums, kas jāizmanto atbilstoši ārsta ieskatiem.

Piezīme

Izmantojot viedā ķīļa algoritmu, nepieciešams spiediena un sirdsdarbības spiediena samazinājuma mediāna starp plaušu artērijas (PA) un PAOP spiediena līknēm, lai aktivizētu automatizēto programmu. Ja algoritms neatšķir abas spiediena līknes, veiciet mērījumu bez viedā ķīļa algoritma.

9.4.1.2 PAOP mērīšanas procedūra

Lai sāktu PAOP mērīšanas procedūru, rīkojieties, kā norādīts tālāk.

۰**0**۰

- Veiciet sadaļā Spiedienkabeļa pārraudzība ar Alta Swan-Ganz pacienta kabeli 173. lpp. norādīto 1.–
 9. darbību, lai pievienotu un nullētu Swan-Ganz katetra plaušu spiediena caurulīti.
- 2. Lai saņemtu palīdzību katetra gala pareizai novietošanai plaušu artērijā, pieskarieties izvēršanas ikonai

nullēšanas ekrānā (navigācijas joslā), lai skatītu un novērtētu PAP spiediena līkni. Parādās esošā spiediena līkne kopā ar grafisku palīglīdzekli ar līkņu piemēriem dažādiem katetra gala stāvokļiem. Pārbaudiet, vai Swan-Ganz katetra balons nav ieķīlēts.

BRĪDINĀJUMS

Ja plaušu artērijas katetrs pāriet ķīļa pozīcijā, kamēr balons nav piepildīts, iespējama spontāna gala ieķīlēšanās, un plaušu artērijas spiediena līkne izskatās pēc ķīļa; tas var ietekmēt algoritma precizitāti. Veiciet atbilstošas darbības saskaņā ar iestādes standarta klīniskajām procedūrām.

- 3. Pieskarieties pogai Viedais ķīlis, lai aktivizētu viedā ķīļa algoritmu.
- 4. Atlasiet elpošanas veidu: Mehāniska ventilācija vai Spontāna elpošana.

- 5. Saņemot algoritma uzvedni, pieskarieties pogai **Sākt** un piepildiet balonu. Piepildot balonu, jāņem vērā slimnīcas politika un katetru lietošanas instrukcijas.
- 6. Tiek parādīts taimeris ar piepildīšanas laiku.

Spiediena līkne mainās no PAP uz PAOP līkni. Mērījums jāveic apmēram 1–2 elpošanas ciklu laikā (5–15 sekundes).

BRĪDINĀJUMS

Katetru nedrīkst atstāt pastāvīgā ķīļa pozīcijā. Centieties arī balonu nepiepildīt ilgstoši, kamēr katetrs atrodas ķīļa pozīcijā; tas ir nosprostojošs manevrs un var izraisīt plaušu infarktu.

Piezīme

PAOP mēriet tikai tad, ja nepieciešams un ja gala pozīcija ir pareiza. Centieties neveikt ilgstošus manevrus, lai iegūtu PAOP, un izmantojiet minimālu ķīļa laiku (divi elpošanas cikli vai 10–15 sekundes), it īpaši pacientiem ar plaušu hipertensiju. Ja rodas grūtības, pārtrauciet ķīļa mērījumus. Dažiem pacientiem PAOP rādītāju bieži vien var aizstāt ar plaušu artērijas gala diastolisko spiedienu, ja spiediens ir gandrīz identisks, tādējādi nav atkārtoti jāveic balona piepildīšana. Visiem pacientiem balona piepildīšanu drīkst veikt, nepārsniedzot divus elpošanas ciklus vai 10 līdz 15 sekundes.

Centieties neizmantot ilgstošus manevrus, lai iegūtu PAOP. Ja rodas grūtības, atmetiet "ķīļa" procedūru.

Viedā ķīļa algoritms parāda ziņojumu, ja nav konstatēts PAOP mērījums 30 sekunžu laikā pēc viedā ķīļa algoritma aktivizēšanas vai ja viedā ķīļa algoritms ir aktivizēts ilgāk par 60 sekundēm.

Ķīļa spiediena līknes konstatēšanas ierobežojums ir 60 sekundes. Ja ķīlis ir ilgāks par 60 sekundēm, automātiski tiek atvērts ekrāns **"Rediģēt ķīli"**.

Viedajam ķīlim nepieciešami vismaz 60 sekundes ilgi PAP spiediena līknes dati, pirms iespējams aktivizēt viedo ķīli.

- 7. Pēc mērījuma ieguves vai diviem elpošanas ciklu mēģinājumiem iztukšojiet balonu un pārliecinieties, ka spiediena līkne atgriežas plaušu artērijas formā.
- 8. Kad iztukšošana ir sekmīgi pabeigta, tiek norādīta PAOP vērtība un tiek parādīts ziņojums "Ķīlis sekmīgs".

Sekmīgus PAOP mērījumus jebkurā laikā var skatīt sānu panelī Notikumi un lejaukšanās.

Pieskarieties ikonai **Klīniskie Rīki +**→ pogai **Notikumi un lejaukšanās**. Ritiniet notikumus, meklējot pabeigtos viedā ķīļa notikumus.

Piezīme

Ja PAOP mērījuma laikā radusies kļūda, algoritms parāda trauksmi "Viedais ķīlis — ķīlis nav konstatēts". Ja nav konstatēts ķīlis, izvelciet katetru atpakaļ un mēģiniet vēlreiz vai veiciet mērījumu bez viedā ķīļa algoritma.

lerīces lietotājs var veikt PAOP mērījumu manuāli, lai apstiprinātu ierīces izvadi. Šo darbību var veikt HemoSphere Alta monitorā. Skat. Manuāli veikts PAOP mērījums 178. lpp.

9.4.1.3 Manuāli veikts PAOP mērījums

PAOP mērījumu var pielāgot vai rediģēt trīs dažādos viedā ķīļa procedūras punktos.

Pēc sekmīgas ķīļa izveides. Kad konstatēta sekmīga ķīļa izveide, balons ir piepildīts un iztukšots, pieskarieties pogai **Rediģēt ķīli**. Aizvirziet X un Y kursorus līdz vēlamajam oklūzijas spiediena punktam uz spiediena līknes un pieskarieties pogai **Saglabāt**. Skat. 9-4. att. 179. lpp.

9-4. attēls. Rediģēt ķīli

Pēc ķīļa konstatēšanas un balona piepildīšanas laikā. Kad konstatēta ķīļa izveide un kamēr balons ir piepildīts, pieskarieties pogai Fiksēt. Aizvirziet X un Y kursorus līdz vēlamajam oklūzijas spiediena punktam uz spiediena līknes un pieskarieties pogai Saglabāt. Blakus tekstam "Rediģēt ķīli tiks rādīts taimeris ar uzpildīšanas laiku."

Nav konstatēts ķīlis. Ja sistēma nekonstatē ķīli, pieskarieties pogai Fiksēt. Aizvirziet X un Y kursorus līdz vēlamajam oklūzijas spiediena punktam uz spiediena līknes un pieskarieties pogai Saglabāt.

9.4.1.4 Ķīļa indekss

Ķīļa indekss atspoguļo PAOP mērījuma kvalitāti, un augstāks ķīļa indekss norāda uz labāku kvalitāti. Ķīļa indekss ir pieejams PAOP mērījumā PAOP pārraudzības laikā. Ķīļa indeksa līmenis tiek aprēķināts līdz ar katru PAOP mērījuma atjauninājumu ik pēc 1 sekundes. PAOP spiediena līknes ķīļa indeksa līmeņu aprakstu skat. 9-2. tabula 179. lpp.. Ķīļa indeksa līmeņi **"Labi"** un **"Vājš"** parasti tiek saistīti ar trauksmes stāvokļiem.

Ķīļa indekss	Nosacījumi*	Kvalitātes rādījums
Labs (2)	PAOP _{Vidējais spiediens} < PAP _{diastoliskais} 0,58 * PAOP _{Pulsa spiediens} + 0,20 * PAOP _{Vidējais spiediens} ≤ 7,79 PAOP _{Spiediena mediāna} > 2 mmHg PAOP _{Pulsa spiediens} > 0,5 mmHg	Normāls
Labs (1)	PAOP _{Vidējais spiediens} < PAP _{diastoliskais} 0,58 * PAOP _{Pulsa spiediens} + 0,20 * PAOP _{Vidējais spiediens} > 7,79 PAOP _{Spiediena mediāna} > 2 mmHg PAOP _{Pulsa spiediens} > 0,5 mmHg	Vidējs (augsts PAOP pulsa spiediens vai augsts PAOP vidējais spiediens)
Vājš (0)	PAOP _{Vidējais spiediens} ≥ PAP _{diastoliskais} PAOP _{Spiediena mediāna} < 2 mmHg PAOP _{Pulsa spiediens} < 0,5 mmHg	Slikts (iespējams trauksmes stāvoklis, kas izraisa ierobežota apjoma signālu)
* Piezīme. Visiem nor	ādītajiem nosacījumiem jābūt derīgiem, lai aktivizētu saistīto ķīļa	indeksu.

9-2. tabula. Ķīļa indekss

9.4.1.5 Klīniskās validācijas rezultāti

Tabulās tālāk parādīti retrospektīvi klīniskās validācijas rezultāti attiecībā uz viedā ķīļa algoritmu. Tabulās ir parādīta viedā ķīļa algoritma PAOP identifikācijas veiktspēja un PAOP mērījuma precizitātes veiktspēja, salīdzinot ar atsauces rādītājiem (t.i., konsensu), ko nodrošina trīs veselības aprūpes nodrošinātāji (HCP).

Viedā ķīļa algoritma para- metrs	Atsauces vērtības ieguvei izmantotā metode (konsenss)	Jutīgums (%)	Specifi- skums (%)	PPV (%)	NPV (%)
PAOP identifikācija	Trīs HCP anotāciju režīms	100	96	95	100
(225 PAP spiediena līknes no 129 pacientiem)		[100; 100]	[92; 100]	[89; 99]	[100; 100]
,					

9-3. tabula. PAOP identifikācijas veiktspējas rezultāti*

*Piezīme. Dati sniegti kā vidējā vērtība ar 95% ticamības intervālu (TI). PPV: pozitīvā prognostiskā vērtība, NPV: negatīvā prognostiskā vērtība.

9-4. tabula. PAOP mērījumu veiktspējas rezultāti*

Viedā ķīļa algoritma para- metrs	Atsauces vērtības ieguvei izmantotā metode (konsenss)	MAE (mmHg)	Nobīde (mmHg)	Stand. (mmHg)	Korelācija (r)	
PAOP mērījums (110 PAOP mērījumi no 59 pacientiem)	Trīs HCP vidējais PAOP mērī- jums	1,1 [0,8; 1,5]	0,4 [0,1; 0,7]	1,7 [1,4; 2,0]	0,98	
*Piezīme. Dati sniegti kā vidējā vērtība ar 95% ticamības intervālu (TI). MAE: vidējā absolūtā kļūda, Stand.: standartnovirze.						

9-5. tabula. PAOP identifikācijas veiktspējas rezultāti pacientiem ar vārstuļu darbības traucējumiem, HCP apstiprinātu aritmiju, katetra kustību un sirds mazspēju*

Viedā ķīļa algo- ritma parametrs	Testējamais avots	Atsauces vērtības ieguvei izmantotā metode (konsenss)	Jutīgums (%)	Specifi- skums (%)	PPV (%)	NPV (%)	
PAOP identifikāci- ja (pacienti ar vār- stuļa darbības traucējumiem)	Viedā ķīļa algo- ritms (N=12 PAP spie- diena līknes no 8 pacientiem)	Trīs HCP anotāciju režīms	100 [100; 100]	100 [100; 100]	100 [100; 100]	100 [100; 100]	
PAOP identifikāci- ja (pacienti ar arit- miju)	Viedā ķīļa algo- ritms (N=10 PAP spie- diena līknes no 6 pacientiem)		100 [100; 100]	100 [100; 100]	100 [100; 100]	100 [100; 100]	
PAOP identifikāci- ja (pacienti ar ka- tetra kustību)	Viedā ķīļa algo- ritms (N=18 PAP spie- diena līknes no 10 pacientiem)		100 [100; 100]	100 [100; 100]	100 [100; 100]	100 [100; 100]	
PAOP identifikāci- ja (pacienti ar sirds mazspēju)	Viedā ķīļa algo- ritms (N=55 PAP spie- diena līknes no 33 pacientiem)		100 [100; 100]	100 [100; 100]	100 [100; 100]	100 [100; 100]	
	Viedā ķīļa algo- ritma parametrs	Testējamais avots	Atsauces vērtības ieguvei izmantotā metode (konsenss)	Jutīgums (%)	Specifis- kums (%)	PPV (%)	NPV (%)
---	-------------------------------------	----------------------	--	-----------------	--------------------------	------------	------------
* Dati sniegti kā vidējā vērtība ar 95% ticamības intervālu (TI). PPV: pozitīvā prognostiskā vērtība, NPV: negatīvā prognostisk vērtība.					rognostiskā		

9-6. tabula. PAOP mērījumu veiktspējas rezultāti pacientiem ar vārstuļu darbības traucējumiem, HCP apstiprinātu aritmiju, katetra kustību un sirds mazspēju*

ritma parametrs	avots	Atsauces vertibas ieguvei izmantotā metode (konsenss)	MAE (mmHg)	Nobīde (mmHg)	Stand. (mmHg)	Korelācija (r)
PAOP mērījums (pacienti ar vār- stuļa darbības traucējumiem)	Viedā ķīļa algo- ritms (N=5 PAOP mērī- jumi no 4 pacien- tiem)		0,6 [0,4; 0,9]	0,0 [–1,0; 0,9]	0,8 [0,2; 1,4]	1,00
PAOP mērījums (pacienti ar arit- miju)	Viedā ķīļa algo- ritms (N=6 PAOP mērī- jumi no 6 pacien- tiem)	Trīs HCP vidējais PAOP mērījums	0,7 [0,4; 1,0]	0,3 [–0,5; 1,1]	0,8 [0,3; 1,2]	0,99
PAOP mērījums (pacienti ar ka- tetra kustību)	Viedā ķīļa algo- ritms (N=10 PAOP mērī- jumi no 10 paci- entiem)		0,5 [0,3; 0,6]	-0,1 [-0,5; 0,3]	0,5 [0,3; 0,8]	0,99
PAOP mērījums (pacienti ar sirds mazspēju)	Viedā ķīļa algo- ritms (N=23 PAOP mērī- jumi no 13 pa- cientiem)		1,3 [0,5; 2,5]	0,5 [-0,4; 1,4]	2,4 [1,5; 3,3]	0,98

9.5 Ekrāns Nulle un spiediena līkne

9-5. attēls. Nulles ekrāns — kabeļa kanālu spiediena nullēšana

Šim ekrānam var piekļūt, izmantojot ikonu **Nulle** navigācijas joslā, un tajā ir pieejamas šādas divas galvenās funkcijas:

- 1. Spiediena veida atlase un devēja nullēšana
- 2. Spiediena līknes skatīšana

9.5.1 Spiediena veida atlase un sensora nullēšana

Kā aprakstīts iepriekš, nulles un spiediena līknes ekrāna (**Nulle**) galvenā funkcija ir sniegt lietotājam iespēju nullēt pievienoto spiediena sensoru/devēju. Pirms pārraudzības sākušanas ar spiediena kabeli lietotājam ir jāveic devēja nullēšana.

9.5.2 Spiediena līknes apstiprināšana

Ekrānā **Nulle** tiek rādīta asinsspiediena līkne. Izmantojiet šo ekrānu vai nepārtraukto reāllaika asinsspiediena līkni (skat. Asinsspiediena reāllaika līknes rādīšana 91. lpp.), lai novērtētu arteriālā spiediena līknes kvalitāti, reaģējot uz Kļūme: Spiediens – Pieslēgvieta {0} — Apdraudēta arteriālā spiediena līkne. Šī kļūme tiek ģenerēta, ja pārāk ilgu laiku ir bijusi slikta arteriālā spiediena signāla kvalitāte.

Vertikālā ass tiek automātiski mērogota atbilstoši vidējai BP vērtībai ±50 mmHg.

K 7

PAP pārraudzība. Ekrānu Nulle izmanto arī plaušu artērijas spiediena (PAP) pārraudzībai. Pārraugot rādītāju

PAP, pieskarieties izvēršanas ikonai Leval, lai skatītu un novērtētu PAP spiediena līknes ekrānu, kurā ir redzami dažādiem katetra gala izvietojumiem atbilstošu spiediena līkņu paraugi, un pārliecinieties, vai katetrs ir pareizi ievietots plaušu artērijā.

BRĪDINĀJUMS

Neizmantojiet HemoSphere Alta uzlaboto monitoringa platformu kā sirdsdarbības ātruma vai asinsspiediena monitoru.

9.6 Spiediena signāla izvade

HemoSphere Alta spiedienkabelis sniedz lietotājam iespēju izvadīt spiediena līkni uz pievienotu pacienta monitoru. Spiediena izvade pieejama tikai ar pievienotu HemoSphere Alta spiedienkabeli (HEMAPSC200).

- Pievienojiet spiediena izvades spraudni (skat. (5) sadaļā 9-1. att. 166. lpp.) saderīgam pacienta monitoram. Pārliecinieties, vai izvēlētais savienotājs ir pilnībā pievienots. Skatiet pacienta monitora lietošanas instrukciju.
- 2. Veiciet darbības, lai nullētu spiediena līniju līdz atmosfēras spiedienam. Skat. Intravaskulārā spiediena nullēšana 172. lpp.
 - **،0**،
- 3. Pieskaroties nulles pogai uz HemoSphere Alta monitora ekrāna, vienlaikus nullējiet šī signāla spiedienu arī pacienta monitorā.

10

HemoSphere Alta ClearSight tehnoloģija

Saturs

HemoSphere Alta ClearSight sistēmas metodika	
HemoSphere Alta neinvazīvās sistēmas savienošana	
Izvēles HRS	193
SQI	195
Physiocal metodes rādīšana	
ClearSight sistēmas iestatījumi un manšetes opcijas	196
Sirds kontrolsensora kalibrēšana	
Asinsspiediena kalibrēšana	198
Izejas signāls uz pacienta monitoru	200

10.1 HemoSphere Alta ClearSight sistēmas metodika

HemoSphere Alta ClearSight neinvazīvā sistēma sastāv no HemoSphere Alta uzlabotās monitoringa platformas ar savienotu spiediena kontrolleri, sirds kontrolsensoru un saderīgu Edwards pirksta manšeti vai manšetēm. Skatiet sistēmas savienojumus šeit: 10-1. att. 187. lpp. Precīzas pacienta asinsspiediena un galveno hemodinamisko parametru mērīšanas pamatā ir tilpuma spaiļu metode, Physiocal metode un ClearSight algoritms.

10.1.1 Tilpuma spaiļu metode

ClearSight, ClearSight Jr un Acumen IQ pirkstu manšetēs izmanto tilpuma spaiļu metodi, ko izstrādājis čehu fiziologs J. Peñáz (Penaz J 1973)¹. Pirksta manšete ir aprīkota ar pletismogrāfa sensoru, kurš ir gaismas avots un uztvērējs, lai pastāvīgi uzraudzītu izmaiņas pirksta arteriālo asiņu apjomā. Piepūšams pūslis manšetē ātri reaģē uz šīm izmaiņām apjomā, lai vienādotu manšetes spiedienu ar spiedienu artērijā. Tāpēc artērija ir saspiesta pie tās "nestieptā" apjoma, un manšetes spiediens vienmēr atbilst pirksta arteriālajam spiedienam.

10.1.2 Physiocal metode

Physiocal metode, ko izstrādājis K.H. Wesseling (K.H. Wesseling et al. 1995)², ir īsais fizioloģiskās kalibrācijas nosaukums.

Physiocal metode noregulē izmaiņas "nestieptajā" tilpumā normālā mērīšanas periodā. Manšetes spiediens tiek uzturēts stabils vienu vai vairākus sirdspukstus, un asinsspiediena mērījums tiek acumirklī pārtraukts, lai novērotu pirksta artērijas fizioloģiskās īpašības. Mērījuma perioda sākumā šādi pārtraukumi ir novērojami regulāri. Ja laika gaitā artērijas īpašības ir pietiekami nemainīgas, intervāls starp Physiocal metodes korekcijas reizēm tiek palielināts līdz 70 sirdspukstiem: lielāks intervāls nozīmē lielāku mērījumu stabilitāti.

10.1.3 Spiediena līknes rekonstrukcija un hemodinamiskā analīze (ClearSight tehnoloģija)

Arteriālā asinsspiediena spiediena līkne mainās starp rokas un pirksta artērijām fizioloģisku iemeslu dēļ. ClearSight tehnoloģija izmanto uzlabotas apstrādes metodes, lai rekonstruētu pirksta spiediena līkni radiālā arteriālā spiediena līknē. Spiediena līknes rekonstrukcijas rezultātā tiek iegūtas sirdspukstu vērtības sistoliskajam (SYS), diastoliskajam (DIA) un vidējam (radiālajam) arteriālajam (MAP) neinvazīvajam spiedienam. Ir pieejama arī arteriāla pulsa izmaiņu vērtība (PPV). Spiediena līknes hemodinamiskā analīze nodrošina sirdsdarbības ātruma (PR) vērtības, izmantojot uzlaboto pulsa konturēšanas metodi. Tiek izmantoti sarežģīti algoritmi, lai aprēķinātu sistoles tilpuma variāciju (SVV) un novērtētu dinamisko šķidruma reakciju.

ClearSight tehnoloģija izmanto uzlabotas apstrādes metodes, lai rekonstruētu pirksta spiediena līkni augšdelma artērijas spiediena līknē, kas nodrošina vērtības sirds izsviedei (CO), sirds indeksam (CI), sistoles tilpumam (SV) un sistoles tilpuma indeksam (SVI), izmantojot uzlabotu pulsa konturēšanas metodi.

Sirds jaudas izvade (CPO) un sirds jaudas indekss (CPI) iegūts, izmantojot MAP un CO. Sistēmiskā asinsvadu pretestība (SVR) un sistēmiskās asinsvadu pretestības indekss (SVRI) tiek iegūti, izmantojot MAP un CO, kad tiek ievadīts vai uzraudzīts centrālais venozais spiediens (CVP).

Visi neinvazīvie parametri, kas atlasīti kā galvenie parametri (skat. 1-11. tabula 33. lpp.), tiek vidējoti, un to atjaunināšanas intervāls ir 20 sekundes.

Ja Acumen IQ pirksta manšete un HRS ir savienoti un Acumen Hypotension Prediction Index funkcija ir aktivizēta, Hypotension Prediction Index, HPI, sistoliskais kritums (dP/dt) un dinamiskā elastība (Ea_{dyn}) var tikt uzraudzīti kā galvenie parametri. Lai iegūtu papildinformāciju par iestatīšanu un izmantošanu, skatiet Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp.

10.1.4 Sirds kontrolsensors

Sirds kontrolsensors (HRS) ņem vērā atšķirības spiedienā starp pirkstu un sirdi. Hidrostatiskā spiediena izmaiņas pirksta un sirds augstuma starpības dēļ kompensē HRS. Viens HRS gals tiek novietots uz pirksta manšetes līmenī, bet otrs gals sirds līmenī.

10.1.5 Krāsas izmaiņas, nejutība vai durstīšana pirksta galā

Izmantojot tilpuma spailes metodi, pirkstam tiek pielikts pastāvīgs spiediens, bet tas nekad pilnībā nenosprosto artērijas, lai gan mazina venozo plūsmu un izraisa nelielu venozo asiņu sastrēgumu pirksta galā distāli no manšetes. Tā rezultātā pacienta pirksta galam var mainīties krāsa (zila vai sarkana) pēc dažām uzraudzības minūtēm. Pēc ilgākiem monitoringa periodiem (aptuveni 30 minūtes–2 stundas) dažiem pacientiem pirksta galā var rasties dažādas sajūtas (durstīšana vai nejutība). Uzreiz pēc manšetes noņemšanas uz vidējās falangas bieži ir nedaudz samazināts apjoms, kā arī var būt reakcijas hiperēmija vai pietūkums. Visas šīs parādības parasti izzūd dažas minūtes pēc manšetes spiediena samazināšanas. Mērīšanas laikā uzturot pirkstus un roku siltu, uzlabojas pirksta gala apasiņošana ar arteriālajām asinīm, kas var uzlabot krāsu un samazināt taktilās nejutības rašanās biežumu.

10.1.6 Pārraudzība ar vienu pirksta manšeti

Vienu saderīgu Edwards pirksta manšeti var izmantot, lai tam pašam pacientam veiktu kumulatīvo pārraudzību līdz pat 8 stundām uz viena pirksta. Veicot pārraudzību ar vienu manšeti, HemoSphere neinvazīvā sistēma automātiski un ar regulāriem lietotāja noteiktiem intervāliem (30 minūtes, 2 stundas un 4 stundas) atbrīvo spiedienu no manšetes. Skat. Manšetes spiediena samazināšanas režīms 197. lpp.

Piezīme

Pēc 8 stundām kumulatīvās pārraudzības uz tā paša pirksta HemoSphere neinvazīvā sistēma pārtrauks pārraudzību un parādīs brīdinājumu par to, ka manšete jāuzliek uz cita pirksta, lai turpinātu pārraudzību.

10.1.7 Uzraudzība ar divām manšetēm

Ja monitoringa periodi ir garāki par 8 stundām, HemoSphere Alta uzlabotā monitoringa platforma iespējo divas saderīgas Edwards pirksta manšetes, ko var vienlaikus uzlikt uz diviem dažādiem pirkstiem. Šajā konfigurācijā sistēma pārslēdz aktīvo monitoringu starp divām manšetēm atbilstoši lietotāja noteiktam intervālam — 15, 30 vai 60 minūtēm —, lai nodrošinātu, ka monitoringa pārtraukumi ir minimāli. Skat. ClearSight sistēmas iestatījumi un manšetes opcijas 196. lpp.

Piezīme

HemoSphere Alta neinvazīvā sistēma pastāvīgi nemonitorē vienu pirkstu ilgāk kā 60 minūtes, ja tiek izmantotas divas manšetes. Divu manšešu monitoringa funkcija nodrošina minimālus monitoringa pārtraukumus līdz pat 72 stundām. Divu manšešu pārraudzības laikā vienam pirkstam pārraudzību pastāvīgi nevar veikt vairāk nekā 60 minūtes.

Izmantojot divu manšešu konfigurāciju, pārliecinieties, ka izmērs katram pirkstam ir noteikts individuāli. Pacientiem bieži ir divu dažādu lielumu pirksti, tāpēc ir vajadzīgas divu dažādu izmēru Edwards pirksta manšetes. Izvēloties nepareizu pirksta manšeti, var rasties mērījumu neprecizitātes.

Manšetes izmēra noteikšana var neattiekties uz visām manšetēm.

Ja Acumen IQ pirksta manšete un HRS ir savienoti un Acumen Hypotension Prediction Index funkcija ir aktivizēta, Hypotension Prediction Index funkcija, HPI parametrs, arteriālā pulsa spiediena izmaiņas (PPV), sistoliskais kritums (dP/dt) un dinamiskā arteriālā elastance (Ea_{dvn}) var tikt monitorēti kā galvenie parametri.

Lai iegūtu papildinformāciju par iestatīšanu un izmantošanu, skatiet Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp..

Izmantojot divas pirksta manšetes, tām jābūt Acumen IQ pirksta manšetēm, lai iespējotu HPI.

Sākot mērīšanu, pirksta manšetes termiņš vienam pacientam beigsies pēc 72 stundām.

10.1.8 Metodikas atsauces

- 1. Penaz J (1973), "Photoelectric measurement of blood pressure, volume and flow in the finger" *Digest of the 10th Int Conf Med Biol Engng, Dresden*, p. 104.
- 2. Wesseling KH, et al. (1995), "Physiocal, calibration finger vascular physiology for Finapres" *Homeostasis* 36 (2-3), pp. 67-82.

10.2 HemoSphere Alta neinvazīvās sistēmas savienošana

HemoSphere Alta ClearSight tehnoloģija ir saderīga ar visām apstiprinātajām Edwards pirksta manšetēm. Skatiet 10-1. att. 187. lpp., lai iegūtu pārskatu par HemoSphere Alta neinvazīvās sistēmas savienojumiem.

- 1. Pievienojiet HemoSphere spiediena kontrolleru ClearSight tehnoloģijas pieslēgvietai HemoSphere Alta uzlabotajā monitorā.
- 2. Nospiediet ieslēgšanas pogu, lai ieslēgtu HemoSphere Alta uzlaboto monitoru, un izpildiet pacienta datu ievadīšanas darbības. Skat. Pacienta dati 127. lpp.
- 3. levērojiet tālāk norādīto lietošanas instrukciju par spiediena kontrollera uzlikšanu, atlasiet pirksta manšetes izmēru un uzlieciet pirksta manšeti(-es) pacientam.

Piezīme

Manšetes izmēra noteikšana var neattiekties uz visām manšetēm.

1. Sirds kontrolsensors*

4. Spiediena kontrollera savienojums

5. HemoSphere Alta uzlabotais monitors

- 2. Spiediena kontrollers*
- 3. Pirksta manšete(-es)*

Piezīme

Komponenti, kam 10-1. att. 187. lpp.apzīmējumos ir pievienots simbols "*", ir DAĻAS, KAS SASKARAS AR PACIENTU, kā definēts standartā IEC 60601-1, proti, normālas lietošanas laikā tās saskaras ar pacientu, lai HemoSphere Alta neinvazīvā sistēma varētu izpildīt paredzēto funkciju.

BRĪDINĀJUMS

Komponentus, kas nav apzīmēti kā DAĻAS, KAS SASKARAS AR PACIENTU, nedrīkst likt atrašanās vietā, kurā pacients var saskarties ar šiem komponentiem.

Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja spiediena kontrollers (savienojums daļai, kas saskaras ar pacientu) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam.

Izstrādājumu nedrīkst nekādā veidā pārveidot, veikt tā apkopi vai mainīt. Veicot izstrādājuma apkopi, pārveidojot vai mainot to, var tikt negatīvi ietekmēta pacienta/lietotāja drošība un/vai izstrādājuma veiktspēja.

Nesterilizējiet atkārtoti HemoSphere Alta neinvazīvās sistēmas elementus. HemoSphere Alta neinvazīvā sistēma tiek piegādāta nesterila.

Skatiet tīrīšanas norādījumus. Nedezinficējiet instrumentu autoklāvā vai ar gāzi.

Konkrētus norādījumus par piederuma novietošanu un lietošanu, kā arī saistītos paziņojumus ar apzīmējumiem BRĪDINĀJUMS un UZMANĪBU un specifikācijas skatiet katra piederuma komplektācijā ietvertajos norādījumos.

Neizmantojiet bojātas daļas/sensorus vai daļas/sensorus ar neizolētiem elektriskajiem kontaktiem, lai novērstu strāvas triecienu pacientam vai lietotājam.

HemoSphere Alta neinvazīvās sistēmas pārraudzības elementi nav noturīgi pret defibrilatora iedarbību. Pirms defibrilācijas veikšanas atvienojiet sistēmu.

Izmantojiet tikai saderīgas Edwards pirkstu manšetes, sirds kontrolsensorus un citus HemoSphere Alta neinvazīvās sistēmas piederumus, kabeļus un/vai citus komponentus, ko piegādājis un marķējis uzņēmums Edwards. Citu nemarķētu piederumu, kabeļu un/vai komponentu izmantošana var ietekmēt pacienta drošību un mērījumu precizitāti.

Pirms mazgājat pacientu, vienmēr noņemiet no pacienta HemoSphere Alta neinvazīvās sistēmas sensorus un komponentus un pilnībā atvienojiet pacientu no instrumenta.

UZMANĪBU

HemoSphere Alta neinvazīvās sistēmas efektivitāte nav novērtēta pacientiem, kas jaunāki par 12 gadiem.

Pievienojot vai atvienojot kabeļus, vienmēr satveriet savienotāju, nevis kabeli. Nesavērpiet un nesalieciet savienotājus. Pirms lietošanas pārliecinieties, ka visi sensori un kabeļi ir pievienoti pareizi un līdz galam.

10.2.1 Spiediena kontrollera uzlikšana

Spiediena kontrollera komplekts (PC2K vai HEMPC2K) sastāv no spiediena kontrollera (PC2 vai HEMPC) un arī joslas (PC2B). Spiediena kontrollera vāks ir pieejams kā piederums. Spiediena kontrollera vāks nostiprina sirds kontrolsensoru spiediena kontrollerā. Skat. Spiediena kontrollera vāks 395. lpp. lerīces veiktspēja, ieskaitot funkcionālos parametrus, ir pārbaudīta vispusīgu testu sērijā, lai apliecinātu ierīces drošumu un veiktspēju atbilstoši tās paredzētajam lietojumam, ja ierīci lieto saskaņā ar norādījumiem, kas sniegti lietošanas instrukcijā. Spiediena kontrolleru uzliek pacienta plaukstas locītavai un savieno ar HemoSphere Alta uzlaboto monitoru, HRS un pirksta manšeti(-ēm). Skat. 10-2. att. 189. lpp.

2. spiediena kontrollera josla

4. sirds kontrolsensors

10-2. attēls. Spiediena kontrollera uzlikšana

- Aptiniet spiediena kontrollera joslu ap pacienta plaukstas locītavu. Nomodā esošu pacientu uzraudzībai 1. ieteicams izmantot nedominējošo roku. (10-2. att. 189. lpp., pa kreisi)
- levietojiet spiediena kontrolleru joslas plastmasas apvalkā, pārliecinoties, ka manšetes savienojumi ir vērsti 2. pret pirkstiem.
- 3. Pievienojiet spiediena kontrollera kabeli HemoSphere Alta uzlabotajam monitoram. (10-1. att. 187. lpp.)
- Noņemiet plastmasas savienotāja vāciņus, lai pievienotu pirksta manšeti(-es) un sirds kontrolsensoru. 4.

Piezīme

leteicams izmantot manšetes savienotāja vāciņus, lai aizsargātu spiediena kontrolleru pret ūdens un netīrumu iekļūšanu gadījumos, kad izmanto tikai vienu manšeti.

BRĪDINĀJUMS

Nepievelciet spiediena kontrollera joslu vai pirksta manšeti(-es) pārāk cieši.

Nelietojiet spiediena kontrollera joslu uz savainotas ādas, jo tas var radīt papildu traumas.

10.2.2 Pirksta manšetes izmēra izvēle

Ne visām pirksta manšetēm komplektācijā iekļauts izmēra noteikšanas palīgrīks. Produkta lietošanas instrukcijā skatiet detalizētus norādījumus par pareizu pirksta manšetes izmēra noteikšanu, ja attiecas.

10-3. attēls. Manšetes izmēra izvēle

- 1. Ar pirksta manšetes izmēra noteikšanas palīgrīku nosakiet tā pirksta vai pirkstu izmēru, ko izmantosiet monitoringam. Vislabākie rezultāti tiek iegūti no trīs vidējiem pirkstiem. Manšeti nav paredzēts novietot uz īkšķa vai kādreiz lauztiem pirkstiem.
- 2. Aplieciet izmēra noteikšanas palīgrīku ap pirksta vidējo falangu, pavelkot mazāko, ar krāsu iezīmēto galu caur spraugu tā, lai mērītājs būtu uzlikts komfortabli.
- 3. Melnā bultiņa parāda piemērotu manšetes izmēru. Salāgojiet norādīto krāsu ar pareizo pirksta manšetes izmēru.

BRĪDINĀJUMS

Nepareizi uzliekot pirksta manšeti vai izvēloties nepareizu izmēru, uzraudzība var būt neprecīza.

10.2.3 Pirkstu manšetes(-šu) uzlikšana

Skatiet izstrādājuma lietošanas instrukciju, lai saņemtu sīkāku informāciju par saderīgas Edwards pirksta manšetes novietojumu, kā arī lai iepazītos ar faktiskās ierīces ilustrācijām.

Lietošanai vienam pacientam. ClearSight, ClearSight Jr un Acumen IQ pirksta manšetes ir paredzētas lietošanai vienam pacientam. Sākot mērīšanu, pirksta manšetes termiņš vienam pacientam beigsies pēc 72 stundām.

Pārraudzība ar divām pirksta manšetēm. HemoSphere neinvazīvā sistēma ļauj vienlaikus pievienot divas saderīgas Edwards pirksta manšetes, lai mainītu mērīšanas vietu. Šī funkcija ļauj panākt minimālus pārtraukumus monitoringa procesā pat 72 stundas un ir obligāta mērījumiem, kam nepieciešamas vairāk kā 8 stundas. Šo funkciju var arī izmantot, lai palielinātu komfortu pacientam.

10.2.4 Sirds kontrolsensora izmantošana

Sirds kontrolsensors (HRS) vienmēr jāizmanto pie samaņas esošiem pacientiem, pacientiem, kas brīvi kustas, vai pacientiem, kuru pozīcija ārstēšanas laikā tiks bieži mainīta. Izpildiet ekrānā esošās norādes vai tālāk aprakstītās darbības, lai pievienotu HRS.

10-4. attēls. Sirds kontrolsensora izmantošana

UZMANĪBU

Pārliecinieties, ka HRS ir pareizi uzlikts, lai to var izlīmeņot ar flebostatisko asi.

- 1. Savienojiet HRS ar spiediena kontrolleru. Skatiet apzīmējumu (1) šeit: 10-4. att. 191. lpp.
- 2. Novietojiet spiediena kontrollera vāku uz spiediena kontrollera. (Pēc izvēles skatiet šeit: Spiediena kontrollera vāks 395. lpp.)
- 3. Pielieciet HRS sirds galu pacientam atbilstoši flebostatiskās ass līmenim, izmantojot HRS fiksatoru. Skat. (2) sadaļā HRS.

Piezīme

Ja pacients tiek pārvietots vai izkustināts, flebostatiskā ass griezīsies vai kustēsies kopā ar pacientu. Pēc vajadzības vēlreiz uzlieciet HRS sirds galu, lai pārliecinātos, ka tas joprojām ir tajā pašā vertikālajā līmenī kā sirds arī pacienta jaunajā pozīcijā.

- 4. Piestipriniet otru HRS galu pie pirksta manšetes. Skatiet (3) sadaļā HRS.
- 5. Pieskarieties ikonai **Sākt ClearSight** uz navigācijas joslas vai iestatīšanas palīdzības ekrānā, lai sāktu monitoringu.

- 6. Pieskarieties ikonai **Apturēt ClearSight** uz navigācijas joslas, lai jebkurā laikā beigtu monitoringu.
- Ja ClearSight neinvazīvie asinsspiediena mērījumi atšķiras no atsauces mērījuma, novērtējiet HRS integritāti, veicot HRS kalibrēšanu. Problēmu novēršanas procesa gaitā jāveic HRS kalibrēšana. Skat. Sirds kontrolsensora kalibrēšana 197. lpp.

10.2.5 ClearSight tehnoloģijas asinsspiediena mērījumu precizitāte

Piesardzības pasākums. Sistēmas sākotnējās palaišanas laikā un pēc sistēmas restartēšanas var tikt ietekmēta asinsspiediena mērījumu korelācija ar atsauces arteriālo caurulīti.

10-1. tabula 192. lpp. nodrošina tā paša pacienta atkārtotu mērījumu apkopojumu, lai panāktu ClearSight neinvazīvās tehnoloģijas asinsspiediena izvades datu precizitāti.

Pediatriskie pacienti ≥ 12 gadi	Nobīde [95% CI]	Precizitāte [95% CI]
SYS (mmHg)	–9,55 [–10,1; –9,02]	13,1 [10,8; 15,4]
MAP (mmHg)	-7,95 [-8,36; -7,55]	9,35 [7,65; 11,1]
DIA (mmHg)	-5,90 [-6,30; -5,50]	9,22 [7,55; 10,9]
Pieaugušais	Nobīde [95% CI]	Precizitāte [95% CI]
SYS (mmHg)	-2,74 [-4,95; -0,72]	6,15 [4,25; 7,82]
MAP (mmHg)	-1,29 [-2,33; -0,22]	3,14 [2,15; 4,14]
DIA (mmHg)	-1,07 [-2,26; 0,21]	3,71 [2,43; 5,29]

10-1. tabula. 95% ticamības intervāls (TI) atkārtotiem asinsspiediena mērījumiem no tā paša pacienta (atkārtota paraugu ņemšana saskaņā ar butstrapa metodi)

10.2.6 HemoSphere neinvazīvās sistēmas monitoringa problēmu novēršana

Tālāk ir uzskaitītas dažas parastās problēmas, kas var rasties normālas pārraudzības laikā, kā arī dažas problēmu novēršanas darbības.

- Ja spiediena līkne netiek parādīta dažu minūšu laikā pēc pārraudzības sākšanas, pārbaudiet, vai statusa joslā nav kļūmju vai brīdinājumu, kas var liecināt par problēmu. Pieskarieties navigācijas joslas ikonai Palīdzība un pogai Ceļvedis, lai skatītu papildinformāciju parādītajā ziņojumā, vai skat.: 14-26. tabula 366. lpp..
- Mērīšanas laikā tā pirksta gals, kuram veic pārraudzību ar manšeti, vai mainīt krāsu. Tas ir normāli un izzūd dažu minūšu laikā pēc manšetes noņemšanas.
- Mērīšanas laikā pie samaņas esošs pacients var pamanīt pulsēšanu pirkstā, kam uzlikta manšete. Pulsācija acumirklī apstājas Physiocals laikā. Pacients jāinformē, ka šādas parādības ir normālas un ka tās neizraisa pacienta sirds.
- Ja pacients reaģē, norādiet, ka rokai jābūt atbrīvotai un ka muskuļus nedrīkst sasprindzināt vai pārmērīgi stiept roku.
- Pārliecinieties, ka netiek nosprostota asins plūsma uz roku (arī daļēji), jo plaukstas locītava, piemēram, atspiežas pret cietu virsmu.
- Dažās situācijās, piemēram, kad ir aukstas rokas, pārraudzību var būt grūti sākt. Ja pacientam ir aukstas rokas, mēģiniet tās sasildīt.

BRĪDINĀJUMS

Neizmantojiet HemoSphere Alta neinvazīvo sistēmu kā sirdsdarbības ātruma monitoru.

Ja izmantojat instrumentu ķermeņa pilnīgas apstarošanas laikā, neļaujiet nevienai HemoSphere Alta neinvazīvās sistēmas pārraudzības daļai nonākt apstarošanas laukā. Ja uzraudzības daļa tiek pakļauta apstarošanai, tas var ietekmēt mērījumus.

Spēcīgs magnētiskais lauks var izraisīt instrumenta kļūdainu nostrādi un apdedzināt pacientu. Neizmantojiet instrumentu magnētiskās rezonanses attēlveidošanas laikā. Inducētā strāva var izraisīt apdegumus. Ierīce var ietekmēt MR attēlu, un magnētiskās rezonanses attēlveidošanas ierīce var ietekmēt mērījumu kvalitāti.

UZMANĪBU

HemoSphere Alta neinvazīvā sistēma nav paredzēta izmantošanai kā apnojas monitors.

Pacientiem, kuru apakšdelma un plaukstas artērijās un arteriolās ir novērojama spēcīga gludās muskulatūras saraušanās (piemēram, Reino sindroma gadījumā), var būt neiespējami veikt asinsspiediena mērījumus.

Neprecīzus neinvazīvos mērījumus var izraisīt šādi faktori:

- Nepareizi kalibrēts un/vai nolīmeņots HRS
- Pārmērīgas asinsspiediena variācijas. Daži apstākļi, kas izraisa asinsspiediena izmaiņas, ir šādi:
 - * Intraaortālie balonsūkņi.
- Jebkādas klīniskās situācijas, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu arteriālajam spiedienam.
- Slikta asinsrite pirkstos.
- Saliekta vai saplacināta pirksta manšete.
- Pārmērīgas pacienta roku vai pirkstu kustības.
- Artefakti un slikta signāla kvalitāte.
- Nepareizs pirksta manšetes novietojums, pirksta manšetes pozīcija, vaļīga pirksta manšete.
- Elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi.

Vienmēr atvienojiet pirksta manšeti, ja tā nav aplikta ap pirkstu, lai novērstu nejaušas pārslogošanas izraisītu bojājumu risku.

Ar Edwards saderīgas pirksta manšetes darbības efektivitāte nav noteikta pacientēm ar preeklampsiju.

Intraaortiskā balona balsta pulsācija var palielināt sirdsdarbības ātrumu instrumenta sirdsdarbības ātruma displejā. Pārbaudiet pacienta sirdsdarbības ātrumu salīdzinājumā ar EKG sirdsdarbības ātrumu.

Sirdsdarbības ātruma mērījums pamatojas uz perifērās plūsmas impulsa optisko noteikšanu, un tāpēc noteiktu veidu aritmijas var netikt atklātas. Sirdsdarbības ātrums nebūtu jāizmanto, lai aizstātu uz EKG balstītu aritmijas analīzi.

10.3 Izvēles HRS

Kad opcija **HRS lietojums** iestatīta kā **Pēc izvēles**, veicamās darbības atšķiras no iepriekš sadaļā Sirds kontrolsensors 185. lpp. aprakstītajām. ClearSight algoritmam jāņem vērā spiediena atšķirības, kas rodas, mainoties monitorētā pirksta vertikālajam līmenim attiecībā pret sirdi. To var panākt, veicot pārraudzību ar pievienotu HRS vai manuāli ievadot šo auguma rādītāju atšķirību pacientiem, kuriem izmantota sedācija vai kuri nekustas.

Piezīme

HRS jāizmanto pacientiem, kuriem pirksta vertikālais līmenis attiecībā pret sirdi var mainīties jebkurā pārraudzības brīdī.

Pārraudzību bez HRS ieteicams izmantot tikai pacientiem, kam veikta vispārējā anestēzija un paredzamā pārvietošanas vajadzība ir ierobežota vai tādas nav. HRS var izmantot šo pārraudzības apstākļu laikā, bet tas nav obligāti nepieciešams.

Lai atzīmētu HRS lietojumu pēc izvēles, pārejiet uz ClearSight sistēmas iestatījumu ekrānu.

- 1. Pieskarieties navigācijas joslas ikonai lestatījumi
- 2. lestatījumam HRS lietojums iespējojiet radiopogu statusā Pēc izvēles.
- 3. Atvienojiet HRS un pieskarieties navigācijas joslas ikonai Nulle

4. ClearSight tehnoloģijas cilnē tiek parādīts ziņojums "Pievienojiet HRS", un tiek parādīts attēls ar pamācību, kā pievienot HRS pie spiediena kontrollera. Pieskarieties pogai Turpināt darbu bez HRS.

UZMANĪBU

Veicot monitoringu bez HRS, mērījumi var būt neprecīzi. Nodrošiniet, ka pacientam joprojām ir pareizi izmērīta pirksta un sirds augstuma starpība.

Nenovietojiet pacientu pozīcijā, kas nav guļus pozīcija, veicot monitoringu ar HRS. Tā rezultātā var tikt ievadīta nepareiza vertikālā nobīde HRS, kā arī rasties mērījumu neprecizitātes.

Piezīme

Ja ir iespējota funkcija Acumen Hypotension Prediction Index, tiks rādīta trauksme **"HPI nepieciešama HRS un Acumen IQ manšete "**. Pieskarieties pogai **Apstiprināt**, ja funkcija Acumen HPI nav vēlama esošajā monitoringa sesijā.

Lai iespējotu HPI programmatūras funkciju, ir vajadzīga Acumen IQ pirksta manšete un HRS.

Ja ir pievienots HRS, tiek parādīts uznirstošais ekrāns ar ziņojumu **Noteikts HRS**. Lai sāktu pārraudzību ar HRS, pieskarieties pie **Jā** un pēc tam pārejiet uz 2. darbību, kas norādīta sadaļā Sirds kontrolsensora izmantošana 190. lpp.. Lai veiktu pārraudzību bez HRS, atvienojiet HRS un izpildiet tālāk norādītās darbības.

10-5. attēls. Vertikālās nobīdes ievades ekrāns

- 5. Šajā režīmā ekrānā Nulle (redzams šeit: 10-5. att. 194. lpp.) tiek parādīta vertikāla skalas josla, kas atbilst rokas nobīdei attiecībā pret sirdi; sirds līmenis ir iestatīts uz nulli. Pozitīva nobīde nozīmē, ka pacienta roka ir augstāk par sirdi. Atlasiet skalas joslas mērvienības cm (centimetri) vai collas (collas).
- 6. Izmantojiet slīdni, lai pārvietotu rokas vertikālo līmeni un iestatītu nobīdi starp roku un sirdi.
- 7. Pieskarieties ikonai Labi

8. Pieskarieties ikonai **Sākt ClearSight** ^{ClearSight} uz navigācijas joslas, lai sāktu pārraudzību.

Informācijas joslā būs redzami divi brīdinājumi ar šādu tekstu: **"Trauksme: ClearSight sistēma – HRS nav pievienots — pārbaudiet pacienta novietojumu"** un **"Trauksme: ClearSight sistēma — pašreizējā nobīde: {0}"**, kur {0} ir pārbaudītā augstuma nobīde starp monitorēto pirkstu un sirdi. Nobīdes vērtība ir jāatjaunina katru reizi, kad šajā režīmā maina pacienta pozīciju. Turklāt, ja monitorings tiek apturēts uz vairāk nekā vienu minūti, vertikālā nobīde ir vēlreiz jāpārbauda, atsākot monitoringu.

10.3.1 Nobīdes vērtības atjaunināšana monitoringa laikā

Lai atjauninātu pirksta-sirds vertikālās nobīdes, veiciet tālāk norādītās darbības.

- 1. Pieskarieties navigācijas joslas ikonai **Nulle** → **Nulle** → **ClearSight** tehnoloģijas cilnei.
- 2. Pieskarieties pogai Atjaunināt.
- 3. Izmantojiet slīdni, lai mainītu rokas vertikālo līmeni un iestatītu nobīdes vērtību, kas atbilst jaunajai pacienta pozīcijai.

۰**D**

4. Pieskarieties ikonai Labi atjaunināšanas atlases.

, lai apstiprinātu jauno nobīdi, vai atcelšanas ikonai 🧹

10.3.2 HRS lietojuma iestatījuma maiņa

Lai mainītu pārraudzības iestatījumu tā, ka nepieciešama HRS lietošana, rīkojieties, kā norādīts tālāk.

1. Pieskarieties navigācijas joslas ikonai **lestatījumi ar data ar b**ogai **ClearSight** tehnoloģija

2. lestatījumam HRS lietojums iespējojiet radiopogu statusā Obligāti.

Piezīme

ClearSight sistēmas iestatījumus pārraudzības laikā nevar konfigurēt. Apturiet ClearSight sistēmas pārraudzību un pārejiet uz ClearSight sistēmas iestatījumu ekrānu, lai veiktu vēlamās izmaiņas.

10.4 SQI

Signāla kvalitātes indikators (SQI) ir redzams visu neinvazīvo parametru elementos HemoSphere Alta neinvazīvās sistēmas pārraudzības laikā. SQI līmenis tiek aprēķināts, katru reizi atjauninot parametru ik pēc 20 sekundēm. Skatiet 10-2. tabula 195. lpp., lai iepazītos ar arteriālās spiediena līknes SQI līmeņu aprakstu. SQI līmeņi viens un divi parasti ir saistīti ar trauksmes stāvokļiem. SQI līmenis nulle tiek rādīts, uzsākot pārraudzību (sākot vai atsākot). Nulles SQI vērtība var būt saistīta arī ar kļūmes stāvokli. Skatiet 14-26. tabula 366. lpp., lai iepazītos ar pirksta manšetes kļūmēm un trauksmēm.

Izskats	Līmenis	Nozīme
at	4	Normāls
al	3	Vidējs (vidēji ietekmēts)

10-2. tabula. Arteriālā spiediena līknes SQI līmeņi

Izskats	Līmenis	Nozīme
all	2	Slikts (iespējams trauksmes stāvoklis, kas izraisa ierobežota apjoma signālu)
.11	1	Nepieņemams (iespējams trauksmes stāvoklis, kas izraisa ļoti ierobežota apjoma signālu vai to pārtrauc; skatiet 14-26. tabula 366. lpp., lai iepazītos ar pirksta manšetes trauksmēm)
at	0	Spiediena līkne nav pieejama (skatiet 14-26. tabula 366. lpp., lai iepazītos ar pirksta manšetes kļūmēm)

10.5 Physiocal metodes rādīšana

Physiocal metode ir automātiska arteriālā spiediena līknes kalibrēšana, kas notiek ar regulāru intervālu neinvazīvā monitoringa laikā. Physiocal metodi var novērot reāllaika spiediena līknē kā pakāpenisku spiediena palielinājumu, uzsākot monitoringu, un kā īsus pārtraukumus monitoringa laikā. Intervāls starp Physiocal metodes kalibrācijām tiek rādīts iekavās arteriālā spiediena līknē blakus Physiocal metodes intervāla ikonai (skatiet šeit: 10-3. tabula 196. lpp.). Lai precīzi ņemtu vērā izmaiņas pirksta artērijas raksturlielumos monitoringa laikā, Physiocal metode tiek izmantota ar regulāriem intervāliem, kā rezultātā arteriālā spiediena līknē acumirklī rodas pārrāvumi.

Izskats	Physiocal meto- des sitienu inter- vāls	Nozīme
60 	≥ 30	Normāla mērījumu stabilitāte
20 	< 30	Bieži Physiocal metodes darbības pārtraukumi; mainīgas fizioloģiskās artērijas īpašības un samazināta mērījumu stabilitāte
 _		Tiek izmantota Physiocal metode, vai statuss nav pieejams

10-3. tabula. Physiocal metodes intervāla statuss

10.6 ClearSight sistēmas iestatījumi un manšetes opcijas

ClearSight iestatījumu ekrānā lietotājs var atlasīt laika intervālu starp manšetes spiediena samazināšanu un pārslēgšanas laika intervālu divkāršas manšetes uzraudzībai. Ekrānā tiek rādīts arī sensora statuss un informācija par pievienoto pirksta manšeti(-ēm) un HRS.

Piezīme

Pirms sensora statusa informācijas pārskatīšanas ļaujiet, lai pārraudzība notiek vismaz 10 minūtes.

ClearSight sistēmas iestatījumus nevar konfigurēt, kad tiek aktīvi veikta neinvazīva pārraudzība vai ir spēkā manšetes spiediena mazināšanas režīms. Apturiet ClearSight tehnoloģijas uzraudzību un pārejiet uz ClearSight sistēmas iestatījumu ekrānu, lai veiktu vēlamās izmaiņas.

- → ClearSight tehnoloģijas Pieskarieties iestatījumu ikonai 1.
- Ekrāna kreisajā pusē parādītas tālāk minētās iestatījumu opcijas. 2.

→ pogai HRS kalibrēšana. Ja

Vienas manšetes spiediena atbrīvošanas laika intervāls. Lai veiktu uzraudzību ar vienu manšeti, atlasiet manšetes spiediena atbrīvošanas laika intervālu no pieejamajām opcijām. Manšetes spiediena atbrīvošanas intervāla beigās spiediens manšetē tiks samazināts tik ilgi, cik norādīts atskaites taimerī informācijas joslā. Skat. Manšetes spiediena samazināšanas režīms 197. lpp.

Divu manšešu maiņas laika intervāls. Lai veiktu pārraudzību ar divām manšetēm, atlasiet pārslēgšanas laika intervālu no pieejamajām opcijām.

HRS lietojums. Izvēles sirds kontrolsensora (HRS) funkciju var iespējot vai atspējot šajā izvēlnes ekrānā. Ja funkcija **Pēc izvēles** ir iespējota, lietotājs var manuāli ievadīt manuālās nobīdes vērtību starp roku un sirdi, nevis izmantot HRS. Skat. Izvēles HRS 193. lpp.

3. Ekrāna labajā pusē tiek rādītas pievienotās pirksta manšetes un HRS statuss, kā arī informācija.

10.6.1 Manšetes spiediena samazināšanas režīms

Veicot pārraudzību ar vienu manšeti, HemoSphere Alta neinvazīvā sistēma automātiski un ar regulāriem intervāliem samazinās pirksta manšetes spiedienu.

SK-19Y1234567 05:00 PR 100 sit/min =

Kad palikušas ≤ 5 minūtes līdz **spiediena samazināšanas režīmam**, informācijas joslā tiek parādīta balta atskaites taimera ikona un tiek rādīts līdz spiediena samazināšanai atlikušais laiks. Uznirstošais paziņojums apliecina, ka ir palaists atskaites pulkstenis. Lietotājs var pagarināt atskaites laiku līdz manšetes spiediena atbrīvošanai, pieskaroties pie **Atlikt** uznirstošajā paziņojumā. Nepārtrauktā pārraudzība netiks veikta ilgāk kā 8 stundas, kas ir kumulatīvais pārraudzības ierobežojums vienam pirkstam. Skatiet Pārraudzība ar vienu pirksta manšeti 185. lpp. un Uzraudzība ar divām manšetēm 186. lpp.

Manšetes spiediena atbrīvošanas laika intervāla beigās spiediens tiks atbrīvots no manšetes, un pārraudzība uz laiku tiks apturēta. Ekrānā tiks parādīts paziņojums par to, ka pirksta manšetes spiediens ir ticis samazināts. Spiediena samazināšanas ikona tiks rādīta oranžā krāsā, bet taimerī būs redzams laiks līdz automātiskai pārraudzības atsākšanai.

```
01:14
Manšetes
spiediena
samazināšana
```

Manšetes spiediena atbrīvošanas režīmā navigācijas joslā tiek rādīts atskaites pulkstenis. Ekrānā tiks parādīta uznirstošā izvēlne **Spiediena mazināšana ir aktīva**. Šai izvēlnei var piekļūt, arī pieskaroties navigācijas vai statusa joslas atskaites pulkstenim. Uznirstošās izvēlnes opcijas ir šādas: **Atlikt** un **Apturēt pārraudzību**.

Piezīme

Manšetes spiediena atbrīvošanas intervālus var mainīt tikai tad, kad pārraudzība ir apturēta. Izvairieties no biežām izmaiņām manšetes spiediena intervālos pacienta pārraudzības laikā.

10.7 Sirds kontrolsensora kalibrēšana

Jāveic sirds kontrolsensora (HRS) kalibrēšana, lai panāktu optimālu veiktspēju.

1. Pārejiet uz ekrānu HRS kalibrēšana, pieskaroties ikonai **Klīniskie Rīki** ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet **HRS kalibrēšana**.

- 3. Vertikāli salāgojiet abus HRS galus un pieskarieties pogai Kalibrēt.
- 4. Gaidiet norādi, ka HRS kalibrēšana ir pabeigta.

10.8 Asinsspiediena kalibrēšana

Sānu panelis **BP kalibrēšana** ļauj lietotājam kalibrēt ar ClearSight pirksta manšeti uzraudzītās asinsspiediena vērtības, pamatojoties uz atsauces uzraudzītā asinsspiediena vērtībām. Var izmantot gan brahiālās oscilometriskās manšetes, gan radiālās arteriālās caurulītes atsauces vērtības.

Piezīme

BP kalibrēšana nav pieejama, veicot monitoringu ar divām manšetēm.

BP kalibrēšana ir ieteicama pediatriskajiem pacientiem.

UZMANĪBU

Neveiciet asinsspiediena kalibrēšanu monitoringa laikā, ja šķiet, ka asinsspiediens nav stabils. Tā rezultātā asinsspiediena mērījumi var nebūt pareizi.

- 1. Ikona **Klīniskie Rīki** → poga **Asinsspiediena kalibrēšana**. Ja ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet **Asinsspiediena kalibrēšana**.
- 2. Pieskarieties pie Pievienot mērījumu, lai ievadītu atsauces BP vērtības.

Piezīme

Kad pieskaraties pogai **Pievienot mērījumu**, tiek parādītas pašreizējās ClearSight tehnoloģijas BP vērtības un lietotājam ir piecas minūtes, lai ievadītu atsauces BP vērtības. Ja nepieciešamas vairāk nekā piecas minūtes, var vēlreiz pieskarties pogai **Pievienot mērījumu**, lai atkal atsāktu piecu minūšu atskaiti.

10-6. attēls. BP kalibrēšanas sānu panelis

- 3. Pieskarieties **SYS** un **DIA** vērtību lodziņiem un izmantojiet papildtastatūru, lai ievadītu atsauces asinsspiediena mērījumus.
- Pieskarieties pogai Kalibrēt, lai pabeigtu kalibrēšanas procesu. Virs parametra nosaukuma tiks parādīts kalibrēšanas saīsinājums (CAL), kas būs redzams BP elementā, lai norādītu, ka ClearSight tehnoloģijas BP ir kalibrēts.
- 5. Lai notīrītu pēdējās ievadītās BP atsauces vērtības, pieskarieties pie **Notīrīt kalibrēšanas datus**.

Piezīme

Pašreizējā **BP kalibrēšana** tiks notīrīta, ja pārraudzība tiks apturēta ilgāk nekā 10 minūtes.

Veicot monitoringu bez HRS, **BP kalibrēšana** tiks atspējots uz vienu minūti pēc HRS vertikālās nobīdes ieraksta atjaunināšanas.

10-4. tabula 199. lpp. nodrošina nobīdes un precizitātes veiktspējas datus katram ClearSight sistēmas parametram, salīdzinot asinsspiedienu, kas kalibrēts, izmantojot pacientus, kuri uzraudzīti ar radiālo līniju, un BP kalibrēšana, izmantojot pacientus, kas uzraudzīti ar brahiālo oscilometrisko manšeti.

Parametrs (mērvienības)	Kalibrēšanas atsauce	Nobīde	Precizitāte
	Pediatriskie pa	icienti ≥ 12 gadi	
SYS (mmHg)	Radiāls	0,18 [0,01; 0,36]	3,98 [3,61; 4,35]
	Brahiāls	0,86 [0,11; 1,61]	5,86 [4,62; 7,11]
DIA (mmHg)	Radiāls	-0,29 [-0,43; -0,16]	2,91 [2,64; 3,18]
	Brahiāls	-1,22 [-2,16; -0,28]	5,20 [4,46; 5,94]
MAP (mmHg)	Radiāls	-0,50 [-0,66; -0,34]	3,54 [3,11; 3,98]
	Brahiāls	-0,87 [-1,63; -0,12]	5,16 [4,05; 6,26]
Parametrs (mērvienības)	Kalibrēšanas atsauce	Nobīde	Precizitāte
	Pieau	gušais	
SYS (mmHg)	Radiāls	2,2 [1,3; 3,1]	2,8 [2,0; 3,5]
	Brahiāls	3,4 [1,1; 5,5]	5,1 [3,2; 7,0]
DIA (mmHg)	Radiāls	1,1 [0,4; 1,8]	2,1 [1,6; 2,6]
	Brahiāls	1,6 [0,3; 2,9]	3,0 [1,6; 4,3]
MAP (mmHg)	Radiāls	1,3 [0,4; 2,3]	2,8 [2,1; 3,6]
	Brahiāls	2,0 [0,4; 3,6]	3,7 [2,0; 5,5]
CO (l/min)*	Radiāls	-0,1 [-0,1; -0,1]	0,6 [0,5; 0,6]
	Brahiāls	-0,1 [-0,2; -0,0]	0,5 [0,3; 0,6]
SVV (%)	Radiāls	-0,5 [-0,6; -0,5]	1,3 [1,1; 1,4]
	Brahiāls	-0,7 [-0,9; -0,4]	1,1 [0,8; 1,4]
PPV (%)	Radiāls	0,2 [0,1; 0,3]	1,7 [1,6; 1,9]
	Brahiāls	0,0 [-0,3; 0,3]	1,2 [0,8; 1,5]
Ea _{dyn} (neviens)	Radiāls	0,1 [0,1; 0,1]	0,2 [0,1; 0,2]

10-4. tabula. BP kalibrēšanas veiktspējas dati

Parametrs (mērvienības)	Kalibrēšanas atsauce	Nobīde	Precizitāte
	Brahiāls	0,1 [0,0; 0,1]	0,1 [0,1; 0,1]
dP/dt (mmHg/s)	Radiāls	21,1 [15,0; 27,3]	124,0 [107,0; 141,1]
	Brahiāls	20,8 [-4,8; 46,3]	105,4 [73,5; 137,3]
HPI (neviens)	Radiāls	-0,9 [-1,6; -0,1]	15,8 [14,6; 16,9]
	Brahiāls	-0,3 [-2,1; 1,4]	5,9 [4,1; 7,7]
PR (sit./min.)	Radiāls	0,59 [0,23; 0,91]	Nav piemērojams
RMSE	Brahiāls	0,27 [0,10; 0,44]	Nav piemērojams

*Piezīme. Ziņoto parametru nobīde un precizitātes mērījumi ir attiecināmi uz FloTrac (minimāli invazīvajiem) mērījumiem un var neatbilst ClearSight (NIBP) sistēmas veiktspējai salīdzinājumā ar attiecīgiem atsauces mērījumiem saistībā ar CO (piemēram, vairākiem vidējotās bolus termodilūcijas mērījumiem).

10.9 Izejas signāls uz pacienta monitoru

Nulles spiediena iestatījumu lapā lietotājam tiek dota iespēja nosūtīt arteriālās spiediena līknes signālu uz monitoru, kas lietojams pie gultas cilnē **Pacienta monitors**.

10-7. attēls. Spiediena izvade uz ārējo monitoru

UZMANĪBU

ClearSight sistēmas spiediena izvades signālu uz pacienta monitoru ir paredzēts pievienot tikai BF vai CF tipa spiediena signāla ievades pieslēgvietai pacienta monitorā, kas aizsargāts pret sirds defibrilatora izlādes ietekmi. Simbolus, kas parādīti blakus pieņemtajām savienojuma pieslēgvietām, skat. šeit: 10-5. tabula 200. lpp..

Pievienošar	na nav droša	Pievienošana ir droša		
Izskats Apraksts		Izskats	Apraksts	
Ŕ	B tipa daļa, kas saskaras ar pacientu	- † -	Pret defibrilāciju noturīga BF tipa daļa, kas saskaras ar pacientu	
Ŕ	BF tipa daļa, kas saskaras ar pacientu	⊣₩⊢	Pret defibrilāciju noturīga CF tipa daļa, kas saskaras ar pacientu	
	CF tipa daļa, kas saskaras ar pacientu			

10-5. tabula	a. Pacienta	monitora	savieno	iumu	simbol	ſ
10 5. tubul	a. i aciciita	monitora	Juvicito	Janna	31111801	

Pievienošar	na nav droša	Pievienošana ir droša		
Izskats Apraksts		Izskats	Apraksts	
HPret defibrilāciju noturīgaB tipa daļa, kas saskaras ar pacientu				
Nav simbola	Ja pie pacienta monitora sa- vienojuma pieslēgvietas nav neviena simbola, nedrīkst pievienot spiediena izvadi			

1. Pieskarieties navigācijas joslas ikonai **Nulle** \rightarrow

→ ClearSight tehnoloģijas cilnei.

 Pievienojiet saderīgu spiediena signāla izvades (vienreizlietojamais spiediena devējs) kabeli spiediena signāla izvades pieslēgvietai monitora labās puses panelī. Spiediena signāla (vienreizlietojamā spiediena devēja izvade) pieslēgvieta ir zem ClearSight tehnoloģijas savienojuma pieslēgvietas. Skatiet apzīmējumu (9) šeit: 10-7. att. 200. lpp.

۰**0**۰

- Pievienojiet otru vienreizlietojamā spiediena devēja kabeļa galu pie saderīga pacienta monitora. Pārliecinieties, vai izvēlētais savienotājs ir pilnībā pievienots. Skatiet pacienta monitora lietošanas instrukciju.
- 4. Nullējiet pacienta monitoru un apstipriniet, ka tiek rādīta vērtība 0 mmHg.
- 5. HemoSphere Alta monitora nulles ekrānā pārslēdziet slēdzi no Nulle uz Spiediena līkne panelī Pacienta monitors.
- 6. Kad uz pievienoto pacienta monitoru tiks sūtīta reāllaika spiediena līkne, parādīsies ziņojums **"Spiediena līknes sūtīšana"**.

Piezīme

Normāli pārtraukumi arteriālā spiediena līknes pārraudzībā, piemēram, Physiocal, manšetes nomaiņas vai manšetes spiediena atbrīvošanas režīma laikā, var izsaukt pacienta monitora trauksmes aktivizēšanu.

Ja ClearSight tehnoloģijas spiediena signāla izvades apakšsistēmai ir kļūmes stāvoklis, statusa joslā tiek parādīts paziņojums; piemēram: **"ClearSight sistēma — spiediena izvade — aparatūras kļūme."** Šis kļūmes stāvokļa statuss tiek ziņots pacienta monitoram.

Venozās oksimetrijas monitorings

Saturs

Pārskats par oksimetrijas kabeli	202
Venozās oksimetrijas uzstādīšana	202
In vitro kalibrācija	
In vivo kalibrācija	
Globālā hipoperfūzijas indeksa (GHI) algoritma funkcija	
Signāla kvalitātes indikators	206
Atsaukt venozās oksimetrijas datus	
HGB atjaunināšana	
HemoSphere oksimetrijas kabeļa atiestatīšana	
Jauns katetrs	

11.1 Pārskats par oksimetrijas kabeli

HemoSphere oksimetrijas kabelis ir atkārtoti lietojama ierīce, kuras viens gals tiek pievienots HemoSphere Alta uzlabotajam monitoram, bet otrs gals — jebkuram Edwards apstiprinātam oksimetrijas katetram. HemoSphere oksimetrijas kabelis ir bezkontakta ierīce, un normālas lietošanas laikā tam nevajadzētu saskarties ar pacientu. Oksimetrijas kabelis nepārtraukti mēra venozo skābekļa piesātinājumu, izmantojot atstarošanas spektrofotometriju. LED indikatori oksimetrijas kabelī ar optisko šķiedru palīdzību pārvada gaismu uz katetra distālo galu. Absorbētās, refraktētās un atstarotās gaismas daudzums ir atkarīgs no relatīvā oksigenētā un dezoksigenētā hemoglobīna līmeņa asinīs. Šos optiskās intensitātes datus iegūst oksimetrijas katetrs, tie tiek apstrādāti HemoSphere oksimetrijas kabelī un attēloti uz saderīgas pārraudzības platformas. Parametra izvaddati ir jauktu venozo asiņu skābekļa piesātinājums (SvO₂) vai centrālais venozais skābekļa piesātinājums (ScvO₂).

11.2 Venozās oksimetrijas uzstādīšana

Konkrētus norādījumus par katetra ievietošanu un lietošanu, kā arī saistītos brīdinājumus, piesardzības pasākumus un piezīmes skatiet katra katetra komplektācijā ietvertajos lietošanas norādījumos.

Piesardzības pasākums. Izņemot kabeli no iepakojuma, atritiniet to uzmanīgi. Nevelciet aiz kabeļa, lai to attītu. Gādājiet, lai korpusa durtiņas oksimetrijas kabeļa katetra savienojuma vietā kustētos brīvi un atbilstoši fiksētos. Nelietojiet oksimetrijas kabeli, ja durtiņas ir bojātas, atvērtas vai to nav. Ja durtiņas ir bojātas, sazinieties ar Edwards tehniskā atbalsta dienestu.

Pirms pārraudzības uzsākšanas HemoSphere oksimetrijas kabelis ir jākalibrē. Lai uzzinātu par audu oksimetrijas monitoringu, skatiet HemoSphere Alta audu oksimetrijas pārraudzība 210. lpp..

1. Pievienojiet HemoSphere oksimetrijas kabeli HemoSphere Alta uzlabotajam monitoram. Tiek parādīts šāds ziņojums:

Venozā oksimetrija — kabeļa inicializēšana, lūdzu, gaidiet

- 2. Ja HemoSphere Alta uzlabotā monitoringa platforma nav ieslēgta, ieslēdziet barošanas slēdzi un izpildiet pacienta datu ievadīšanas darbības. Skat. Pacienta dati 127. lpp.
- 3. Lai atsegtu optisko savienotāju, noņemiet daļu katetru paplātes vāka.

 levietojiet katetra optisko savienotāju ar marķējumu "TOP" uz augšu oksimetrijas kabelī un nofiksējiet korpusu aizvērtā stāvoklī.

11-1. attēls. Pārskats par venozās oksimetrijas savienojumu

Piezīme

Katetra izskats, kas redzams 11-1. att. 203. lpp., ir tikai piemērs. Faktiskais izskats var atšķirties atkarībā no katetra modeļa.

Atvienojot HemoSphere oksimetrijas kabeli no HemoSphere Alta uzlabotā monitora vai katetrus no oksimetrijas kabeļa, vienmēr velciet aiz savienojuma vietas. Nevelciet aiz kabeļiem un neizmantojiet atvienošanai citus rīkus.

Plaušu artēriju un centrālo vēnu katetri ir pret defibrilāciju noturīgas CF TIPA DAĻAS, KAS SASKARAS AR PACIENTU. Pacientu kabeļi, kas pievienoti katetram, piemēram, HemoSphere oksimetrijas kabelis, nav paredzēti kā daļas, kas saskaras ar pacientu, taču tie var nokļūt saskarē ar pacientu un tiem jāatbilst attiecīgajām lietoto daļu prasībām saskaņā ar IEC 60601-1.

UZMANĪBU

Pārliecinieties, ka oksimetrijas kabelis ir droši nostiprināts, lai izvairītos no liekām pievienotā katetra kustībām.

BRĪDINĀJUMS

Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja HemoSphere oksimetrijas kabelis (lietojamās daļas piederums, drošs pret defibrilāciju) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam.

Neietiniet galveno oksimetrijas kabeļa korpusu audumā un nenovietojiet kabeli tieši uz pacienta ādas. Virsma kļūst silta (līdz 45 °C), un siltums jāizkliedē, lai uzturētu iekšējās temperatūras līmeni. Ja iekšējā temperatūra pārsniedz tai noteiktos ierobežojumus, radīsies programmatūras kļūda.

Izstrādājumu nedrīkst nekādā veidā pārveidot, veikt tā apkopi vai mainīt. Veicot izstrādājuma apkopi, pārveidojot vai mainot to, var tikt negatīvi ietekmēta pacienta/lietotāja drošība un/vai izstrādājuma veiktspēja.

11.3 ln vitro kalibrācija

In vitro kalibrācija tiek veikta pirms katetra ievietošanas pacienta ķermenī, izmantojot katetra iepakojumā ietverto kalibrēšanas kausiņu.

Piezīme

Kad oksimetrijas kabelis ir in vitro vai in vivo kalibrēts, var tikt ģenerētas kļūmes vai trauksmes, ja tiek veikta vēnu oksimetrijas pārraudzība bez pievienota pacienta katetra.

UZMANĪBU

1.

Katetra galu vai kalibrēšanas kausiņu nedrīkst samitrināt, pirms tiek veikta in vitro kalibrācija. Lai nodrošinātu precīzu oksimetriju in vitro kalibrācijas laikā, katetram un kalibrācijas kausiņam ir jābūt sausam. Pēc in vitro kalibrācijas beigšanas skalojiet tikai katetra lūmenu.

Ja in vitro kalibrēšana tiek veikta pēc tam, kad oksimetrijas katetrs ir ievietots pacienta ķermenī, iegūtie rezultāti ir neprecīzi.

parametra elementā **ScvO₂/SvO₂** vai pieskarieties

ikonai **Venozā oksimetrija** navigācijas joslā, lai parādītu ekrānu **Oksimetrijas uzstādīšana**.

- 2. Pieskarieties pogai In vitro kalibrācija.
- Ekrānā In vitro kalibrācija ievadiet pacienta hemoglobīna (HGB) vai hematokrīta (Hct) vērtību. Hemoglobīna līmeni var ievadīt kā g/dl vai mmol/l, izmantojot papildtastatūru. Pieņemamos diapazonus skatiet šeit: 11-1. tabula 204. lpp.

Opcija	Apraksts	Atlases diapazons
HGB (g/dl)	Hemoglobīns	no 4,0 līdz 20,0
HGB (mmol/l)		no 2,5 līdz 12,4
Hct (%)	Hematokrīts	no 12 līdz 60

11-1. tabula.	In vitro	kalibrācij	jas opci	jas

- 4. Pieskarieties pogai Kalibrēt, lai sāktu kalibrēšanas procesu.
- 5. Kad kalibrācija ir sekmīgi pabeigta, izgaismojas darbība **3. Katetra pārbaude**, un tiek parādīts tālāk norādītais ziņojums.

Pārbaudiet, vai katetrs ir ievietots pacientā

- 6. levietojiet katetru saskaņā ar katetra lietošanas instrukciju.
- 7. Pieskarieties pogai **Sākt pārraudzību**.

11.3.1 ln vitro kalibrācijas kļūda

Ja HemoSphere Alta uzlabotā monitoringa platforma nevar veikt in vitro kalibrāciju, tiek parādīts uznirstošais kļūdas ekrāns.

Pieskarieties pogai **In vitro kalibrācija**, lai atkārtotu oksimetrijas kalibrēšanas procesu. VAI

Pieskarieties pogai Atcelt, lai atgrieztos izvēlnē Oksimetrijas uzstādīšana.

11.4 ln vivo kalibrācija

Izmantojiet in vivo kalibrēšanu, lai veiktu kalibrēšanu pēc tam, kad katetrs ir ievietots pacienta ķermenī.

Piezīme

Lai veiktu šo procesu, apstiprinātiem darbiniekiem jānoņem liekās asinis (attīrīšanas tilpums) un asins paraugs apstrādei laboratorijā. Izmantojot CO oksimetru, jāiegūst oksimetrijas vērtības mērījums.

Lai nodrošinātu optimālu precizitāti, in vivo kalibrēšana jāveic vismaz reizi 24 stundās.

In vivo kalibrācijas laikā tiek rādīta signāla kvalitāte. Ieteicams veikt kalibrēšanu tikai tad, kad SQI līmenis ir 1 vai 2. Skatiet šeit: Signāla kvalitātes indikators 206. lpp.

1. Pieskarieties oksimetrijas kalibrēšanas ikonai

parametra elementā **ScvO₂/SvO₂** vai pieskarieties

ikonai **Venozā oksimetrija** navigācijas joslā, lai parādītu ekrānu **Oksimetrijas uzstādīšana**.

2. Pieskarieties pogai In vivo kalibrācija.

Ja iestatīšana ir nesekmīga, tiek parādīts viens no tālāk redzamajiem kļūdu ziņojumiem.

Noteikts sieniņas artefakts vai ķīlis. Mainiet katetra novietojumu. VAI Nestabils signāls. Veiciet atkārtotu kalibrēšanu.

 Ja tiek parādīts kāds no iepriekš parādītajiem kļūdu ziņojumiem, mēģiniet novērst problēmu, kā norādīts 14-30. tabula 375. lpp., un pēc tam pieskarieties pogai Atkārtot kalibrēšanu, lai restartētu sākumstāvokļa iestatīšanu.

Pieskarieties pogai **Turpināt**, lai pārietu uz parauga ņemšanas darbību.

- 4. Ja sākumstāvokļa kalibrēšana ir sekmīga, pieskarieties pogai **Ņemt paraugu** un pēc tam noņemiet asins paraugu.
- 5. LLēni paņemiet asins paraugu (2 ml vai 2 cm³ 30 sekunžu laikā) un nosūtiet šo asins paraugu uz laboratoriju analīzes veikšanai, izmantojot CO oksimetru.
- 6. Saņemot laboratorijas vērtības, pieskarieties pogai HGB, lai ievadītu pacienta hemoglobīna vērtību, un pieskarieties g/dl vai mmol/l, vai pieskarieties pogai Hct, lai ievadītu pacienta hematokrīta vērtību. Pieņemamos diapazonus skatiet šeit: 11-2. tabula 206. lpp.

VAI

Opcija	Apraksts	Atlases diapazons
HGB (g/dl)	Hemoglobīns	no 4,0 līdz 20,0
HGB (mmol/l)		no 2,5 līdz 12,4
Hct (%)	Hematokrīts	no 12 līdz 60

11-2. tabula. In vivo kalibrēšanas opcijas

Piezīme

Kad HGB vai Hct vērtība ir ievadīta, sistēma automātiski aprēķina otru vērtību. Ja atlasītas abas vērtības, tiek pieņemta pēdējā ievadītā vērtība.

- 7. levadiet laboratorijas oksimetrijas vērtību (ScvO₂ vai SvO₂).
- 8. Pieskarieties pogai Kalibrēt.

11.5 Globālā hipoperfūzijas indeksa (GHI) algoritma funkcija

Globālā hipoperfūzijas indeksa (GHI) algoritmu var aktivizēt invazīvās pārraudzības režīmā, ja ir pievienots Swan-Ganz katetrs un oksimetrijas kabelis. GHI algoritms izmanto CCO vai RVCO ievadi un oksimetrijas algoritmus, lai noteiktu GHI vērtību. Globālā hipoperfūzijas indeksa(GHI) algoritms sniedz ārstam fizioloģiskus ieskatus par iespējamību, ka pacientam varētu izveidoties hemodinamiska nestabilitāte. Gaidāma hemodinamiskā nestabilitāte korelē ar gadījumiem, kad jaukto venozo asiņu skābekļa piesātinājums (SvO₂) samazinās līdz 60% vai mazāk uz vienu minūti. Papildinformāciju par GHI algoritmu skat. Globālās hipoperfūzijas indeksa (GHI) algoritma funkcija 280. lpp..

11.6 Signāla kvalitātes indikators

Signāla kvalitātes indikators (SQI) atspoguļo signāla kvalitāti, balstoties uz katetra stāvokli un novietojumu asinsvadā. Veicot audu oksimetrijas mērījumus, signāla kvalitāte balstās uz to, cik daudz gaismas, kuras viļņu garums ir tuvs infrasarkanās gaismas garumam, iespiedīsies audos. SQI joslas lodziņi tiek aizpildīti, pamatojoties uz oksimetrijas signāla kvalitātes līmeni. Pēc oksimetrijas kalibrācijas beigām SQI līmenis tiek atjaunināts ik pēc divām sekundēm, un tiek attēlots viens no četriem signāla līmeņiem, kā aprakstīts 11-3. tabula 206. lpp.

Līmenis	Aizpildītās joslas	Apraksts
4 — normāls	četri	Visi signāla aspekti ir optimāli
3 — vidējs	trīs	Liecina par nedaudz traucētu signālu
2 — vājš	divi	Liecina par vāju signāla kvalitāti
1 — nepieņemams	viens	Liecina par nopietnām problēmām ar vienu vai vairākiem signāla kvalitā- tes aspektiem

1-3.	tabula.	Signāla	kvalitātes	indikatora	līmeņi
------	---------	---------	------------	------------	--------

Intravaskulāras oksimetrijas laikā signāla kvalitāti var sabojāt:

- pulsācija (piemēram, katetra gals atrodas ķīļa pozīcijā);
- signāla intensitāte (piemēram, saliekts katetrs, asins recekļi, hemodilūcija);
- neregulāra asinsvada sieniņas saskare ar katetru.

Signāla kvalitāte tiek attēlota in vivo kalibrācijas un HGB atjaunināšanas funkciju laikā. Kalibrāciju ir ieteicams veikt tikai tad, ja SQI līmenis ir 3 vai 4. Ja SQI ir 1 vai 2, skatiet Venozās oksimetrijas kļūdu ziņojumi 372. lpp., lai noteiktu un atrisinātu problēmu.

UZMANĪBU

SQI signālu dažkārt ietekmē elektroķirurģijas instrumentu lietošana. Mēģiniet novietot elektrokauterizācijas ierīces un kabeļus tālāk prom no HemoSphere Alta uzlabotās monitoringa platformas un, ja iespējams, pieslēdziet elektropadeves kabeļus citām maiņstrāvas ķēdēm. Ja signāla kvalitātes problēmas joprojām pastāv, lūdziet palīdzību vietējam Edwards pārstāvim.

11.7 Atsaukt venozās oksimetrijas datus

Funkciju **Atsaukt venozās oksimetrijas datus** var izmantot, lai atsauktu datus no oksimetrijas kabeļa pēc tam, kad pacients ir aiztransportēts prom no HemoSphere Alta uzlabotās monitoringa platformas. Tas ļauj atsaukt pēdējo pacienta kalibrāciju kopā ar pacienta demogrāfiskajiem datiem tūlītējai oksimetrijas uzraudzībai. Lai šo funkciju varētu izmantot, kalibrācijas dati oksimetrijas kabelī nedrīkst būt vecāki par 24 stundām.

Piezīme

Ja pacienta dati jau ir ievadīti HemoSphere Alta uzlabotajā monitoringa platformā, tiek atsaukta tikai sistēmas kalibrācijas informācija. HemoSphere oksimetrijas kabelis tiek atjaunināts ar pašreizējā pacienta datiem.

- 1. Kamēr katetrs ir savienots ar HemoSphere oksimetrijas kabeli, atvienojiet kabeli no HemoSphere Alta uzlabotā monitora un transportējiet to kopā ar pacientu. Katetru nedrīkst atvienot no oksimetrijas kabeļa.
- 2. Ja oksimetrijas kabelis tiek pievienots citam HemoSphere Alta uzlabotajam monitoram, pārliecinieties, ka iepriekšējā pacienta dati ir notīrīti.
- 3. Kad pacients ir pārvests, atkārtoti pievienojiet oksimetrijas kabeli HemoSphere Alta uzlabotajai monitoringa platformai un ieslēdziet to.
- 4. Pieskarieties oksimetrijas kalibrēšanas ikonai parametra elementā ScvO₂/SvO₂ vai pieskarieties

venozā oksimetrija oksimetrija navigācijas joslā, lai parādītu ekrānu Oksimetrijas uzstādīšana.

ikonai Venozā oksimetrija oksimetrija navigācijas joslā, lai parādīt Pieskarieties pogai Atsaukt oksimetrijas datus.

6. Ja oksimetrijas kabeļa dati ir jaunāki par 24 stundām, pieskarieties pogai **Atsaukt**, lai sāktu oksimetrijas uzraudzību, izmantojot atsaukto kalibrācijas informāciju.

VAI

pieskarieties pogai Atcelt un veiciet in vivo kalibrēšanu.

BRĪDINĀJUMS

Pirms pieskarties pogai **Atsaukt**, lai atsauktu oksimetrijas datus, apstipriniet, ka parādītie dati atbilst pašreizējam pacientam. Nepareizu oksimetrijas kalibrācijas un pacienta demogrāfisko datu izsaukšana radīs mērījumu neprecizitāti.

UZMANĪBU

Neatvienojiet oksimetrijas kabeli kalibrēšanas vai datu atsaukšanas laikā.

7. Oksimetrijas kalibrēšanas izvēlnē pieskarieties pogai **In vivo kalibrācija**, lai atkārtoti kalibrētu kabeli. Lai pārskatītu ar oksimetrijas kabeli kopā transportētos pacienta datus, navigācijas joslā pieskarieties pogai

UZMANĪBU

Ja oksimetrijas kabelis tiek pārvietots no vienas HemoSphere Alta uzlabotas monitoringa platformas uz citu HemoSphere Alta uzlaboto monitoringa platformu, pirms uzraudzības sākšanas pārbaudiet, vai pacienta auguma garums, svars un KVL rādītāji ir pareizi. Ja nepieciešams, ievadiet pacienta datus atkārtoti.

Piezīme

Nodrošiniet, lai visās HemoSphere Alta uzlabotajās monitoringa platformās būtu iestatīts pašreizējais laiks un datums. Ja tās HemoSphere Alta uzlabotās monitoringa platformas datums un/vai laiks, kura tiek pārvesta "no", atšķiras no tās HemoSphere Alta uzlabotās monitoringa platformas datuma un/vai laika, kas tiek pārvesta "uz", var tikt parādīts šis ziņojums:

"Pacienta dati oksimetrijas kabelī ir vecāki par 24 stundām. Atkārtojiet kalibrēšanu"

Ja sistēma ir jākalibrē atkārtoti, oksimetrijas kabelim var būt vajadzīgs 10 minūšu iesilšanas laiks.

11.8 HGB atjaunināšana

Izmantojiet opciju **HGB atjaunināšana**, lai pielāgotu iepriekšējas kalibrācijas HGB vai Hct vērtību. Atjaunināšanas funkciju var izmantot tikai tad, ja iepriekš veikta kalibrēšana vai ja kalibrācijas dati ir atsaukti no oksimetrijas kabeļa.

1. Pieskarieties oksimetrijas kalibrēšanas ikonai

parametra elementā **ScvO₂/SvO₂** vai pieskarieties

ikonai **Venozā oksimetrija** navigācijas joslā, lai parādītu ekrānu **Oksimetrijas uzstādīšana**.

- 2. Pieskarieties pogai HGB atjaunināšana.
- 3. Varat izmantot attēlotās HGB un Hct vērtības vai pieskarties pogām HGB vai Hct, lai ievadītu jaunu vērtību.
- 4. Pieskarieties pogai Kalibrēt.
- 5. Lai apturētu kalibrēšanas procesu, pieskarieties pogai Atcelt.

Piezīme

Lai sasniegtu optimālu precizitāti, iesakām atjaunināt HGB un Hct vērtības, ja notikušas Hct izmaiņas 6% vai lielākā apmērā vai HGB izmaiņas 1,8 g/dl (1,1 mmol/l) vai lielākā apmērā. SQI var ietekmēt arī hemoglobīna izmaiņas. Izmantojiet pogu **HGB atjaunināšana**, lai novērstu problēmas ar signāla kvalitāti.

11.9 HemoSphere oksimetrijas kabeļa atiestatīšana

Ja SQI līmenis nepārtraukti ir zems, veiciet HemoSphere oksimetrijas kabeļa atiestatīšanu. Oksimetrijas kabeļa atiestatīšana var stabilizēt signāla kvalitāti. Tā jāveic tikai pēc tam, kad ir veiktas citas darbības zemā SQI līmeņa novēršanai, kā norādīts sadaļā Problēmu novēršana.

Piezīme

HemoSphere Alta uzlabotā monitoringa platforma neļauj veikt oksimetrijas kabeļa atiestatīšanu, ja pirms tam nav veikta kalibrēšana vai kalibrācijas informācijas atsaukšana no oksimetrijas kabeļa.

1. Pieskarieties oksimetrijas kalibrēšanas ikonai parametra elementā ScvO₂/SvO₂ vai pieskarieties

ikonai **Venozā oksimetrija** avigācijas joslā, lai parādītu ekrānu **Oksimetrijas uzstādīšana**.

- 2. Pieskarieties pogai Oksimetrijas kabeļa atiestatīšana.
- 3. Tiek parādīta norises josla. Neatvienojiet oksimetrijas kabeli.

11.10 Jauns katetrs

Izmantojiet opciju **Jauns katetrs** katru reizi, kad pacientam tiek izmantots jauns katetrs. Pēc **Jauns katetrs** apstiprināšanas jāveic atkārtota oksimetrijas kalibrēšana. Katetra novietošanas un lietošanas instrukcijas, kā arī saistītos brīdinājumus, piesardzības pasākumus un piezīmes skatiet katram katetram pievienotajos lietošanas norādījumos.

1. Pieskarieties oksimetrijas kalibrēšanas ikonai parametra elementā **ScvO₂/SvO₂** vai pieskarieties

ikonai **Venozā oksimetrija** navigācijas joslā, lai parādītu ekrānu **Oksimetrijas uzstādīšana**.

- 2. Pieskarieties pogai Jauns katetrs.
- 3. Pieskarieties pogai Jā.

HemoSphere Alta audu oksimetrijas pārraudzība

Saturs

HemoSphere Alta audu oksimetrijas pārraudzība	. 210
Pārskats par ForeSight oksimetra kabeli	. 211
ForeSight oksimetra kabeļa pievienošana	.215
Edwards algoritms asins hemoglobīna mērīšanai (tHb algoritms)	. 231

12.1 HemoSphere Alta audu oksimetrijas pārraudzība

ForeSight oksimetra kabeli var savienot ar HemoSphere Alta uzlaboto monitoringa platformu, lai iespējotu nepārtrauktu asins skābekļa piesātinājuma pārraudzību audos (StO₂). ForeSight oksimetra kabelis ir neinvazīva ierīce, kas mēra absolūto audu piesātinājumu ar skābekli. Ierīces darbības pamatā ir princips, ka asinis satur hemoglobīnu divās galvenajās formās — oksigenēta hemoglobīna formā (HbO₂) un dezoksidēta hemoglobīna formā (Hb). Savukārt šīs divas formas dažādos, izmērāmos veidos absorbē tuvā infrasarkanā spektra gaismu.

Skābekļa piesātinājuma audos (StO₂) līmeni nosaka, pēc turpmāk norādītās formulas aprēķinot oksigenētā hemoglobīna attiecību pret kopējo hemoglobīnu mikrovaskulārā līmenī (arteriolās, venulās un kapilāros) reģionā, kurā tiek lietots sensors:

$$\% StO_2 = \frac{\text{oksigenētais hemoglobīns}}{\text{kopējais hemoglobīns}} = \frac{\text{HbO}_2}{\text{HbO}_2 + \text{Hb}} \times 100$$

ForeSight oksimetra kabelī ir iekļauta Edwards tehnoloģija, kas projicē nekaitīgu tuvā infrasarkanā spektra gaismu (piecos precīzos viļņu garumos) caur ārējiem audiem (piemēram, caur galvas ādu un galvaskausu) iekšējos audos (piemēram, smadzenēs), izmantojot vienreizlietojamu sensoru uz pacienta ādas. Atstaroto gaismu uztver detektori, kas ir novietoti uz sensora tā, lai optimāli uztvertu signālu. Pēc atstarotās gaismas analīzes šis kabelis sniedz informāciju par skābekļa piesātinājuma līmeni audos HemoSphere Alta uzlabotajai monitoringa platformai kā absolūtu skaitli un grafiski attēlo vēsturiskās vērtības.

Pulsa oksimetrs atstaro tikai skābekļa piesātinājumu arteriālajās asinīs (SpO₂), un tā darbībai ir nepieciešama pulsācija. Savukārt ForeSight oksimetra kabelis veic mērījumus pat bez pulsa un parāda skābekļa piegādes un pieprasījuma līdzsvaru mērķa audos (StO₂), piemēram, smadzenēs, vēdera dobumā un ekstremitāšu muskuļos. Tādējādi HemoSphere Alta uzlabotās monitoringa platformas StO₂ vērtības norāda kopējo audu oksigenācijas stāvokli, nodrošinot tiešu atgriezenisko saiti aprūpes pasākumu vadībai.

Piezīme

Tālāk norādītajiem komponentiem var būt alternatīvs marķējuma formatējums.

ForeSight oksimetra kabelis (FSOC) var būt marķēts arī kā FORE-SIGHT ELITE audu oksimetrijas modulis (FSM).

ForeSight sensori vai ForeSight Jr sensori var būt marķēti arī kā FORE-SIGHT ELITE audu oksimetrijas sensori.

12.2 Pārskats par ForeSight oksimetra kabeli

Nākamajos attēlos ir sniegts ForeSight oksimetra kabeļa fizisko īpašību kopsavilkums.

12-1. attēls. ForeSight oksimetra kabeļa skats no priekšpuses

Piezīme

Monitors un sensoru kabeļi ir parādīti šķērsgriezumā; skatiet A-16. tabula 388. lpp.. Statusa LED indikatoru aprakstu skatiet ForeSight oksimetra kabeļa sensoru gaismas indikatori 341. lpp..

UZMANĪBU

Nenovietojiet ForeSight oksimetra kabeli vietās, kur statusa LED indikatori nav viegli saskatāmi.

12-2. attēls. ForeSight oksimetra kabeļa skats no mugurpuses

Piezīme

Skaidrības labad kabeļa korpusa mugurpuses attēli šajā rokasgrāmatā ir parādīti bez marķējuma.

12.2.1 ForeSight oksimetra kabeļa montāžas risinājumi

ForeSight oksimetra kabelis ir iepakots kopā ar montāžas fiksatoru.

12-3. att. 212. lpp. un 12-4. att. 212. lpp. rāda stiprinājuma punktus uz montāžas fiksatora un kabeļa korpusa.

1. Montāžas fiksatora ligzda

2. Montāžas fiksatora fiksācijas izcilnis

12-3. attēls. Montāžas fiksatora stiprinājuma punkti

12-4. attēls. Kabeļa korpuss — montāžas fiksatora stiprinājuma punkti

12.2.2 Montāžas fiksatora uzstādīšana

Montāžas fiksatoru var piestiprināt pie ForeSight oksimetra kabeļa vertikāli (raksturīgi gultas margām — skatiet 12-5. att. 213. lpp.) vai horizontāli (raksturīgi stiprinājumam pie statīva — skatiet 12-6. att. 214. lpp.).

12.2.2.1 Montāžas fiksatora vertikāla piestiprināšana

Lai montāžas fiksatoru piestiprinātu vertikāli, veiciet šādas darbības:

1. Kabeļa korpusa mugurpusē novietojiet montāžas fiksatoru tā, lai atvere būtu pavērsta pret montāžas fiksatora slīdni.

2. Bīdiet montāžas fiksatoru kabeļa korpusa augšdaļas virzienā, līdz montāžas fiksatora fiksācijas izcilnis nofiksējas vertikālajā montāžas fiksatora fiksācijas padziļinājumā.

Piezīme

Montāžas fiksators nav paredzēts piestiprināšanai ar atveri uz augšu.

1. Montāžas fiksatora fiksācijas padziļinājums (vertikāli)

2. Montāžas fiksatora fiksācijas izcilnis

12-5. attēls. Montāžas fiksatora vertikāla piestiprināšana

12.2.2.2 Montāžas fiksatora piestiprināšana horizontāli

Lai montāžas fiksatoru piestiprinātu horizontāli, veiciet šādas darbības:

- 1. Novietojiet montāžas fiksatoru kabeļa korpusa labajā vai kreisajā pusē tā, lai montāžas fiksatora fiksācijas izcilnis būtu vērsts prom no kabeļa korpusa.
- 2. Bīdiet montāžas fiksatoru pāri kabeļa korpusa mugurpusei, līdz montāžas fiksatora fiksācijas izcilnis nofiksējas vienā no horizontālajiem montāžas fiksatora fiksācijas padziļinājumiem.

Piezīme

Montāžas fiksatoru var piestiprināt divējādi — atvērums var būt vērsts pa labi vai pa kreisi.

1. Montāžas fiksatora fiksācijas izcilnis

 Montāžas fiksatora fiksācijas padziļinājums (horizontāli)

12.2.3 Montāžas fiksatora noņemšana

Lai noņemtu montāžas fiksatoru no kabeļa korpusa mugurpuses (sk.: 12-7. att. 215. lpp.), veiciet turpmāk norādītās darbības.

1. Uzmanīgi paceliet montāžas fiksatora fiksācijas izcilni, līdz tas atvienojas no padziļinājuma.

UZMANĪBU

Pieliekot pārāk lielu spiedienu, fiksācijas izcilnis var salūzt, tāpēc var rasties risks, ka kabelis uzkritīs pacientam, blakus esošai personai vai operatoram.

Piezīme

Lai iegūtu informāciju par rezerves daļām, zvaniet uz tehniskā atbalsta dienesta tālruņa numuriem, kas redzami vāka iekšpusē. Apstiprinātās detaļas un piederumi ir norādīti šeit: B-1. tabula 393. lpp.

2. Bīdiet montāžas fiksatoru virzienā uz montāžas fiksatora fiksācijas izcilni, līdz montāžas fiksators ir atbrīvots no montāžas fiksatora slīdņa.

12-7. attēls. Montāžas fiksatora noņemšana

3. Noņemiet montāžas fiksatoru no kabeļa korpusa.

UZMANĪBU

Neceliet un nevelciet ForeSight oksimetra kabeli ne aiz viena kabeļa savienojuma un nenovietojiet ForeSight oksimetra kabeli vietā, kas varētu radīt risku, ka kabelis var uzkrist pacientam, blakus esošai personai vai operatoram.

Nenovietojiet ForeSight oksimetra kabeli zem palagiem vai segas, kas varētu ierobežot gaisa plūsmu ap kabeli un tādējādi paaugstināt kabeļa korpusa temperatūru un izraisīt traumas.

12.3 ForeSight oksimetra kabeļa pievienošana

HemoSphere Alta uzlabotā monitoringa platforma ir saderīga ar ForeSight oksimetra kabeli un ForeSight/ ForeSight Jr sensoriem.

Piezīme

Tālāk norādītajiem komponentiem var būt alternatīvs marķējuma formatējums.

ForeSight oksimetra kabelis (FSOC) var būt marķēts arī kā FORE-SIGHT ELITE audu oksimetrijas modulis (FSM).

ForeSight sensori vai ForeSight Jr sensori var būt marķēti arī kā FORE-SIGHT ELITE audu oksimetrijas sensori.

- ForeSight/ForeSight Jr/ForeSight IQ sensora savienojumi (2)
- 3. ForeSight oksimetra kabeļa korpuss

12-8. attēls. Audu oksimetrijas pārraudzības savienojuma pārskats

5. HemoSphere Alta uzlabotais monitors

Piezīme

ForeSight/ForeSight Jr/ForeSight IQ sensori ir pret defibrilāciju noturīgas BF TIPA DAĻAS, KAS SASKARAS AR PACIENTU. Pacientu kabeļi, kas savienojami ar sensoriem, piemēram, ForeSight oksimetra kabelis, nav paredzēti kā daļas, kas saskaras ar pacientu, taču tie var saskarties ar pacientu un tiem jāatbilst attiecīgajām prasībām, kuras saskaņā ar standartu IEC 60601-1 ir noteiktas daļām, kas saskaras ar pacientu.

ForeSight oksimetra kabelis drīkst palikt savienots ar pacientu sirds defibrilācijas laikā.

HemoSphere Alta uzlaboto monitoringa platformu piegādā kopā ar ESD pārsegiem, kas paredzēti ForeSight oksimetra kabeļa savienojumu pieslēgvietām. Pēc to noņemšanas sistēmas pirmajā lietošanas reizē ieteicams tos saglabāt un izmantot, lai pieslēgvietu neizmantošanas laikā pasargātu elektrisko savienojumu vietas.

BRĪDINĀJUMS

Atbilstība IEC 60601-1 standartam tiek saglabāta tikai tad, ja ForeSight oksimetrijas kabelis (daļa, kas saskaras ar pacientu, drošs pret defibrilāciju) ir pievienots saderīgai pārraudzības platformai. Pievienojot ārējo aprīkojumu vai konfigurējot sistēmu neatbilstoši šiem norādījumiem, atbilstība šim standartam vairs nav piemērojama. Neievērojot ierīces lietošanas norādījumus, palielinās elektriskās strāvas trieciena risks pacientam/lietotājam.

Pirms uzstādīšanas pārbaudiet, vai ForeSight oksimetra kabeļa savienojumi nevienā daļā nav bojāti. Ja konstatējat bojājumus, kabeli nedrīkst izmantot, kamēr tas nav salabots vai nomainīts. Sazinieties ar Edwards tehniskā atbalsta dienestu. Pastāv risks, ka bojātas detaļas var samazināt kabeļa veiktspēju vai radīt drošības apdraudējumu.

Lai novērstu pacientu savstarpējas kontaminācijas iespēju, ForeSight oksimetra kabelis un kabeļa savienojumi ir jātīra pēc katras lietošanas reizes.
Lai samazinātu kontaminācijas un savstarpējas inficēšanās risku, ForeSight oksimetra kabelis vai kabeļu savienojumi ir jādezinficē, ja tie ir stipri piesārņoti ar asinīm vai citiem ķermeņa šķidrumiem. Ja ForeSight oksimetra kabeli vai kabeļu savienojumus nevar dezinficēt, tiem ir jāveic tehniskā apkope, tie ir jānomaina vai jāizmet. Sazinieties ar Edwards tehniskā atbalsta dienestu.

Lai samazinātu risku sabojāt kabeļu bloku iekšējos elementus ForeSight oksimetra kabeļa korpusā, izvairieties no pārmērīgas kabeļa savienojumu vilkšanas, saliekšanas vai cita veida slodzes.

Izstrādājumu nedrīkst nekādā veidā pārveidot, veikt tā apkopi vai mainīt. Veicot izstrādājuma apkopi, pārveidojot vai mainot to, var tikt negatīvi ietekmēta pacienta/lietotāja drošība un/vai izstrādājuma veiktspēja.

- 1. Lai ieslēgtu HemoSphere Alta uzlaboto monitoringa platformu, nospiediet ieslēgšanas/izslēgšanas pogu. Visām funkcijām var piekļūt, izmantojot skārienekrānu.
- Nodrošiniet pareizu novietojumu, pēc tam pievienojiet ForeSight oksimetra kabeli audu oksimetrijas pieslēgvietai monitora kreisajā panelī. Skatiet apzīmējumu (4) šeit: 12-8. att. 216. lpp. Katrai pieslēgvietai var pievienot divus ForeSight oksimetra kabeļus.

Piezīme

ForeSight oksimetra kabeli var pievienot tikai vienā virzienā. Ja sākumā neizdodas iespraust savienotāju, pagrieziet savienotāju ap savu asi un mēģiniet to ievietot vēlreiz.

Atvienojot ForeSight oksimetra kabeli no HemoSphere Alta uzlabotā monitora, nevelciet ne aiz viena kabeļa savienojuma.

Kad ir izveidots ForeSight oksimetra kabeļa savienojums ar HemoSphere Alta uzlaboto monitoringa platformu, jāieslēdzas 1. un 2. kanāla statusa LED indikatoram. Ieslēdzas arī grupas statusa LED indikators, norādot, ka moduļu kanāli iekļauti A grupā (savienoti ar A pieslēgvietu HemoSphere Alta uzlabotā monitora kreisajā panelī) vai B grupā (savienoti ar B pieslēgvietu HemoSphere Alta uzlabotā monitora kreisajā panelī).

- monitora audu oksimetrijas savienojuma A pieslēgvieta
- **3.** zaļš moduļa grupas statusa LED indikators: kanāli, kas saistīti ar monitora A pieslēgvietu
- monitora audu oksimetrijas savienojuma B pieslēgvieta
- 4. zils moduļa grupas statusa LED indikators: kanāli, kas saistīti ar monitora B pieslēgvietu

- 3. Pievienojiet saderīgo(-os) ForeSight sensoru(-us) ForeSight oksimetra kabelim. Katram ForeSight oksimetra kabelim var pievienot līdz diviem ForeSight sensoriem. Pieejamās sensoru atrašanās vietas ir uzskaitītas šeit: 12-1. tabula 218. lpp. Norādījumus par pareizu sensoru lietošanu skatiet sadaļā Sensoru piestiprināšana pacientam 220. lpp. un ForeSight sensora lietošanas instrukcijās.
- 4. Pievienojiet pacientu datus atbilstoši nepieciešamībai. Skat. Pacienta dati 127. lpp. Atlasiet StO₂ kā galveno parametru, lai skatītu pārraudzītos audu oksimetrijas datus. Skat. Parametru elementi parametru konfigurācijas izvēlne 91. lpp.

Grafisks attēlojums (labajā pusē)*	Grafisks attēlojums (kreisajā pusē)*	Anatomiskā atrašanās vieta* pieaugušajam (≥ 40 kg) (sen- sora izmērs)	Anatomiskā atrašanās vieta* bērnam (< 40 kg) (sensora izmērs) 📅 뷲
	A1	smadzenes (liels)	smadzenes (vidējs/mazs)
A		plecs (liels)	nav piemērojams

12-1. tabula. Audu oksimetrijas sensoru atrašanās vietas

Grafisks attēlojums (labajā pusē)*	afisks attēlojums Grafisks attēlojums bajā pusē)* (kreisajā pusē)*		Anatomiskā atrašanās vieta* bērnam (< 40 kg) (sensora izmērs) 📅 🛊			
		roka (liels)	nav piemērojams			
		vēdera sāni/vēders (liels)	vēdera sāni/vēders (vidējs/ mazs)			
		nav piemērojams	vēders (vidējs/mazs)			
		kāja — četrgalvu muskulis (liels)	kāja — četrgalvu muskulis (vi- dējs)			
R		kāja — liels (ikru muskulis vai lielā lielakaula muskulis, liels)	kāja — liels (ikru muskulis vai lielā lielakaula muskulis, vi- dējs)			
* Visi sensora atrašanās vietu grafiskie attēlojumi parādīti atbilstoši pieaugušam pacientam, izņemot vēderu.						

- Ja StO₂ pašlaik nav galvenais parametrs, pieskarieties parādītajai parametra etiķetei jebkurā parametra elementā, lai atlasītu StO₂ <Ch> kā galveno parametru izvēlnē Izvēlieties parametru, kur <Ch> ir sensora kanāls. Kanālu opcijas ir A1 un A2 ForeSight oksimetra A kabelim, savukārt B1 un B2 ForeSight oksimetra B kabelim.
- 6. Kanāla un sensora atrašanās vieta tiek parādīta parametra elementa kreisajā pusē. Pieskarieties jebkurai vietai parametra elementā, lai piekļūtu parametra konfigurēšanas logam.

- 7. Lai mainītu sensora atrašanās vietu vai pacienta pārraudzības režīmu, pieskarieties cilnei **Sensora** atrašanās vieta.
- 8. Atlasiet pacienta pārraudzības režīmu: pieaugušajiem 📅 👘 vai bērniem 류 뷲

Piezīme

Sensora režīms tiek atlasīts automātiski atbilstoši ievadītajai pacienta ķermeņa masai. Pieaugušā sensora režīmam konfigurējama jebkura ķermeņa masa ≥ 40 kg.

- 9. Atlasiet sensora anatomisko novietojumu. Pieejamo sensora atrašanās vietu sarakstu skatiet šeit: 12-1. tabula 218. lpp. Sensoru atrašanās vietas ir kodētas ar krāsu atbilstoši savienojuma pieslēgvietai, kā norādīts tālāk.
 - Zaļa: sensoru atrašanās vietas ForeSight oksimetra kabelim, kas savienots ar HemoSphere Alta monitora audu oksimetrijas A pieslēgvietu
 - Zila: sensoru atrašanās vietas ForeSight oksimetra kabelim, kas savienots ar HemoSphere Alta monitora audu oksimetrijas B pieslēgvietu

10. Pieskarieties sākuma ikona navigācijas joslā, lai atgrieztos pārraudzības ekrānā.

12.3.1 Sensoru piestiprināšana pacientam

Nākamajās sadaļās ir aprakstīts, kā sagatavot pacientu pārraudzībai. Papildinformāciju par sensora piestiprināšanu pacientam skatiet ForeSight/ForeSight Jr/ForeSight IQ sensora iepakojumā ieklautajos norādījumos.

12.3.1.1 Sensora vietas izvēle

Lai nodrošinātu pacienta drošību un pareizu datu vākšanu, izvēloties sensora vietu, ņemiet vērā turpmāk minētos nosacījumus.

BRĪDINĀJUMS

Sensori nav sterili, tāpēc tos nedrīkst lietot uz nobrāztas, saplaisājušas ādas vai brūcēm. Lietojot sensorus vietās ar maigu ādu, ievērojiet piesardzību. Sensoru, lentes vai spiediena lietošana šādā vietā var samazināt asinsriti un/vai izraisīt ādas stāvokļa pasliktināšanos.

Nenovietojiet sensoru virs slikti apasiņotiem audiem. Lai nodrošinātu labāku saķeri, izvairieties no nelīdzenām ādas virsmām. Nenovietojiet sensoru virs vietām, kur ir radies ascīts, celulīts, pneimocefālija vai tūska.

Ja tiks veiktas elektrokauterizācijas procedūras, sensori un elektrokauterizācijas elektrodi jānovieto pēc iespējas tālāk viens no otra, lai novērstu nevēlamus ādas apdegumus; ieteicams vismaz 15 cm (6") attālums.

UZMANĪBU

Sensorus nedrīkst novietot vietās, kas ir blīvi klātas ar matiem.

Sensoram tieši jāsaskaras ar tīru, sausu ādu. Jebkādi netīrumi, losjoni, eļļa, pūderis, sviedri vai mati, kas novērš labu kontaktu starp sensoru un ādu, ietekmē savākto datu derīgumu un var izraisīt trauksmes ziņojumu.

Piezīme

Ādas pigmentācija neietekmē savākto datu derīgumu. ForeSight oksimetra kabelis automātiski kompensē ādas pigmentāciju.

Ja atlasīto audu atrašanās vietu nevar palpēt vai vizualizēt, ieteicams to apstiprināt ar ultraskaņu vai rentgenu.

Sadaļā 12-2. tabula 221. lpp. — šeit ir sniegtas vadlīnijas sensora izvēlei, pamatojoties uz pacienta pārraudzības režīmu, pacienta svaru un novietojumu uz ķermeņa.

Pacienta re-	Sensors	Svars	Novietojums uz ķermeņa					
zims			Smadzenes	Sāns	Vēders	Kājas	Rokas/delt- veida mus- kuļi	
Pieaugušais	Liels	≥ 40 kg	•	•		•	•	
Bērns	Vidējs	≥ 3 kg	•	•	•	•		
Bērns —	Mazs	< 8 kg	•					
jaundzimu- šais		≥ 5 kg	•	•	•			
Bērns — Mazs, nelī-	< 8 kg	•						
jaundzimu- šais	poss	≥ 5 kg	•	•	•			

12-2. tabula. Sensora izvēles matrica

Piezīme

Ja pievienojat sensoru, kura lielums nav piemērots pašreizējam pacienta pārraudzības režīmam, attiecīgajā kanālā statusa joslā tiek parādīts trauksmes ziņojums. Ja tas ir vienīgais pievienotais sensors, var tikt piedāvāts pārslēgt režīmu (pieaugušo vai bērnu).

Ja pievienojat sensoru, kura lielums nav piemērots izvēlētajam novietojumam uz ķermeņa, attiecīgajā kanālā statusa joslā tiek parādīts trauksmes ziņojums. Ja tas ir vienīgais pievienotais sensors, var tikt piedāvāts izvēlēties citu novietojumu uz ķermeņa vai izmantot cita izmēra sensoru.

BRĪDINĀJUMS

Kopā ar ForeSight oksimetra kabeli izmantojiet tikai Edwards piegādātos piederumus. Edwards piederumi nodrošina pacienta drošību un saglabā ForeSight oksimetra kabeļa integritāti, precizitāti un elektromagnētisko saderību. Pieslēdzot sensoru, kura ražotājs nav Edwards, attiecīgajā kanālā tiks parādīts atbilstošs trauksmes ziņojums, un StO₂ vērtības netiks reģistrētas.

Sensori ir paredzēti lietošanai vienam pacientam, un tos nedrīkst atkārtoti apstrādāt. Atkārtota sensoru izmantošana rada savstarpējas kontaminācijas vai infekcijas risku.

Katram pacientam izmantojiet jaunu sensoru un pēc lietošanas izmetiet to. Iznīcināšana jāveic saskaņā ar vietējiem slimnīcas un iestādes noteikumiem.

Ja sensors šķiet jebkādā veidā bojāts, to nedrīkst izmantot.

Vienmēr izlasiet informāciju uz sensora iepakojuma.

12.3.1.2 Sensora vietas sagatavošana

Lai sagatavotu pacienta ādu sensora novietošanai, veiciet turpmāk norādītās darbības.

- 1. Pārliecinieties, ka ādas laukums, uz kura paredzēts novietot sensoru, ir tīrs, sauss, nav savainots un nav klāts ar pūderi, eļļu vai losjonu.
- 2. Vajadzības gadījumā noskujiet matus no ādas izvēlētajā vietā.
- 3. Ar piemērotu tīrīšanas līdzekli maigi notīriet paredzēto sensora vietu.

Lielo un vidēji lielo sensoru komplektos ir spirta tampons. Nelietojiet spirta tamponu uz jaundzimušā ādas vai trauslas ādas.

Pacientiem ar maigu ādu vai tūsku varat zem sensora lietot līdzekli Tegaderm vai Mepitel.

4. Pirms sensoru novietošanas ļaujiet ādai pilnībā nožūt.

12.3.1.3 Sensoru novietošana

- 1. Izvēlieties atbilstošo sensoru (skatiet: 12-2. tabula 221. lpp.) un izņemiet to no iepakojuma.
- 2. Noņemiet sensora aizsargpārklājumu (12-10. att. 222. lpp.) un izmetiet to.

12-10. attēls. Aizsargpārklājuma noņemšana no sensora

Piezīme

Ja izmantojat nelīpošo mazo sensoru, ir jānomēra un jāapgriež sensora josla, lai garums derētu pacientam.

- Saīsiniet sensora joslu tālāk no pacienta. Nepārgrieziet sensora joslu, kamēr tā ir pievienota pacientam, un negrieziet nevienu citu sensora daļu.
- Piestipriniet sensora joslu pacientam ar apdrukāto pusi uz āru.
- Nesavelciet sensora joslu pārāk cieši, jo spiediens var pāriet uz mazuli.
- 3. Izvēlētajā vietā piestipriniet sensoru pacientam.

Lietošana smadzeņu rajonā (12-11. att. 222. lpp.): izvēlieties tādu vietu uz pieres virs uzacīm un nedaudz zem matu līnijas, kur sensori būs izlīdzināti vienā līnijā.

1. Nelīpošais mazais sensors

12-11. attēls. Sensoru novietojums (smadzenēm)

Lietošana vietās, kas nav smadzeņu rajons (12-12. att. 224. lpp.): izvēlieties vietu, kas nodrošina piemērotu piekļuvi vēlamajiem skeleta muskuļu audiem (ja muskuļus nevar palpēt, iespējams, ir pārāk daudz taukaudu vai tūskas).

- Roka: novietojiet sensoru pāri deltveida muskulim (uz pleca), augšdelma divgalvainajam muskulim (uz augšdelma) vai augšdelma un spieķkaula muskulim.
- Kāja: novietojiet sensoru pāri ciskas četrgalvainajam muskulim (uz augšstilba), ikru muskulim (uz apakšstilba) vai lielā lielakaula muskulim (uz apakšstilba). Uzlieciet sensoru tā, lai savienotājs atrastos virzienā uz pēdām.
- Sāni/vēders: novietojiet sensoru virs platā muguras muskuļa (uz sāniem) vai vēdera ārējā slīpā muskuļa (uz vēdera).

12-12. attēls. Sensoru novietojums (citiem audiem, nevis smadzenēm)

Piezīme

Veicot muskuļu audu monitoringu, novietojiet sensoru centrā virs izvēlētajiem muskuļiem (piemēram, apakšstilba augšdaļas vidū, kā parādīts attēlā).

Ja muskuļi ir atrofējušies, monitoringam var nepietikt audu.

Ja monitoringa nolūks ir uzraudzīt asinsvadu nosprostojuma ietekmi uz ekstremitāti, novietojiet sensoru gan uz attiecīgās ekstremitātes, gan tajā pašā vietā uz pretējās ekstremitātes.

BRĪDINĀJUMS

Novietojot sensorus, rīkojieties ārkārtīgi uzmanīgi. Sensoru ķēdes vada strāvu, un tās nedrīkst nonākt saskarē ar citām iezemētām, strāvu vadošām detaļām, izņemot EEG vai entropijas monitorus. Šāda saskare šķērsotu pacienta izolāciju un atceltu sensora nodrošināto aizsardzību.

Ja sensori netiek pareizi novietoti, mērījumi var būt nepareizi. Sensoru nepareizs novietojums vai daļēja nobīdīšanās var izraisīt nepareizas skābekļa piesātinājuma vērtības nolasīšanu, kas ir lielāka vai mazāka par reālo vērtību.

Nenovietojiet sensoru vietā, kur tas būs pakļauts pacienta svaram. Ilgstoša spiediena periodos (piemēram, ja sensoram tiek pārlīmēta lente vai pacients guļ uz sensora) svars tiek pārnests no sensora uz ādu, tāpēc āda var tikt savainota un sensora veiktspēja var samazināties.

Sensoru pielikšanas vieta jāpārbauda vismaz ik pēc 12 stundām, lai mazinātu nepiemērotas pielipšanas, neatbilstošas asinsrites un ādas bojājumu risku. Ja asinsrites stāvoklis vai ādas integritāte ir pasliktinājusies, sensors ir jāpieliek citā vietā.

12.3.1.4 Sensoru savienošana ar kabeļiem

- 1. Pārliecinieties, vai ForeSight oksimetra kabelis ir savienots ar HemoSphere Alta uzlaboto monitoringa platformu un sensori ir pareizi novietoti uz pacienta ādas.
- 2. Izmantojiet sensora kabeļa fiksatorus, lai nostiprinātu kabeli un novērstu tā atraušanos no pacienta.

BRĪDINĀJUMS

Nepievienojiet vairāk kā vienu pacientu pie ForeSight oksimetra kabeļa. Tas var negatīvi ietekmēt pacienta izolāciju un atcelt sensora nodrošināto aizsardzību.

UZMANĪBU

Ja sensorus izmanto telpās ar LED apgaismojumu, pirms pievienošanas sensora kabelim var būt nepieciešams pārklāt sensoru ar gaismas bloķētāju, jo dažas augstas intensitātes sistēmas var traucēt sensora spēju pareizi uztvert tuvā infrasarkanā spektra gaismu.

Neceliet un nevelciet ForeSight oksimetra kabeli ne aiz viena kabeļa savienojuma un nenovietojiet ForeSight oksimetra kabeli vietā, kas varētu radīt risku, ka kabelis var uzkrist pacientam, blakus esošai personai vai operatoram.

3. Novietojiet sensora savienotāju sensora kabeļa savienotāja priekšā un izlīdziniet uz abiem savienotājiem redzamās atzīmes (12-13. att. 226. lpp.).

12-13. attēls. Sensora pievienošana sensora kabeļa savienotājam

- 4. Viegli iespiediet sensora savienotāju tieši sensora kabeļa savienotājā, līdz tas nofiksējas vietā.
- 5. Uzmanīgi pavelciet sensoru atpakaļ, lai pārliecinātos, ka sensors ir pilnībā ievietots savienotājā.
- 6. Pārbaudiet, vai ForeSight oksimetra kabeļa kanāla statusa LED indikators nomainās no baltas krāsas uz zaļu, kad sensors ir pilnībā pievienots. Skat. 12-14. att. 226. lpp.

1. kanāla LED indikators ir zaļš (sensors ir pievienots)
 2. kanāla LED indikators ir balts (sensors nav pievienots) nots)

12-14. attēls. Sensora pievienošana ForeSight oksimetra kabelim — kanāla statusa LED indikators

UZMANĪBU

Kad pacienta monitorings ir sākts, nepārvietojiet sensoru un neatvienojiet sensoru ilgāk par 10 minūtēm, lai nebūtu jāatsāk sākotnējais StO₂ aprēķins.

Piezīme

Ja pēc darba sākšanas ar jaunu pacientu ForeSight oksimetra kabelis nevar pareizi nolasīt sensoru datus, var tikt parādīts ziņojums, ka jāpārbauda, vai sensori ir pareizi pievienoti pacientam.

Pārliecinieties, vai sensori ir pareizi pielīmēti pacientam, aizveriet ziņojumu un sāciet pārraudzību.

12.3.2 Sensoru atvienošana pēc pārraudzības

Kad pacienta pārraudzība ir pabeigta, sensori jānoņem no pacienta un jāatvieno no sensoru kabeļa, kā aprakstīts ForeSight/ForeSight Jr/ForeSight IQ sensoru iepakojumā iekļautajā instrukcijā.

12.3.3 Monitoringa apsvērumi

12.3.3.1 ForeSight oksimetra kabeļa lietošana defibrilācijas laikā

BRĪDINĀJUMS

ForeSight oksimetra kabelis ir veidots, lai veicinātu pacientu drošību. Visas kabeļa daļas ir "BF tipa noturīgas pret defibrilāciju", tās ir aizsargātas pret defibrilatora izlādes sekām, un tās drīkst palikt piestiprinātas pie pacienta. Defibrilatora lietošanas laikā un līdz divdesmit (20) sekundēm pēc tam kabeļa lasījumi var būt neprecīzi.

Izmantojot šo aprīkojumu kopā ar defibrilatoru, nav jāveic atsevišķas darbības, taču, lai nodrošinātu pienācīgu aizsardzību pret sirds defibrilatora iedarbību, jāizmanto tikai Edwards nodrošinātie sensori.

Defibrilācijas laikā nepieskarieties pacientiem, jo tas var izraisīt nopietnas traumas vai nāvi.

12.3.3.2 Interference

UZMANĪBU

Spēcīgu elektromagnētisko avotu, piemēram, elektroķirurģijas aprīkojuma, klātbūtne var ietekmēt mērījumus, un šāda aprīkojuma lietošanas laikā mērījumi var būt kļūdaini.

Paaugstināts karboksihemoglobīna (COHb) vai methemoglobīna (MetHb) līmenis var izraisīt nepareizus vai kļūdainus mērījumus, tāpat kā intravaskulāras krāsvielas vai jebkura viela, kas satur krāsvielas, kas maina parasto asins pigmentāciju. Mērījumu pareizību var ietekmēt arī šādi faktori: mioglobīns, hemoglobinopātijas, anēmija, asinsizplūdumi, svešķermeņu iejaukšanās sensora ceļā, bilirubinēmija, ārēji lietotas krāsvielas (tetovējumi), augsts HGB vai Hct līmenis un dzimumzīmes.

Ja sensorus izmanto telpās ar LED apgaismojumu, pirms pievienošanas sensora kabelim var būt nepieciešams pārklāt sensoru ar gaismas bloķētāju, jo dažas augstas intensitātes sistēmas var traucēt sensora spēju pareizi uztvert tuvā infrasarkanā spektra gaismu.

12.3.3.3 StO₂ vērtību interpretēšana

BRĪDINĀJUMS

Ja jebkuras monitorā parādītās vērtības pareizība ir apšaubāma, nosakiet pacienta sirdsdarbības rādītājus ar citiem līdzekļiem. Pacienta monitoringam paredzētās trauksmes signālu sistēmas funkcijas jāpārbauda regulāri un ikreiz, kad rodas šaubas par produkta integritāti.

UZMANĪBU

Salīdzinājumā ar agrākām programmatūras versijām ForeSight oksimetra kabelis ar programmatūras versiju V3.0.7 vai jaunāku versiju, ko izmanto pediatrijas sensoros (mazos un vidējos), daudz labāk parāda StO₂ vērtības. Jo īpaši diapazonā zem 60% StO₂ mērījumi var tikt parādīti kā zemāki salīdzinājumā ar iepriekšējām programmatūras versijām. Ārstiem jāņem vērā šī ātrākā reakcija un, iespējams, mainītās StO₂ vērtības, izmantojot programmatūru V3.0.7, jo īpaši, ja viņiem ir pieredze ar agrākām ForeSight oksimetra kabeļa programmatūras versijām.

Piezīme

Pacientiem, kuriem ir pilnīgi abpusēji nosprostota ārējā miega artērija (ECA), mērījumi var būt zemāki, nekā gaidīts.

12-3. tabula 228. lpp. ir sniegts kopsavilkums par validācijas metodiku, kas saistīta ar ForeSight oksimetra kabeli.

Pacientu populā- cija	ForeSight sen- sors	Atsauce smadze- ņu rajonam	Atsauce vietām, kas nav smadze- ņu rajons	Mērījumu veids	Pacienta svara diapazons
Pieaugušais	Liels	Kooksimetrija: jū- ga vēnas paplaši- nājuma un arteriā- lo asiņu paraugi	Kooksimetrija: centrālo venozo asiņu un arteriālo asiņu paraugi	Viens punkts	≥ 40 kg
Pediatrijas pacien- ti — pusaudži, bēr- ni, zīdaiņi un jaun- dzimušie	Vidējs	Kooksimetrija: iekšējās jūga vēnas asiņu un arteriālo asiņu paraugi	Kooksimetrija: centrālo venozo asiņu un arteriālo asiņu paraugi	Viens punkts	≥ 3 kg
Pediatrijas pacien- ti — pusaudži, bēr- ni, zīdaiņi un jaun- dzimušie	Mazs	Kooksimetrija: iekšējās jūga vēnas asiņu un arteriālo asiņu paraugi	Kooksimetrija: centrālo venozo asiņu un arteriālo asiņu paraugi	Viens punkts	No 3 līdz 8 kg
Pediatrijas pacien- ti — jaundzimušie (laicīgi un priekš- laicīgi dzimuši, mazs dzimšanas svars, ļoti mazs dzimšanas svars)	Mazs	FORE-SIGHT MC3010 ¹	Kooksimetrija: na- bas venozās un pulsa oksimetrijas paraugi	StO₂ datu vidējās vērtības tiek aprē- ķinātas divu minū- šu intervālos ²	< 5 kg

12-3.	tabula.	StO-	validācii	as metodika
12-3.	tabula.	JUU ₂	vanuacij	asinetoura

¹Atšķirībā no citiem ForeSight validācijas pētījumiem šis smadzeņu validācijas pētījums neietvēra invazīvus mērījumus, jo medicīnas centriem būtu bijis grūti iegūt piekrišanu ievietot iekšējās jūga vēnas katetru ļoti maziem bērniem.

²Laicīgi un priekšlaicīgi dzimušiem jaundzimušajiem, kuru svars dzimšanas brīdī bija mazs (LBW) vai ļoti mazs (VLBW), StO₂ datu vidējās vērtības tika aprēķinātas divu minūšu intervālos. Tas tika darīts turpmāk norādīto iemeslu dēļ: 1) šādi tika samazināta ietekme, ko radītu akūtas StO₂ izmaiņas ķermeņa stāvokļa vai pieskāriena izmaiņu dēļ, jo priekšlaicīgi dzimušiem jaundzimušajiem, kuru svars dzimšanas brīdī ir mazs (LBW) vai ļoti mazs (VLBW), hemodinamika nav tik stabila, salīdzinot ar jaundzimušajiem, kuru svars dzimšanas brīdī ir normāls; 2) šādi vismazākajiem jaundzimušajiem, kuriem vienlaikus uz galvas vai konkrētā vēdera vietā var uzstādīt tikai vienu sensoru, varēja nomināli vienlaikus veikt gan FORE-SIGHT MC3010, gan ForeSight sensoru mērījumus, vai arī mērījumus vairākās vēdera vietās.

12.3.4 Ādas pārbaudes taimeris

Audu oksimetrijas sensora pielikšanas vietas jāpārbauda vismaz ik pēc 12 stundām, lai mazinātu nepiemērotas pielipšanas, neatbilstošas cirkulācijas un ādas bojājumu risku. **Atgādinājums par ādas pārbaudi** pēc noklusējuma tiek parādīts ik pēc 12 stundām. Uznirstošais paziņojums **Atgādinājums par ādas pārbaudi** atgādina novērtēt ādas stāvokli zem sensora un pārvietot sensoru, ja pašreizējā sensora atrašanās vietā ir traucēta asinsrite vai rodas ādas bojājumi. Pēc šīs pārbaudes veikšanas pieskarieties pie **Labi**, lai atgrieztos galvenajā pārraudzības ekrānā. Ādas pārbaude tiek reģistrēta sānu panelī **Notikumi un lejaukšanās**.

Šā atgādinājuma laika intervāls ir maināms.

- 1. Pieskarieties jebkurā vietā parametra elementā $StO_2 \rightarrow cilnei \overline{A} das pārbaude$.
- 2. Atlasiet laika intervālu starp paziņojumiem par ādas pārbaudi. Opcijas ir šādas: **2 Stundas**, **4 stundas**, **6 stundas**, **8 stundas** vai **12 Stundas** (noklusējums).
- 3. Lai atiestatītu taimeri, atlasiet pogu Atiestatīt loga Ādas pārbaude apakšā.

12.3.5 Vidējā laika iestatīšana

Pārraudzīto datu punktu nolīdzināšanai izmantoto vidējo laiku var pielāgot. Īsāks vidējais laiks ierobežo neregulāru vai trokšņainu datu punktu filtru.

1. Pieskarieties jebkurā vietā parametra elementā $StO_2 \rightarrow cilnei Vidējošana$.

2. Atlasiet laika intervālu starp paziņojumiem par ādas pārbaudi. Opcijas: Lēns (24 sekundes), Normāls (noklusējums, 16 sekundes), Ātrs (8 sekundes) un Nav (2 sekundes).

12.3.6 Signāla kvalitātes indikators

Signāla kvalitātes indikators (SQI), kas attēlots audu oksimetrijai konfigurētos parametru elementos, atspoguļo signāla kvalitāti atbilstoši tuvā infrasarkanā spektra gaismas daudzumam, kas iziet caur audiem. Skat. Signāla kvalitātes indikators 206. lpp.

12.3.7 Relatīvās izmaiņas kopējā hemoglobīnā — ΔctHb

Relatīvās izmaiņas kopējā hemoglobīnā (ΔctHb) ir StO₂ apakšparametrs. Tendences vērtība, ΔctHb, ir aprēķināta no relatīvo izmaiņu summas ar skābekli piesātinātajā hemoglobīnā un dezoksigenētā hemoglobīnā (ΔO2Hb un ΔHHb). Katram pievienotā audu oksimetrijas sensora vietas StO₂ mērījumam ir savs ΔctHb apakšparametrs.

12.3.7.1 ΔctHb vērtības attēlojums

Lai attēlotu Δ ctHb vērtību StO₂ parametru elementā, veiciet tālāk norādītās darbības.

- 1. Pieskarieties jebkurā vietā parametra elementā $StO_2 \rightarrow cilnei \Delta ctHb rīki$.
- 2. Pārslēdziet rādītāju "Rādīt ΔctHb vērtību" ieslēgtā statusā. Vērtība ΔctHb tiks parādīta StO₂ elementā.

12.3.7.2 ΔctHb tendenču attēlojums

Lai attēlotu ActHb tendences StO₂ parametru tendenču grafikā, veiciet tālāk norādītās darbības.

- 1. Pieskarieties jebkurā vietā parametra elementā $StO_2 \rightarrow cilnei \Delta ctHb rīki$.
- Pārslēdziet rādītāju "Rādīt ΔctHb tendenču grafiku" ieslēgtā statusā. Tendence tiek attēlota rozā krāsā ar attiecīgu y asi grafika labajā pusē.

12.3.7.3 Atiestatīt ΔctHb

Lai atiestatītu ActHb sākuma vērtību uz nulli visiem kanāliem, veiciet tālāk norādītās darbības.

- 1. Pieskarieties jebkurā vietā parametra elementā $StO_2 \rightarrow cilnei \Delta ctHb rīki$.
- 2. Pieskarieties pogai Atiestatīt ΔctHb.

12.3.8 Audu oksimetrijas fizioloģijas datu ekrāns

Pārraudzībai ar ForeSight oksimetra kabeli ir divi fizioloģijas datu ekrāni, lai attēlotu mijiedarbību starp atrašanās vietai raksturīgām audu oksimetrijas vērtībām un sirds un asinsvadu sistēmu. Šie divi skati ir parādīti tālāk 12-15.

att. 230. lpp. un pieejami monitora skatā Dalīt, atlasot fizioloģijas ikonu Skat. Ekrāns Dalīt 94. lpp. Veicot pārraudzību ar oksimetra kabeli, noklusējuma fizioloģijas datu ekrāns ir audu oksimetrijas skats, kas ir parādīts

kā pirmais 12-15. att. 230. lpp. Pieskarieties palielināmajam stiklam etiklam, lai skatītu tikai galvas smadzeņu oksimetriju un sirds un asinsvadu sistēmu. Lai atgrieztos audu oksimetrijas skatā, pieskarieties tālināšanas ikonai

1. Audu oksimetrija

2. Smadzeņu/sirds un asinsvadu oksimetrija

12-15. attēls. Audu oksimetrijas fizioloģijas datu ekrāni

Audu oksimetrija. Šajā skatā ir attēlotas izmērītās audu oksimetrijas vērtības, tostarp smadzeņu sensoru vietas, kā arī tie izmērītie sirds un asinsvadu parametri, kas attēloti galvenajā fizioloģijas datu ekrānā, kurš aprakstīts sadaļā Ekrāns Dalīt 94. lpp..

Kamēr ir pievienots sensors, atrašanās vieta ķermeņa grafikā maina krāsu atbilstoši šī pievienotā sensora mērītajai vērtībai

- Sarkana (augšējās trauksmes zona). Sensora atrašanās vieta (smadzeņu un somatiska) tiek parādīta kā sarkana, ja pārraudzītā vērtība pārsniedz augšējo mērķa diapazona robežu
- Zila (apakšējās trauksmes zona). Sensora atrašanās vieta (smadzeņu un somatiska) tiek parādīta kā zila, ja pārraudzītā vērtība ir zemāka par apakšējo mērķa diapazona robežu
- Sārta (smadzeņu mērķa zona). Smadzeņu sensora atrašanās vietas tiek parādītas kā sārtas, ja pārraudzītās vērtības ietilpst mērķa diapazonā
- Pelēka (somatiskā mērķa zona). Somatiskās sensora atrašanās vietas tiek parādītas kā pelēkas, ja pārraudzītās vērtības ietilpst mērķa diapazonā

Sensora atrašanās vietas ķermeņa grafikā ir ieēnotas tikai gadījumos, kad šai atrašanās vietai ir pievienots un konfigurēts sensors.

Smadzeņu/sirds un asinsvadu oksimetrija.Šis skats ir līdzīgs galvenajam fizioloģijas ekrānam un, ja pieejamas, tajā papildus ir izmērītās smadzeņu oksimetrijas vērtības.

12.4 Edwards algoritms asins hemoglobīna mērīšanai (tHb algoritms)

Edwards algoritms asins hemoglobīna mērīšanai piešķir ārstiem nepārtrauktu un neinvazīvu piekļuvi kopējā hemoglobīna koncentrācijai pacientu asinīs/asinsrites sistēmā un var nodrošināt daudz priekšrocību, nosakot akūtu un hronisku anēmiju dažādās klīniskās vidēs. Tādējādi ārsti var pārraudzīt hemoglobīna izmaiņas invazīvi iegūtos asins paraugos un noteikt, vai pacienta asins hemoglobīns ir stabils vai palielinās/samazinās, un izrietoši ļauj pielāgot stratēģiju attiecībā uz pacientu asinīm.

Edwards algoritms asins hemoglobīna mērīšanai ir paredzēts nepārtrauktai un neinvazīvai kopējās hemoglobīna koncentrācijas pārraudzībai asinīs (tHb). Tas ir atvasināts no audu hemoglobīna relatīvajām izmaiņām (ΔctHb), kas iegūtas no HemoSphere ForeSight oksimetra kabeļa, un nepieciešama sākotnēja kalibrēšana. Šī kalibrācija izmanto atsauces asins hemoglobīna mērījumus, kas iegūti no laboratorijas asins gāzu analizatoriem atbilstoši slimnīcas laboratoriju procedūru kvalitātes standartiem. Pēc kalibrēšanas algoritms nodrošina kopējā asins hemoglobīna (tHb) vērtību. Tā pamatā ir tāds pats audu oksimetrijas tehnoloģiskais princips, kādu izmanto esošais HemoSphere ForeSight oksimetra kabelis.

BRĪDINĀJUMS

tHb mērījumus nedrīkst lietot kā vienīgo faktoru pacientu ārstēšanā. Pirms klīnisko lēmumu pieņemšanas ieteicams pārskatīt visus pacienta laboratorisko asins analīžu rezultātus. Ja mērījumi nesaskan, tie jāpapildina ar citām pārbaudēm, lai iegūtu derīgu rezultātu.

Kopējā hemoglobīna mērījuma precizitāti var ietekmēt apstākļi, kas intermitējoši ietekmē lokālo asins plūsmas hemodinamiku, piemēram, asimetriska miega artērijas stenoze un nediagnosticēts fokāls insults pārraudzības laikā.

Klīniskās procedūras, kuru gaitā tiek injicēti savienojumi, kuru optiskās absorbcijas parametri ir diapazonā 660–900 nm, piemēram, indocianīna zaļais (kontrastviela) vai metilēnzilais (augsta methemoglobīna līmeņa terapijai), var izraisīt neprecīzus vai kļūdainus mērījumus. Pēc šīm procedūrām ieteicams veikt tHb parametra kalibrāciju vai atkārtotu kalibrāciju.

Klīniskās procedūras, kas mazina paaugstinātu karboksihemoglobīna (COHb), metemoglobīna (MetHb) vai dishemoglobīna koncentrāciju asins pārliešanas vai citā veidā, var izraisīt neprecīzus vai kļūdainus mērījumus. Mērījumu precizitāti var ietekmēt arī šādi faktori: mioglobīns, hemoglobinopātijas, anēmija, asinsizplūdumi, svešķermeņu iejaukšanās sensora ceļā, bilirubinēmija, ārēji lietotas krāsvielas, augsts HGB vai Hct līmenis un dzimumzīmes. Pēc šīm procedūrām ieteicams veikt tHb parametra kalibrāciju vai atkārtotu kalibrāciju.

UZMANĪBU

Neprecīzu tHb vērtību iespējamie cēloņi:

- Neprecīzas relatīvās izmaiņas audu hemoglobīna (ΔctHb) mērījumos
- Neprecīzi laboratorijas asins gāzu analizatora mērījumi

12.4.1 Lietošanas indikācijas

Edwards algoritms asins hemoglobīna mērīšanai ir indicēts nepārtrauktai hemoglobīna koncentrācijas izmaiņu pārraudzībai pieaugušo ≥ 40 kg asinsritē, kuriem tiek veikta uzlabota hemodinamiskā stāvokļa pārraudzība, izmantojot HemoSphere ForeSight oksimetrijas kabeli un neinvazīvus ForeSight IQ sensorus galvas smadzeņu vietās.

12.4.2 Paredzētais lietojums

Edwards algoritms asins hemoglobīna mērīšanai ir paredzēts lietošanai kā papildu pārraudzības rīks relatīvai un kopējai hemoglobīna koncentrācijas noteikšanai asinīs tiem indivīdiem, kuriem ir samazinātas plūsmas vai pārtrauktas plūsmas izraisīta išēmiska stāvokļa risks ķirurģiskā un intensīvās aprūpes nodaļas vidē.

Piezīme

Edwards algoritms asins hemoglobīna mērījumu veikšanai ir apstiprināts lietošanai ķirurģiskā un intensīvās aprūpes nodaļas vidē. Ierīces veiktspēja ārpus šīs vides nav apstiprināta.

Edwards algoritmu asins hemoglobīna mērījuma veikšanai var izmantot tikai ar saderīgu Edwards hemodinamiskā stāvokļa pārraudzības platformas sistēmu, kas īpaši apzīmēta lietošanai ar šo programmatūras algoritmu.

12.4.3 Edwards algoritms asins hemoglobīna mērīšanai: ievades un izvades

12-16. attēls. Edwards algoritms asins hemoglobīna mērīšanai (tHb algoritms): bloku diagrammas

12.4.3.1 Edwards tHb algoritma ievades

Edwards algoritms asins hemoglobīna mērīšanai izmanto divas ievades, kas norādītas tālāk.

- ΔctHb parametrs, kas iegūts no ForeSight oksimetra kabeļa, ņemot paraugu ik pēc 2 sekundēm. Algoritms pieņem tikai pirmo parādīto ievadi no ForeSight oksimetra kabeļa un pievienotajiem ForeSight IQ lielajiem sensoriem, kas novietoti galvas smadzeņu labajā un kreisajā pusē vai vienā no tām.
- 2. Atsauces asins hemoglobīna vērtība no laboratorijas asins gāzu analizatora, kas jāievada kalibrēšanas nolūkā.

Šī atsauces vērtība tiek pieņemta no jebkura laboratorijas asins gāzu analizatora atbilstoši slimnīcas laboratoriju procedūru kvalitātes standartiem.

12.4.3.2 Edwards tHb algoritma izvades

Algoritma izvade ir:

1. Kopējā asins hemoglobīna (tHb) parametrs (pēc kalibrēšanas ar atsauces vērtību)

Augstāka tHb vērtība nozīmē augstāku kopējā hemoglobīna koncentrāciju pacienta asinsritē, un zemāka vērtība nozīmē zemāku hemoglobīna koncentrāciju. Turklāt algoritmā iekļautas sekundārās izvades atzīmes, lai informētu lietotājus par šādām situācijām:

- kad nedrīkst veikt kalibrēšanu;
- kad ieteicama jauna kalibrēšana;
- kad ievades signāls (ΔctHb) ir nestabils.

12.4.4 Kopējā asins hemoglobīna (tHb) parametra rādījums

Kopējo asins hemoglobīnu (tHb) var atlasīt kā galveno parametru rādīšanai HemoSphere Alta uzlabotajā monitoringa platformā.

- 1. Pievienojiet vienu vai divus lielus ForeSight IQ sensorus smadzenēm kreisajā un/vai labajā pusē. Skat. Sensoru piestiprināšana pacientam 220. lpp.
- 2. Konfigurējiet ForeSight oksimetra kabeļa kanālu(-us), norādot atrašanās vietu smadzeņu kreisajā un/vai labajā pusē. Skat. ForeSight oksimetra kabeļa pievienošana 215. lpp.
- 3. Parametru konfigurācijas izvēlnē pieskarieties cilnei **Izvēlieties parametru** un audu oksimetrijas sadaļā atlasiet tHb.

Kopējais asins hemoglobīns (tHb) tiek atjaunināts ik pēc 2 sekundēm un tiek norādīts kā skaitliska vērtība, izteikta kā g/dl no asinīm. Šī vērtība tiek parādīta monitorā kā statiska skaitliska vērtība un kā tendenču vērtība. Kalibrēta tHb parametra rādījums parādīts šeit: 12-17. att. 233. lpp..

12-17. attēls. tHb parametra rādījums

12-4. tabula. tHb parametra rādījums

Parametrs	Specifikācija			
tHb	Mērvienības	g/dl		
	Atjaunināšanas ātrums	2 sekundes		
	Precizitāte*	_{RMS} < 1 g/dl		
	Rādījuma diapazons No 4,0 līdz 20,0 g/dl			
* Precizitāte validēta vērtībai 6,0 g/dl < tHb < 14,9 g/dl. Skat.: Veiktspējas apstiprināšanas rezultāti 237. lpp				

12.4.5 Kalibrēšanas un atkārtotas kalibrēšanas darbības

Parametrs tHb netiek parādīts pārraudzības sākumā, bet ir konfigurēts kā galvenais parādāmais parametrs. Skat. 12-18. att. 234. lpp.

12-18. attēls. tHb parametra rādījums pārraudzības sākumā

12.4.5.1 Parametra tHb kalibrācija

Lai kalibrētu tHb, rīkojieties, kā norādīts tālāk.

- 1. Pieskarieties ikonai Kalibrēt Mathematikas pieejama tHb parametra displejā.
- 2. Tiek parādīts ekrāns tHb Kalibrācija. Pieskarieties pogai Kalibrēt tHb.

Piezīme

tHb pārraudzība un kalibrēšana ir iespējama tikai tad, ja ΔctHb vērtību pārraudzībai izmantots viens vai divi lieli ForeSight IQ sensori, kas konfigurēti atrašanās vietām smadzeņu kreisajā (L) un/vai labajā (R) pusē.

- 3. Pieskarieties pie **Ņemt paraugu** un paņemiet asins paraugu.
- 4. Nosūtiet asins paraugus uz laboratoriju, lai veiktu parametru analīzi ar asins gāzu analizatoru atbilstoši slimnīcas laboratorijas procedūru kvalitātes standartiem.
- 5. Kad ir saņemtas laboratoriskās vērtības, ievadiet pacienta hemoglobīna rādītāju. Pieņemamais ievades diapazons ir no 4,0 līdz 20,0 g/dl.

Piezīme

Lai iegūtu precīzu kopējā hemoglobīna mērījumu, tHb rādījumi ir jākalibrē, izmantojot kopējā hemoglobīna vērtības no precīziem avotiem.

- 6. Pieskarieties pogai Kalibrēt.
- 7. Pēc sekmīgas inicializācijas tiek parādīts ziņojums, norādot, ka tHb kalibrēšana ir pabeigta. Parametra tHb rādījumā ir iekļauta kalibrēta tHb vērtība (tHb). Skat. 12-17. att. 233. lpp.

Pārraugot kopējo hemoglobīnu asinīs (tHb), ja nepieciešama atkārtota kalibrācija, informācijas joslā tiek parādīta trauksme ar norādi par ieteicamu kalibrāciju, bet parametra elementā tiek parādīta kalibrācijas ikona ar izsaukuma zīmi. Skat. 12-19. att. 234. lpp.

12-19. attēls. tHb parametra atkārtotas kalibrācijas brīdinājums

12.4.5.2 Parametra tHb atkārtota kalibrācija

Lai atkārtoti kalibrētu tHb, rīkojieties, kā norādīts tālāk.

- 1. Pieskarieties ikonai **Atkārtot kalibrēšanu**, kas pieejama tHb parametra displejā.
- 2. Tiek parādīts ekrāns tHb Atkārtota kalibrācija. Pieskarieties pogai **Atkārtot tHb kalibrēšanu**.
- 3. Veiciet darbības, lai kalibrētu tHb no sākumstāvokļa (3. darbība) līdz sekmīgai kalibrēšanai (7. darbība).

12.4.6 Algoritma veiktspējas apstiprināšana

Ir veikta retrospektīva apstiprināšanas testēšana, salīdzinot vienlaikus iegūtus datus no ForeSight un atsauces asins gāzu mērījumiem. Katram pacientam izmantots viens atsauces asins hemoglobīna mērījums, lai iegūtu un kalibrētu ForeSight tHb vērtības, un atlikušās atsauces vērtības izmantotas salīdzināšanai ar ForeSight tHb. Precizitātes analīzei izmantota vidējā kvadrātiskā kļūda (RMSE vai ARMS) un Bland-Altman analīzes. 95% ticamības intervāli rādītājam RMSE ģenerēti, izmantojot klasteru butstrapa metodi ar atkārtotu paraugu ņemšanu no pacientiem. 95% ticamības intervāli Bland-Altman analīzēm tika aprēķināti, izmantojot metodes, kurās ņemtas vērā pacienta individuālās un savstarpējās atšķirības [JM Bland, DG Altman, 1999] un [GY Zou, 2011].

Tika salīdzināts kopumā 251 datu punkts (vienlaikus ņemtas ForeSight hemoglobīna un atsauces asins hemoglobīna vērtības) no 83 pēc nejaušības principa izvēlētiem ķirurģiskiem pacientiem 5 dažādos centros (Amsterdam UMC, Amsterdamā, Nīderlandē; Hospital Universitario Marques de Valdecilla, Santanderā, Spānijā; Greenville Memorial Hospital, Ziemeļkarolīnā, ASV; UC Davis, Kalifornijā, ASV; Northwestern University, Ilinoisā, ASV). 12-5. tabula 235. lpp.: šeit ir pieejams katra centra pacientu skaits un demogrāfiskie dati, tostarp vecums, dzimums, augums, svars, rase un etniskā piederība (ja pētījuma centru vietējos tiesību aktos nav aizliegts vākt šos datus), kā arī operāciju veidi no visiem pieciem centriem. Pilna apakšgrupu analīze, ņemot vērā citus demogrāfiskos faktorus, starp kuriem ir rase un etniskā piederība, ir reģistrēta Edwards Lifesciences dokumentos.

Kopumā kalibrēšanai un validācijai izmantots 251 datu punkts (atsauces asins hemoglobīna vērtības no asins gāzu analizatoriem).

Centrs	Pacientu skaits	Vecums (gadi)	Dzimums	Augums (cm)	Svars (kg)	Operācijas veids	Rase/etnis- kā piede- rība	Atsauce Izmantotā ie- rīce*
						Sirds vār- stuļa no- maiņa (10)		
Amsterdama UMC, Amsterdama, Nīderlande	27	68,7±8	6 sievie- tes 21 vīrietis	175,6±9,4	80,5±14	Sirds vār- stuļa re- konstrukci- ja (2) Bentāla procedūra (2) CABG (12)	Hindustā- ņu (1) Baltā (11) Nav pieeja- ma (15)	RAPID Point 500 - Siemens Healthcare Diagnostics
						Citas sirds operācijas (1)		

12-5. tabula. Pacientu demogrāfiskie dati, kas izmantoti verifikācijas testēšanai

Centrs	Pacientu skaits	Vecums (gadi)	Dzimums	Augums (cm)	Svars (kg)	Operācijas veids	Rase/etnis- kā piede- rība	Atsauce Izmantotā ie- rīce*
Hospital Universitario Marques de Valdecilla, Santander, Spānija	8	61,5±14	5 sievie- tes 3 vīrieši	163,0±6,7	72,8±12	Sirds vār- stuļa re- konstrukci- ja (2) Sirds vār- stuļa no- maiņa (5) Citas sirds operācijas (1)	Nav pieeja- ma (8)	ABL800 flex — radio- metrs
Greenville Memorial Hospital Ziemeļkarolīna, ASV	18	60,6±15	4 sievie- tes 14 vīrieši	176,5±10, 0	90,7±22	Sirds vār- stuļa re- konstrukci- ja (2) Koronāro artēriju sli- mība (6) CABG (8) Atvērta krūškurvja sirds vār- stuļa re- konstrukci- ja (3)	Melnādai- nā vai afri- kāņu Amerikāņu (9) Baltā (9)	iSTAT 1 - Abbott
Northwestern University, Čikāga, ASV	19	58,4±12	5 sievie- tes 14 vīrieši	173,7±10, 0	84,8±18	Citas sirds operācijas (19)	Aziātu (1) Melnādai- nā vai afri- kāņu Amerikāņu (1) Nav pieeja- ma (1) Spāņu/latīņ- amerikā- ņu (1) Baltā (15)	GEM Premier 5000
UC Davis, Sacramento, ASV	11	66,6±12	5 sievie- tes 6 vīrieši	168,7±7,2	86,4±25	Vaskulāra (3) Ortopēdis- ka (2) Citas sirds operācijas (1) Citas/vispā- rīgas ope- rācijas (5)	Aziātu (1) Melnādai- nā (1) Spāņu/latīņ- amerikā- ņu (1) Baltā (8)	ABL90 — ra- diometrs

* Visām izmantotajām atsauces ierīcēm piešķirts FDA apstiprinājums lietošanai laboratorijā, tāpēc tām ir jāatbilst prasībām, kas minētas standartā Clinical Laboratory Improvement Amendments (CLIA).

12.4.7 Veiktspējas apstiprināšanas rezultāti

Parametra tHb precizitāte (tHb un ΔtHb RMSE, salīdzinot ar atsauces asins hemoglobīna mērījumiem) bija < 1 g/dl. Salīdzināšanai izmantotās atsauces hemoglobīna vērtības bija diapazonā no 6,0 līdz 14,9 g/dl. Rezultāti parādīti šeit: 12-6. tabula 237. lpp.. Turklāt Bland-Altman rezultāti liecina, ka novirze ir tuvu 0 un precizitāte ir < 1 g/dl parametram tHb (12-6. tabula 237. lpp., 12-20. att. 237. lpp.). Tālāk ir pieejams šo rezultātu kopsavilkums ar pilnu apakšgrupu analīzi, ņemot vērā citus demogrāfiskos faktorus, starp kuriem ir rase un etniskā piederība, un tā ir reģistrēta Edwards Lifesciences dokumentos.

12-6. tabula. RMSE un Bland-Altman analīzes rezultāti, salīdzinot tHb ar atsauces asins gāzu analizatora mērījumiem

	Pacientu skaits	RMSE, g/dl	Novirze, g/dl	Precizitāte, g/dl	BA diagramma
Edwards algoritms parametram tHb, salīdzinot ar laboratorijas asins gāzu analizatoru	83	0,77 [0,69; 0,85]	0,07 [–0,03; 0,16]	0,73 [0,66; 0,81]	12-20. attēls

1. ForeSight tHb — asins atsauce tHb, (g/dl)

2. (ForeSight tHb + asins atsauce tHb)/2, (g/dl)

12-20. attēls. Bland-Altman diagrammas parametram tHb, salīdzinot ar asins gāzu analizatoru parametram tHb

lepriekš minētajās precizitātes analīzēs tika izmantotas sekundārās izvades atzīmes (nekalibrēt, kalibrēt atkārtoti vai nestabils ievades signāls parametram ΔctHb), lai noteiktu, kad jāveic kalibrēšana. Tika veikta arī statistiskā analīze, lai noteiktu, cik bieži atzīme, kas aktivizē "atkārtotas kalibrācijas" ziņojumu, iestatīta kā PATIESI un tās pamatā ir iepriekš aprakstītā n=83 pacientu datu kopa. Kā parādīts sadaļā 12-7. tabula 237. lpp., katrs pacients pārraudzības laikā aktivizēja atkārtotas kalibrēšanas atzīmi vidēji 1,5 reizes. Vidējais laiks līdz pirmajai reizei, kad atkārtotas kalibrācijas atzīme iestatīta kā PATIESI, pēc pirmās kalibrācijas bija 78 minūtes, un vidējais laiks starp divām secīgām reizēm, kad atkārtotas kalibrācijas atzīme iestatīta kā PATIESI, pēc pirmās kalibrācijas bija 109 minūtes.

	Atkārtotas kalibrācijas atzī- mes kā PATIESI iestatīšanas reižu skaits katram izmek- lējumam	Pirmā reize, kad atkārtotas kalibrācijas atzīme tiek ie- statīta kā PATIESI pēc pir- mās kalibrācijas (minūtes)	Laiks starp divām secīgām atkārtotas kalibrācijas atzī- mēm (minūtes)
Vidējais±Stand.	1,5±1,5	78±83	109±70

	Atkārtotas kalibrācijas atzī- mes kā PATIESI iestatīšanas reižu skaits katram izmek- lējumam	Pirmā reize, kad atkārtotas kalibrācijas atzīme tiek ie- statīta kā PATIESI pēc pir- mās kalibrācijas (minūtes)	Laiks starp divām secīgām atkārtotas kalibrācijas atzī- mēm (minūtes)
Mediāna [25.; 75. procentīle]	1 [0,3; 2]	53 [19; 104]	83 [62; 144]

12.4.8 Problēmu novēršana

Algoritmā iekļautas izvades atzīmes, lai informētu lietotājus par tālāk minētajām situācijām.

- Nedrīkst veikt kalibrēšanu
- leteicama jauna kalibrēšana
- Nestabils ievades signāls (ΔctHb)

Šajā sadaļā norādītie problēmu cēloņi un risinājumi saistīti ar šīm izvades atzīmēm, lai informētu par bieži sastopamiem kļūdu stāvokļiem, kas parādīti saderīgā monitora palīdzības ekrānos.

12-8. tabula. tHb kalibrācijas un atkārtotas kalibrācijas problēmu novēršanas ziņojumi

Ziņojums/ikona	lespējamie cēloņi	leteicamās darbības
	Nav kalibrēts kopējais asins hemoglo- bīns (tHb)	Jāveic kalibrācija, lai skatītu kopējo asins hemoglobīnu (tHb)
	Konstatētas būtiskas ΔctHb izmaiņas, pārraudzībai izmantojot ForeSight oksi- metra kabeli	Atkārtoti kalibrējiet tHb, lai turpinātu precīzi pārraudzīt kopējo asins hemo- globīnu (tHb)
tHb — nekalibrēt	Slikta signāla kvalitāte Kalibrēšana nav pieejama	Pārbaudiet pacienta HGB līmeni atbil- stoši slimnīcas aprūpes standartam Gaidiet, līdz signāla kvalitāte uzlabojas

Papildu funkcijas

Saturs

Acumen Hypotension Prediction Index (HPI) programmatūras funkcija	239
Globālās hipoperfūzijas indeksa (GHI) algoritma funkcija	
Smadzeņu automātiskās regulācijas indeksa (CAI) algoritms	286
Atbalstīta šķidrumu pārvaldība	
Labā sirds kambara izsviedes algoritms	
Transpulmonālas termodilūcijas algoritms	
Uzlabota parametru trasēšana	
Šķidruma reakcijas tests	

13.1 Acumen Hypotension Prediction Index (HPI) programmatūras funkcija

Acumen Hypotension Prediction Index (HPI) programmatūru var izmantot, ja ir pievienots Acumen IQ sensors vai Acumen IQ manšete un sirds kontrolsensors (HRS). Tā kā pastāv atšķirības atkarībā no izvēlētās sensoru tehnoloģijas, Acumen Hypotension Prediction Index (HPI) programmatūras funkcija ir aprakstīta tālāk atbilstīgi izmantotajai pārraudzības tehnoloģijai. Ja nav norādīts citādi, piemēram, tālākajās ievada sadaļās, šīs HPI papildu funkciju sadaļas saturs attiecas uz abām pārraudzības tehnoloģijām.

13.1.1 levads par Acumen Hypotension Prediction Index (HPI) programmatūru minimāli invazīvajā režīmā

Kad tiek izmantots Acumen IQ sensors, kas pievienots spieķkaula artērijas katetram, Acumen Hypotension Prediction Index (HPI) programmatūra sniedz ārstam informāciju par pacienta hipotensīvā notikuma iespējamību un saistītajiem hemodinamikas rādītājiem. Hipotensīvs notikums tiek definēts kā vidējais arteriālais spiediens (MAP) < 55, 60, 65, 70, 75, 80 vai < 85 mmHg vismaz vienu minūti. Norādīto mērījumu precizitāte ir atkarīga no vairākiem faktoriem: arteriālais katetrs ir uzticams (nav slāpēts), pievienotais arteriālās caurulītes spiediena sensors ir atbilstoši centrēts un nullēts, un pacienta demogrāfiskie dati (vecums, dzimums, auguma garums un svars) ir precīzi ievadīti ierīcē.

Acumen HPI funkciju ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kam tiek nodrošināta paplašinātā hemodinamiskā stāvokļa pārraudzība. Papildu kvantitatīvā informācija, ko iegūst, izmantojot Acumen HPI funkciju, ir norādīta tikai atsauces nolūkā, un nedrīkst pieņemt nekādus ārstēšanas lēmumus, pamatojoties tikai uz Acumen Hypotension Prediction Index (HPI) parametru.

Piesardzības pasākums. Ja, pēc ārsta domām, vidējā arteriālā spiediena (MAP) vērtība < 55, 60, 65, 70, 75, 80 vai < 85 mmHg nav attiecināma uz konkrēto pacientu, ārsts var izvēlēties pilnībā atspējot HPI funkciju, izmantojot HPI iestatījumu izvēlni, vai, ja sekundārajā ekrānā pieejamā informācija ir noderīga, viņš var izvēlēties izslēgt HPI trauksmi, izmantojot ekrānu **Parametru iestatījumi**.

Ja HPI viedo trauksmju un viedo tendenču funkcija ir iespējota, tā var palīdzēt ārstiem noteikt iespējamus iekšējos mehānismus, kas var būt iespējamie iejaukšanās mērķi, lai novērstu vai ārstētu hipotensiju, balstoties uz pacienta hemodinamiskā stāvokļa pilnīgu pārskatīšanu pirms ārstēšanas. Šie mehānismi var būt pirmsslodze, kontraktilitāte un pēcslodze. Lai iegūtu papildinformāciju, skatiet HPI viedās trauksmes un viedās tendences 250. lpp. HPI trauksmes gadījumā HPI augstas prioritātes trauksmes uznirstošajā logā un viedo tendenču ekrānā tiek parādītas viedās trauksmes saistītajiem parametriem.

Piezīme

Vienlaicīgi izmantojot gan HPI viedās trauksmes, gan AFM, ir svarīgi ņemt vērā, ka HPI viedās trauksmes ir balstītas uz iespējamo iekšējo mehānismu identificēšanu, lai novērstu vai ārstētu hipotensiju, savukārt AFM šķidrumu ieteikumi ir balstīti uz paredzēto reakciju uz šķidrumu. Abas minētās programmatūras funkcijas ņem vērā dažādus mērķa rādītājus un hemodinamiskos apstākļus, tāpēc tie jāizvērtē neatkarīgi viens no otra. Pirms piemērotākās rīcības noteikšanas jāpārskata pacienta pašreizējā hemodinamika. Lai iegūtu papildinformāciju par minēto funkciju, skatiet Atbalstīta šķidrumu pārvaldība 291. lpp.

UZMANĪBU

Neprecīzus FT-CO mērījumus var izraisīt šādi faktori:

- nepareizi nullēts un/vai līmeņots sensors/devējs;
- pārmērīga vai nepietiekama spiediena izlīdzināšana spiediena caurulītēs;
- pārmērīgas asinsspiediena variācijas. BP variācijas izraisa tostarp šādi faktori:
 - * intraaortālie balonsūkņi;
- jebkura klīniskā situācija, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu aortas spiedienam, tostarp šādas situācijas:
 - izteikta perifērā vazokonstrikcija, kas izraisa kļūdainu radiālā arteriālā spiediena līkni;
 - * hiperdinamisks stāvoklis, kas ir raksturīgs pēc aknu transplantēšanas;
- pārmērīgas pacienta kustības;
- elektrokoagulācijas vai elektroķirurģijas ierīču traucējumi.

Regurgitācija aortas vārstulī var izraisīt pārāk lielas sirds sistoliskā tilpuma/sirds izsviedes vērtības aprēķināšanu atkarībā no vārstuļu slimības smaguma pakāpes un atpakaļ kreisajā kambarī ieplūdušā tilpuma.

13.1.2 levads par Acumen Hypotension Prediction Index (HPI) programmatūru neinvazīvajā režīmā

Edwards Acumen Hypotension Prediction Index (HPI) funkcija nodrošina ārstam fizioloģiskus datus par pacientam iespējamiem hipotensijas gadījumiem (iepriekš definēti kā vidējais arteriālais spiediens < 55, 60, 65, 70, 75, 80 vai < 85 mmHg vismaz vienas minūtes ilgumā) un saistītajiem hemodinamikas rādītājiem. Acumen HPI funkciju ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kam tiek nodrošināta papildu hemodinamiskā stāvokļa pārraudzība. Acumen HPI funkcija tiek uzskatīta par papildu kvantitatīvo informāciju saistībā ar pacienta fizioloģisko stāvokli, un tā tiek nodrošināta tikai kā atsauce. Terapeitiskus lēmumus nedrīkst pieņemt, pamatojoties tikai uz Acumen Hypotension Prediction Index (HPI) parametru.

Acumen Hypotension Prediction Index (HPI) programmatūras precizitāte, kad tiek izmantota Acumen IQ pirksta manšete un sirds kontrolsensors (HRS), pamatojas uz vairākiem faktoriem: pirksta manšetes izmērs un novietojums ir pareizs, HRS ir pareizi nullēts un novietots, pacienta demogrāfiskie dati (vecums, dzimums, garums un svars) ir pareizi ievadīti ierīcē.

Piezīme

Manšetes izmēra noteikšana var neattiekties uz visām manšetēm.

Piesardzības pasākums. Ja, pēc ārsta domām, vidējā arteriālā spiediena (MAP) vērtība < 55, 60, 65, 70, 75, 80 vai < 85 mmHg nav attiecināma uz konkrēto pacientu, ārsts var izvēlēties pilnībā atspējot HPI funkciju,

izmantojot HPI iestatījumu izvēlni, vai, ja sekundārajā ekrānā pieejamā informācija ir noderīga, viņš var izvēlēties apklusināt HPI trauksmi, izmantojot ekrānu **Parametru iestatījumi**.

Klīniskās validācijas pētījumi (skat. Klīniskā validācija ar hipotensijas robežvērtību neinvazīvi pārraudzītiem pacientiem 263. lpp.) liecina, ka ClearSight (NIBP) HPI ir precīzs un tādējādi arī noderīgs pacientiem tipiskā hemodinamikas rādītāju svārstību diapazonā un klīniskajā praksē neiroķirurģisko procedūru gadījumā. Pētītie operāciju veidi, ķirurģiskie parametri un neķirurģisko pacientu stāvokļi ir noteikti šeit 13-20. tabula 264. lpp. un 13-23. tabula 265. lpp., lai informētu ārstus par pētīto pacientu populāciju.

Ja HPI viedo trauksmju un viedo tendenču funkcija ir iespējota, tā var palīdzēt ārstiem noteikt iespējamus iekšējos mehānismus, kas var būt iespējamie iejaukšanās mērķi, lai novērstu vai ārstētu hipotensiju, balstoties uz pacienta hemodinamiskā stāvokļa pilnīgu pārskatīšanu pirms ārstēšanas. Šie mehānismi var būt pirmsslodze, kontraktilitāte un pēcslodze. Lai iegūtu papildinformāciju, skatiet HPI viedās trauksmes un viedās tendences 250. lpp. HPI trauksmes gadījumā HPI augstas prioritātes trauksmes uznirstošajā logā un viedo tendenču ekrānā tiek parādītas viedās trauksmes saistītajiem parametriem.

Piezīme

Vienlaicīgi izmantojot gan HPI viedās trauksmes, gan AFM, ir svarīgi ņemt vērā, ka HPI viedās trauksmes ir balstītas uz iespējamo iekšējo mehānismu identificēšanu, lai novērstu vai ārstētu hipotensiju, savukārt AFM šķidrumu ieteikumi ir balstīti uz paredzēto reakciju uz šķidrumu. Abas minētās programmatūras funkcijas ņem vērā dažādus mērķa rādītājus un hemodinamiskos apstākļus, tāpēc tie jāizvērtē neatkarīgi viens no otra. Pirms piemērotākās rīcības noteikšanas jāpārskata pacienta pašreizējā hemodinamika. Lai iegūtu papildinformāciju par minēto funkciju, skatiet Atbalstīta šķidrumu pārvaldība 291. lpp.

UZMANĪBU

Neprecīzus neinvazīvos mērījumus var izraisīt šādi faktori:

- Nepareizi kalibrēts un/vai nolīmeņots HRS
- Pārmērīgas asinsspiediena variācijas. Daži apstākļi, kas izraisa asinsspiediena izmaiņas, ir šādi:

* Intraaortālie balonsūkņi.

- Jebkādas klīniskās situācijas, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu arteriālajam spiedienam.
- Slikta asinsrite pirkstos.
- Saliekta vai saplacināta pirksta manšete.
- Pārmērīgas pacienta roku vai pirkstu kustības.
- Artefakti un slikta signāla kvalitāte.
- Nepareizs pirksta manšetes novietojums, pirksta manšetes pozīcija, vaļīga pirksta manšete.
- Elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi.

13.1.3 Acumen Hypotension Prediction Index parametru pārskats

Acumen Hypotension Prediction Index parametrs HPI, kuru var konfigurēt kā galveno rādītāju visos monitoringa ekrānos, rāda vesela skaitļa vērtību no 0 līdz 100 — augstākas vērtības norāda lielāku hipotensīva gadījuma iespējamību. Acumen Hypotension Prediction Index (HPI) programmatūra nodrošina arī trīs papildu konfigurējamus parametrus: dP/dt, Ea_{dyn} un PPV, kas kopā ar SVV palīdz pieņemt lēmumu, pamatojoties uz pirmsslodzes reakciju [SVV vai PPV], kontraktilitāti [dP/dt] un pēcslodzi [Ea_{dyn}]. Skatiet Acumen Hypotension Prediction Index (HPI) parametru displejs 242. lpp., HPI algoritma sānu panelis 248. lpp. un Klīniskā izmantošana 252. lpp., lai iegūtu papildinformāciju par SVV, dP/dt un Ea_{dyn}.

HPI vērtība, tāpat kā citi pārraudzītie parametri, tiek atjaunota ik pēc 20 sekundēm. Ja HPI vērtība pārsniedz 85, tiek aktivizēta augstas prioritātes trauksme. Ja HPI vērtība pārsniedz 85 divos secīgos rādījumos (kopumā 40 sekundes), ekrānā tiek parādīts uznirstošais logs ar HPI augstas prioritātes trauksmi, iesakot pārskatīt pacienta hemodinamiku. Hemodinamikas informācija, kas saistīta ar hipotensiju, lietotājam ir pieejama HPI sekundārajā ekrānā klīnisko rīku sānu panelī. Šī informācija ietver vairākus galvenos parametrus (MAP, CO, SVR, PR un SV), kā arī detalizētākus pirmsslodzes, kontraktilitātes un pēcslodzes indikatorus (SVV vai PPV, dP/dt, Ea_{dyn}). Pacienta hemodinamikas rādītājus var novērtēt, arī pārskatot pašreiz konfigurētos galvenos rādītājus, piemēram, SVV, PPV, CO un SVR.

Tiklīdz ir aktivizēta Acumen HPI funkcija, lietotājs var izvēlēties konfigurēt Acumen Hypotension Prediction Index (HPI) kā galveno rādītāju, rādīt to informācijas joslā vai izvēlēties nerādīt to. Arī dP/dt, Ea_{dyn} un PPV var konfigurēt kā galvenos rādītājus.

Skatiet HPI kā galveno parametru un HPI informācijas joslas sadaļās, kas paredzētas informācijai par parametra konfigurāciju. Skatiet HPI kā galvenais parametrs 244. lpp. un HPI informācijas joslā 246. lpp.

HPI brīdinājuma un trauksmes funkcijas atšķirsies ar izvēlētajām HPI attēlošanas opcijām, kā aprakstīts šeit: 13-1. tabula 242. lpp.

Displeja opcija	Skaņas un vizuālais trauksmes sig- nāls	Trauksmes uznirstošais logs
Galvenais parametrs	Jā	Jā
Informācijas josla	Nē	Jā
Netiek rādīts	Nē	Nē

13-1. tabula. HPI displeja konfigurācijas

Atšķirībā no citiem izmērītajiem parametriem HPI trauksmes robežvērtības nav pielāgojamas, jo HPI nav fizioloģisks parametrs ar atlasāmu mērķa diapazonu (kā tas ir, piemēram, sirds izsviedes gadījumā), bet drīzāk fizioloģiska stāvokļa iespējamība. Lietotājam programmatūrā tiek rādīta trauksmes robežvērtība, bet vadīklas, ar kuru palīdzību var mainīt trauksmes robežvērtības, ir atspējotas. HPI parametra trauksmes robežvērtība (> 85 sarkanajā trauksmes diapazonā) ir fiksēta vērtība, ko nevar mainīt. HPI parametra dzeltenā mērķa robežvērtība (50 < HPI ≤ 85 dzeltenajā trauksmes diapazonā) arī ir fiksēta vērtība, ko nevar mainīt.

Lietotājam pieejamās vizuālās un skaņas norādes, kad HPI vērtība ir > 85 (sarkanajā trauksmes diapazonā), izriet no vairāku mainīgo analīzes, izmantojot arteriālā spiediena līkni un pacienta demogrāfiskos datus, kā arī tāda ar datiem saistīta modeļa piemērošanas, kas izstrādāts, retrospektīvi anotējot hipotensīvās un ar hipotensiju nesaistītās epizodes. HPI trauksmes robežvērtība ir norādīta šeit: 13-2. tabula 243. lpp. un D-4. tabula 406. lpp. Algoritma veiktspējas raksturlielumi trauksmes robežvērtībai ar vērtību 85 ir norādīti šeit: 13-14. tabula 259. lpp. un 13-15. tabula 260. lpp. (minimāli invazīvi), un 13-24. tabula 267. lpp. un 13-25. tabula 267. lpp. (neinvazīvi), kā arī ietverti klīniskās validācijas sadaļā.

Parametrus dP/dt, Ea_{dyn} un PPV var konfigurēt kā galvenos parametrus. PPV un dP/dt ir kā citi kontrolēti parametri, tomēr Ea_{dyn} nav parametrs, kas aktivizē trauksmi. Parametram Ea_{dyn} trauksmes/mērķa rādītāju diapazoni nav pieejami, un mērķa statusa indikatori vienmēr ir baltā krāsā. Ea_{dyn} grafiskajā tendences apgabalā pie vērtības 0,8 parādās pārtraukta līnija.

13.1.4 Acumen Hypotension Prediction Index (HPI) parametru displejs

HPl vērtība tiks atjaunota ik pēc 20 sekundēm, un tā atbilst hipotensīva notikuma varbūtībai skalā no 0 līdz 100. Jo lielāka vērtība, jo lielāka hipotensīva notikuma iespējamība (iepriekš definēta kā vidējais arteriālais spiediens < 55, 60, 65, 70, 75, 80 vai < 85 mmHg vismaz vienu minūti).

HPI parametrs izmanto datus no pirmajām desmit monitoringa minūtēm, lai noteiktu bāzes vērtību. Tādējādi var atšķirties ierīces veiktspēja šo pirmo desmit minūšu laikā. 13-2. tabula 243. lpp. sniegts detalizēts izskaidrojums, HPI grafiskā attēlojuma elementu (tendences līknes, skalas segmenta [kontrolpults attēlojumā], trauksmes signālu un parametra vērtības [elementu attēlojumā]) interpretācija un aprakstīta ieteicamā lietotāja rīcība, kad HPI ir konfigurēts kā galvenais rādītājs.

BRĪDINĀJUMS

Acumen Hypotension Prediction Index, HPI, nedrīkst izmantot tikai pacientu ārstēšanas nolūkā. Pirms ārstēšanas sākuma ieteicams pārbaudīt pacienta hemodinamikas rādītājus.

HPI vērtība	Grafiskie disple- ja elementi	Skaņas signāls	Vispārīga interpretācija	leteicamā lietotāja rīcība
HPI ≤ 50	Balta	Nav	Pacienta hemodinamika norā-	Turpiniet pacienta hemodinami-
5 < HPI ≤ 85	Dzeltena	Nav	da, ka ir zema līdz vidēja hipo- tensīva notikuma iespējamība. Zema HPI vērtība neizslēdz hi- potensijas notikuma varbūtību ķirurģiskiem pacientiem nāka- mo 5–15 minūšu laikā vai neķi- rurģiskiem pacientiem nākamo 20–30 minūšu laikā (attiecas ti- kai uz minimāli invazīvu arte- riālās caurlītes pārraudzību) ne- atkarīgi no MAP vērtības.	kas monitoringu. Esiet vērīgs at- tiecībā uz pacienta hemodinami- kas izmaiņām, izmantojot primāro monitoringa ekrānu, HPI sekundā- ro ekrānu, HPI, kā arī parametru un organisma stāvokļa galveno rā- dītāju tendences.
HPI > 85	Sarkans (mirgo)	Augstas prioritātes trauksmes skaņas sig- nāls	Pastāv augsta iespējamība, ka ķirurģiskam pacientam 15 minūšu laikā radīsies hipo- tensijas notikums Pastāv augsta iespējamība, ka neķirurģiskam pacientam 20 minūšu laikā radīsies hipo- tensijas notikums (tikai mini- māli invazīvas radiālās arteriā- lās caurulītes pārraudzībai)	Pārbaudiet pacienta hemodinami- ku, izmantojot sekundāro ekrānu un citus primārā ekrāna parame- trus, lai izpētītu augstas hipotensi- jas iespējamības potenciālo cēloni un sniegtu informāciju par iespēja- mo rīcības plānu
HPI > 85 un sa- glabājas divos pa- stāvīgos rādījumos (40 sekundes)	Sarkans (mirgo) Uznirstošais logs	Augstas prioritātes trauksmes skaņas sig- nāls	Pastāv augsta iespējamība, ka ķirurģiskam pacientam 15 minūšu laikā radīsies hipo- tensijas notikums Pastāv augsta iespējamība, ka neķirurģiskam pacientam 20 minūšu laikā radīsies hipo- tensijas notikums (tikai mini- māli invazīvas radiālās arteriā- lās caurulītes pārraudzībai)	Apstipriniet uznirstošo logu, iz- mantojot izvēlēto metodi Pārbaudiet pacienta hemodinami- ku, izmantojot sekundāro ekrānu un citus primārā ekrāna parame- trus, lai izpētītu augstas hipotensi- jas iespējamības potenciālo cēloni un sniegtu informāciju par iespēja- mo rīcības plānu
HPI = 100	Sarkans (mirgo) Uznirstošais logs	Augstas prioritātes trauksmes skaņas sig- nāls	Pacients ir hipotensīvs	Apstipriniet uznirstošo logu, iz- mantojot izvēlēto metodi Pārbaudiet pacienta hemodinami- ku, izmantojot sekundāro ekrānu un citus primārā ekrāna paramet- rus, lai izpētītu hipotensijas po- tenciālo cēloni un sniegtu infor- māciju par iespējamo rīcības plānu

Piezīme

Ja HPI tiek rādīts informācijas joslā, grafisko displeja elementu izmaiņas nemaina ne krāsu, ne trauksmes veidu. Lietotājs tiks informēts tikai tad, kad HPI secīgos atjauninājumos pārsniegs 85, parādot HPI augstas prioritātes trauksmes uznirstošo logu.

13.1.5 HPI kā galvenais parametrs

Ja ir pievienots Acumen IQ sensors vai manšete, HPI var konfigurēt kā galveno parametru, veicot darbības, kas aprakstītas sadaļā Parametru maiņa 91. lpp..

HPI attēlojums vairākos veidos atšķiras no citiem galvenajiem parametriem. Citu galveno rādītāju attēlojums ir aprakstīts šeit: Statusa indikatori 92. lpp.

13-3. tabula 244. lpp. apraksta HPI un citu galveno parametru līdzības un atšķirības.

13-3. tabula. HPI salīdzinājumā ar citiem galvenajiem parametriem: līdzības un atš	ķirības
--	---------

Līdzības	Atšķirības
 Vērtības tiek atjaunotas ik pēc 20 sekundēm Trauksmes signāls, kad vērtība ir > par trauksmes robežvērtību Vizuāls trauksmes signāls, kad vērtība ir > par trauksmes robežvērtību Var attēlot % izmaiņas, ja konfigurēts Trauksmes skaņas signālu var atspējot 	 HPI galvenā rādītāja elementam nav mērķa zaļās krāsas krāsainā fontā atkarībā no kliniskā/trauksmes indikatora statusa HPI galvenā rādītāja elementam ir īsinājumtaustiņš augšējā la- bajā stūrī, lai nodrošinātu tiešu piekļuvi HPI sekundārajam ekrā- nam HPI parāda trauksmes uznirstošo logu, ja HPI pārsniedz aug-stas prioritātes trauksmes robežvērtību divos secīgos atjauninā- jumos vai ja HPI vērtība ir 100 HPI ir pieejams kā galvenais parametrs tikai tad, ja ir ievadīta aktivizācijas atslēga HPI trauksmes robežvērtība nav pielāgojama HPI trauksmes robežvērtība nav pielāgojama HPI nav zaļā krāsā ieēnota mērķa reģiona ar sarkanām bultām pie augšējās un apakšējās robežvērtības, attēlojot kā tendenci galvenajā pārraudzības ekrānā, jo tas nav fizioloģisks parametrs ar mērķa diapazonu. HPI ir fizioloģiskā statusa kvantitatīva indi- kācija, ko izmanto, lai informētu lietotājus par iespējamību, ka pacientu piemeklēs hipotensīvs notikums. Proti: kad HPI ir mazāks par vai vienāds ar 50, grafiskie elementi (attēlotais skaitlis, tendences līnija vai skalas segments) ir baltā krāsā, un ārstam ir jāturpina pacienta hemodinami- kas pārraudzība, izmantojot primāro pārraudzības ekrānu, HPI sekundāro ekrānu, HPI, kā arī parametru un organisma stāvokļa galveno rādītāju tendences; kad HPI ir lielāks par 50 un mazāks par vai vienāds ar 85, grafiskie elementi (attēlotais skaitlis, tendences līnija vai skalas segments) ir dzeltenā krāsā, un ārstam ir jāturpina pacienta hemodinamikas pārraudzība, izmantojot primāro pārraudzības ekrānu, HPI sekundāro ekrānu, HPI, kā arī pa- rametru un organisma stāvokļa galveno rādītāju tenden- ces; kad HPI pārsniedz 85, grafiskie elementi (attēlotais skaitlis, tendences līnija vai skalas segments) ir sarkanā krāsā, norā- dot, ka lietotājam ir jāpārbauda pacienta hemodinamika, izmantojot sekundāro ekrānu un citus pārraudzības ekrāna parametrus, lai izpētītu augstas hipotensija

13-1. attēls. HPI galvenā rādītāja elements

HPI tiek attēlots, kā norādīts 13-1. att. 245. lpp., kad tas ir konfigurēts kā galvenais parametrs visos ekrānos, izņemot kontrolpults ekrānu (13-2. att. 245. lpp.). Papildinformāciju par kontrolpults ekrānu skatiet šeit: Kontrolpults ekrāns 98. lpp.

13-2. attēls. HPI galvenais parametrs kontrolpults ekrānā

Visos pārraudzības ekrānos parametra vērtības fonta krāsa apzīmē parametra statusu, kā attēlots šeit: 13-4. tabula 245. lpp. Kontrolpults ekrānā HPI ir tādi paši trauksmes un mērķa diapazoni, bet tie tiek rādīti, kā attēlots 13-2. att. 245. lpp..

Parametra statusa krāsa	Zemākā robežvērtība	Augstākā robežvērtība		
Pelēka	Darbības kļūmes stāvoklis			
Balta	10	50		
Dzeltena	51	85		
Mirgojošs sarkans/pelēks	86	100		

13-4. tabula. HPI parametru statusa krāsas

13.1.6 HPI trauksme

Ja HPI ir konfigurēts kā galvenais parametrs un vērtība pārsniedz augšējo robežvērtību 85, tiek aktivizēta augstas prioritātes trauksme, norādot lietotājam, ka pacientam var rasties hipotensija. Atskan trauksmes signāls, parametra statusa krāsa kļūst sarkana, un parametra vērtība mirgo. HPI trauksmes robežvērtība, kas ir redzama šeit: 13-4. tabula 245. lpp., iedala parādāmo diapazonu zemākas un augstākas hipotensijas iespējamības apgabalos. HPI izmanto no Acumen IQ mērījumiem izgūtas funkcijas, dažas no tām ir salīdzinātas ar sākotnējo bāzes vērtību, kas noteikta pacienta pārraudzības sesijas pirmo 10 minūšu laikā, izmantojot ar datiem saistītu modeli, kas izstrādāts arteriālā spiediena līkņu datubāzes retrospektīvas analīzes rezultātā, izmantojot no ICU un ķirurģiskiem pacientiem apkopotos datus, kas ietver anotētus hipotensīvus (iepriekš definēts kā vidējais arteriālais spiediens < 55, 60, 65, 70, 75, 80 vai < 85 mmHg vismaz 1 minūti) un ar hipotensiju nesaistītus notikumus. HPI ir redzams kā vesela vērtība diapazonā no 0 līdz 100. Hipotensijas novērtējumā, izmantojot HPI, jāņem vērā gan parādītā vērtība diapazonā no 0 līdz 100, gan saistītā parametra krāsa (balta/sarkana). HPI trauksmes signāla skaļums, tāpat kā citu HemoSphere Alta uzlabotajā monitoringa platformā pieejamo trauksmju skaļums, ir pielāgojams. Skatiet Trauksmes stāvokļi/mērķi 133. lpp., lai iegūtu informāciju par trauksmes izslēgšanu un trauksmes skaļuma konfigurēšanu. HPI trauksmes aktivizācija tiks reģistrēta datu Iejupielādes failā pēc atjauninājuma ar HPI, kas pārsniedz trauksmes robežvērtību.

UZMANĪBU

HPI parametrs var nesniegt iepriekšēju norādi par tendenci uz hipotensijas notikumu situācijās, kurās klīniska iejaukšanās izraisa pēkšņu nefizioloģisku hipotensijas notikumu. Šādā gadījumā HPI funkcija bez aizkaves nodrošinās: augstas trauksmes uznirstošo logu, augstas prioritātes trauksmi, un tiks parādīta HPI vērtība 100, norādot, ka pacientam ir hipotensijas notikums.

13.1.7 HPI informācijas joslā

Ja HPI nav konfigurēts kā galvenais parametrs, parametra vērtība joprojām tiek aprēķināta un attēlota informācijas joslā, kā parādīts šeit: 13-3. att. 246. lpp..

1. Aprēķināta un attēlota HPI vērtība

13-3. attēls. Informācijas josla ar HPI

13.1.8 Informācijas joslas HPI indikatora atspējošana

Lai atspējotu informācijas joslas HPI indikatoru, rīkojieties, kā aprakstīts tālāk.

1. Pārejiet uz HPI sekundāro ekrānu sānu panelī (skat. Pārejiet uz HPI algoritma sānu paneli 249. lpp.).

- 2. Pieskarieties HPI iestatījumu ikonai
- 3. Atspējojiet opciju pogu Vienmēr rādīt HPI un trauksmi.

HPI funkcija paliek pieejama, pat ja HPI nav attēlots ekrānā. Ja HPI ir konfigurēts kā galvenais parametrs, tas brīdinās un izraisīs trauksmi, kā aprakstīts šeit: HPI trauksme 245. lpp.

13.1.9 HPI algoritma augstas prioritātes trauksmes paziņojums

Kad HPI parametrs pārsniedz 85 divos secīgos 20 sekunžu atjauninājumos vai jebkurā laikā sasniedz 100, tiek aktivizēts HPI algoritma augstas prioritātes trauksmes paziņojums. Skat. 13-4. att. 247. lpp. Šis paziņojums nosedz ekrāna sānu paneļa sadaļu un iesaka pārskatīt pacienta hemodinamiskos rādītājus. Tas tiek parādīts, kad HPI ir konfigurēts kā galvenais parametrs vai ir redzams informācijas joslā.

BRĪDINĀJUMS

Acumen Hypotension Prediction Index, HPI, nedrīkst izmantot tikai pacientu ārstēšanas nolūkā. Pirms ārstēšanas sākuma ieteicams pārbaudīt pacienta hemodinamikas rādītājus.

Lai pārbaudītu pacienta hemodinamikas rādītājus HPI algoritma sānu panelī (skat. HPI algoritma sānu panelis 248. lpp.) un apstiprinātu HPI augstas prioritātes trauksmes paziņojumu, pieskarieties pogai **Pārskats**. Lai apstiprinātu HPI augstas prioritātes trauksmes paziņojumu, nepārbaudot pacienta hemodinamikas rādītājus HPI algoritma sānu panelī, pieskarieties pogai **Apstiprināt**.

13-4. attēls. HPI augstas prioritātes trauksmes paziņojums

Apstiprinot notiek tālāk norādītais.

Paziņojums pazūd.

vai

- HPI trauksmes signāls tiek izslēgts, kamēr trauksme ir aktīva.
- Tiek apstiprināta HPI augstas prioritātes trauksme.

Poga **Pārskats** tiek iespējota, kad tiek rādīts jebkurš no pārraudzības ekrāniem. Pieskaroties HPI algoritma augstas prioritātes trauksmes paziņojuma pogai **Pārskats**, tie parādīts HPI algoritma sānu panelis. Ja poga **Pārskats** ir atspējota, HPI algoritma sānu panelim joprojām var piekļūt, kā aprakstīts šeit: Pārejiet uz HPI algoritma sānu paneli 249. lpp..

Lai atspējotu HPI algoritma augstas prioritātes trauksmes sānu paneli, skat.: Informācijas joslas HPI indikatora atspējošana 246. lpp..

13.1.10 Hipotensijas robežvērtības iestatījums

Lai mainītu MAP robežvērtību, ko izmanto HPI parametra vērtības noteikšanai, pārejiet uz HPI iestatījumu ekrānu, pieskaroties kādam no tālāk norādītajiem vienumiem.

HPI parametra elementā

Ikona Klīniskie rīki → poga Hipotensijas prognozēšanas indekss → iestatījumu ikona algoritma sānu paneļa apakšā

Ja ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet Hipotensijas prognozēšanas indekss.

*Noklusējums					
55 mmHg	60 mmHg	65 mmHg*	70 mmHg		
75 mmHg	80 mmHg	85 mmHg			
Viedās tendences Viedo tendenču	un brīdinājum	i			
Viedās tendences Viedo tendenču brīdinājumi	un brīdinājum	i			
Viedās tendences Viedo tendenču brīdinājumi Δ Robežvērtība %	un brīdinājum	i 15%	>	•	

13-5. attēls. HPI parametra hipotensijas robežvērtības iestatījumu ekrāns

Atlasiet kādu no šīm izvēlnes Hipotensijas robežvērtība opcijām: **55**, **60**, **65**, **70**, **75**, **80** vai **85 mmHg**. Noklusējuma vērtība ir **65 mmHg**. Pieskarieties pie **Saglabāt**, lai saglabātu jaunu hipotensijas robežvērtību. Atlasītā vērtība tiek parādīta parametra elementā (skat. 13-1. att. 245. lpp.) un augstas prioritātes trauksmes paziņojumā (skat. 13-4. att. 247. lpp.).

13.1.11 HPI algoritma sānu panelis

HPI algoritma sānu panelis nodrošina pacienta hemodinamikas informāciju. Tas var būt noderīgs rīks, lai ātri pārskatītu ar hipotensiju saistīto pacienta hemodinamiku. Šim sānu panelim var piekļūt jebkurā brīdī, veicot hemodinamiskā stāvokļa pārraudzību ar Acumen IQ sensoru vai Acumen IQ manšeti.

HPI sekundārajam ekrānam ir viens skatīšanas režīms:

• Minimāls. Parāda trīs parametrus, kas konfigurēti opcijai Pirmsslodze, Pēcslodze un Kontraktilitāte

Pieskarieties izvēršanas ikonai 💴 lai skatītu divus papildu skatīšanas režīmus sekundārajā ekrānā:

- Viedā tendence. Grafisks trīs parametru attēlojums ar konfigurāciju Pirmsslodze, Pēcslodze un Kontraktilitāte līdz ar šo parametru aktuālo viedās trauksmes statusu
- Relācijas. Visu ar Acumen IQ sensoru vai manšeti pārraudzīto hemodinamisko parametru rādījums, kategorizēts kā Pirmsslodze, Pēcslodze vai Kontraktilitāte vai pēc to saistības ar parametriem Pirmsslodze, Pēcslodze vai Kontraktilitāte.

Lai pārslēgtos starp šiem skatiem, pieskarieties bultiņām (sekundārā ekrāna displeja opciju.

) un ritiniet, bet pēc tam atlasiet

HPI algoritma sānu panelis līdz ar citiem galvenajiem parametriem pārraudzības ekrānā tiek izmantots, lai sniegtu potenciālu priekšstatu par augstas hipotensijas iespējamības cēloni vai hipotensiju, kad ir šāds notikums.

13.1.11.1 Pārejiet uz HPI algoritma sānu paneli

Lai piekļūtu HPI algoritma sānu panelim, pieskarieties kādam no tālāk minētajiem vienumiem.

Piezīme

HPI algoritma sānu panelis ir pieejams arī tad, ja nav pievienots ne Acumen IQ sensors, ne Acumen IQ manšete.

13.1.11.2 Relāciju skats

HPI algoritma relācijas skata sekundārais ekrāns attēlo parametrus, kas ietver šādus galvenos rādītājus:

- sirds izsviede (CO)/sirds indekss (CI);
- sirdsdarbības ātrums (PR)
- vidējais arteriālais spiediens (MAP);
- sistoles tilpums (SV)/sistoles tilpuma indekss (SVI);
- sistēmiskā asinsvadu pretestība (SVR)/sistēmiskās asinsvadu pretestības indekss (SVRI).

Detalizētie papildu parametri tiek vizuāli izkārtoti ekrānā pēc kategorijas **PIRMSSLODZE**, **KONTRAKTILITĀTE** un **Pēcslodze**. Šie detalizētie parametri ir:

- sistoles tilpuma variācija (SVV) vai pulsa spiediena variācija (PPV);
- sistoliskais kritums (dP/dt);
- dinamiskā arteriālā elastība (Ea_{dyn}).

Lai relāciju skata sekundārajā ekrānā pārslēgtos no PPV uz SVV rādījumiem un pretēji, relāciju skata sekundārajā ekrānā pieskarieties pašreiz attēlotā parametra nosaukumam (PPV vai SVV). Lai pārslēgtos no indeksētiem uz neindeksētiem parametriem un pretēji (CO/CI, SV/SVI vai SVR/SVRI), atlasiet vēlamo parametru kā galveno parametru. Visiem parametriem HPI sekundārajā ekrānā ir redzamas procentu vērtības izmaiņas un izmaiņu virziens (ar augšupvērstu/lejupvērstu bultiņu) lietotāja atlasāmā laika intervālā, kā arī grafisko tendenču diagrammas. Tiek parādīta arī arteriālā asinsspiediena līkne. Visi parametru lodziņi tiek iezīmēti pašreizējā mērķa statusa krāsā atbilstoši parametru elementu vizuālā indikatora funkcijai.

13-6. attēls. HPI algoritma sānu panelis — relāciju skats

Parametru atvasinājumus skatiet C-1. tabula 396. lpp. sadaļā Aprēķināto pacienta parametru vienādojumi 396. lpp..

13.1.11.3 HPI viedās trauksmes un viedās tendences

HPI viedās trauksmes un viedās tendences ir funkcija, kas ārstiem var palīdzēt noteikt iespējamus iekšējos mehānismus, kas var būt iespējamie iejaukšanās mērķi, lai novērstu vai ārstētu hipotensiju, balstoties uz pacienta hemodinamiskā stāvokļa pilnīgu pārskatīšanu pirms ārstēšanas. Šie mehānismi var būt pirmsslodze, kontraktilitāte un pēcslodze. Viedo trauksmju algoritms ņem vērā parametru vērtību un % izmaiņas to vērtībās attiecībā uz lietotāja noteiktajām robežvērtībām, lai palīdzētu lietotājam noteikt piemērotāko darbību. Ārsts var sasaistīt parametrus ar katru no trijiem fizioloģiskajiem mehānismiem (pirmsslodze, kontraktilitāte, pēcslodze) un pielāgot faktorus, kas ietekmē kategorijas aktivizēšanās brīdi.

Lai atspējotu HPI viedās trauksmes, pieskarieties iestatījumu ikonai **bieska**rieties pārslēgšanas pogai **Viedo tendenču brīdinājumi**, to atspējojot.

Šajā ekrānā ir redzama Ea_{dyn} parametra vērtība, MAP parametra vērtība un HPI tendenču diagramma kopā ar vienu parametru, kas ir saistīts ar katru no tālāk norādītajiem mehānismiem.

Mehānisms	Saistītā parametra izvēle
PIRMSSLODZE	pulsa spiediena variācija (PPV)
	sistoles tilpuma variācija (SVV)
	sistoles tilpuma indekss (SVI)
KONTRAKTILITĀTE	sistoliskais kritums (dP/dt)
	sirds indekss (CI)
Pêcslodze	sistēmiskā asinsvadu pretestība (SVR)

Piezīme

CVP vērtība, kas nepieciešama SVR aprēķinam, var tikt iegūta no spiedienkabeļa pārraudzītā CVP, vai tā var būt lietotāja ievadīta CVP vērtība. Informāciju par CVP avota prioritātes noteikšanu skatiet šeit: 4-1. tabula 94. lpp. Ja nav noteikts neviens CVP avots, piešķirtā noklusējuma vērtība ir 5 mmHg. Kā mainīt noklusējuma vērtību, skatiet CVP iestatījumi 139. lpp..

Kad ir iespējoti HPI **Viedo tendenču brīdinājumi**, tiek parādīts HPI algoritma augstas prioritātes trauksmes paziņojums, kad rodas HPI trauksme. Skat. 13-7. att. 251. lpp. Kategorijas aktivizējas, balstoties uz saistītā parametra stāvokli, kas ietver parametra vērtību un tā tendences lietotāja noteiktajā laika intervālā salīdzinājumā ar noteiktajām robežvērtībām.

HPI 95,100 IQ sensors Hipotensijas robežvěrtiba: 65 mmHg
Ieteicams Pārskatīt Pacienta Hemodinamikas Rādītājus.
PIRMSSLODZE
Pēcslodze
KONTRAKTILITĀTE
Apstiprināt
Pārskatīt viedās tendences

13-7. attēls. HPI viedo tendenču trauksmes paziņojums

Viedo trauksmju aktivizēšanu nosaka izmaiņas parametra vērtībā, kas pārsniedz iepriekš atlasītā parametra mērķa vērtību un/vai % izmaiņu robežvērtību (10%, 15% vai 20%) iepriekš iestatītā laikā intervālā (5, 10, 15 vai 30 minūtes) saskaņā ar lietotāja konfigurētiem iestatījumiem, kas norādīti HPI iestatījumu ekrānā.

Katram parametram ir noteiktas robežvērtības, kas attiecas uz HPI viedo trauksmju lēmumiem. Skat. 13-5. tabula 251. lpp. lepriekš atlasītas parametru mērķa vērtības ir norādītas parametru ekrānā Trauksmes/mērķa rādītāji. Skat. Trauksmes stāvokļi/mērķi 133. lpp. Šeit norādītās robežvērtību mērķa vērtības ir Edwards noklusējuma robežvērtības parametra brīdinājumu (dzeltenā krāsā) diapazoniem.

Parametrs	Noklusējuma robežvērtība		
SVV un PPV (%)	≥ 13		
SVI (ml/sitieni/m ²)	≤ 30		
CI (I/min/m ²)	≤2		
dP/dt (mmHg/s)	≤ 480		
SVR (dyn-s/cm ⁵)	≤ 1970/KVL		
MAP (mmHg)*	≤ 72		
* Piezīme. Hipotensijas robežvērtība + 10% (nav konfigurējams)	* Piezīme. Hipotensijas robežvērtība + 10% (nav konfigurējams) ≤ 72		

Viedās trauksmes stāvoklis tiek parādīts kā ieēnots apgabals konkrētā parametra tendenču grafikā. Viedo trauksmju iestatījumus (% izmaiņu vērtība un laika intervāls) konfigurē lietotājs.

Pieskarieties iestatījumu ikonai

HPI sānu paneļa apakšā, lai piekļūtu iestatījumu izvēlnei.

Viedās tendences un brīdinājumi Viedo tendenču brīdinājumi Δ Robežvērtība % Δ Laika intervāls Δ Laika intervāls Pēcslodzes parametrs SVR Kontraktilitātes parametrs C I				
Viedo tendenču brīdinājumiΔ Robežvērtība %Δ Laika intervāls10 minRādītāju atlasePirmsslodzes parametrsSVRPēcslodzes parametrsSVRKontraktilitātes parametrs<CI			dinājumi	Viedās tendences un brī
Δ Robežvērtība %15%Δ Laika intervāls10 minRādītāju atlasePirmsslodzes parametrsSVV>Pēcslodzes parametrsSVRKontraktilitātes parametrs<				Viedo tendenču brīdinājumi
Δ Laika intervāls Laika intervāls Rādītāju atlase Pirmsslodzes parametrs ŠVV > Pēcslodzes parametrs SVR Kontraktilitātes parametrs CI >	5%	15% >	«	∆ Robežvērtība %
Rādītāju atlase Pirmsslodzes parametrs \$VV Pēcslodzes parametrs \$VR Kontraktilitātes parametrs CI	min >	10 min 💙	۲,	Δ Laika intervāls
Pirmsslodzes parametrs SVV SVR Kontraktilitätes parametrs CI T CII T T T 				Rādītāju atlase
Pēcslodzes parametrs SVR Kontraktilitātes parametrs CI >	vv >	svv >	۲	Pirmsslodzes parametrs
Kontraktilitātes parametrs CI)	VR	SVR		Pēcslodzes parametrs
		сі >	۲	Kontraktilitātes parametrs
Atjaunot noklusējumus Atcelt Saglabāt	Atcelt Saglabāt			🔶 Atjaunot noklusējumus

13-8. attēls. HPI algoritma iestatījumu izvēlne

), lai ritinātu un atlasītu vēlamās viedās tendences un

Pieskarieties iestatījumu izvēlnes bultiņām trauksmju izvēlnes opcijas.

Δ Robežvērtība %(10%, 15% vai 20%). Šī vērtība nosaka vērtības izmaiņas intervālā, kas ir **Δ Laika intervāls**, par kuru parametrs attēlo viedās trauksmes.

Δ Laika intervāls(Min) (5, 10, 15 vai 30 minūtes). Šis intervāls nosaka laika periodu, kurā tiek novērtēta **Δ Robežvērtība %** katram attēlotajam parametram.

Rādītāju atlase. Atlasiet vienumu Pirmsslodzes parametrs (PPV, SVV vai SVI) un Kontraktilitātes parametrs (dP/dt vai CI). Vienums Pēcslodzes parametrs vienmēr ir konfigurēts kā SVR.

13.1.12 Klīniskā izmantošana

Acumen Hypotension Prediction Index parametru, HPI, var konfigurēt kā galveno parametru monitoringa ekrānā vai arī to var parādīt tikai informācijas joslā monitoringa ekrāna apakšējā labajā stūrī, kā aprakstīts sadaļā Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp.

Kad HPI tiek rādīts informācijas joslā:

- ja otrā secīgā HPI vērtība pārsniedz 85, parādās augstas prioritātes trauksmes uznirstošais logs;
- pārbaudiet pacienta hemodinamikas rādītājus, izmantojot HPI sekundāro ekrānu un citus primārā ekrāna parametrus, lai izpētītu hipotensijas augstas iespējamības potenciālo cēloni un sniegtu informāciju par iespējamo rīcības plānu.

Ja HPI ir konfigurēts kā galvenais parametrs, monitoringa ekrānā parādās HPI un tendences grafiks.

- Trauksme tiek aktivizēta, ja HPI pārsniedz 85.
- Tendences līnija un parametra elementa kontūra tiek parādīta dzeltenā krāsā (trauksmes mērķa zona), ja HPI vērtība ir lielāka par 50 un mazāka par vai vienāda ar 85.
- Ja HPI ir mazāks par vai vienāds ar 50:
- * Tendences līnija un vērtība tiek attēlota baltā krāsā.
- * Turpiniet pacienta hemodinamikas monitoringu. Esiet vērīgs attiecībā uz pacienta hemodinamikas izmaiņām, izmantojot primāro monitoringa ekrānu, HPI sekundāro ekrānu, HPI, kā arī parametru un organisma stāvokļa galveno rādītāju tendences.
- Ja HPI pārsniedz 85, pārbaudiet pacienta hemodinamiku, izmantojot HPI sekundāro ekrānu un citus primārā ekrāna parametrus, lai izpētītu augstas hipotensijas iespējamības potenciālo cēloni un sniegtu informāciju par iespējamo rīcības plānu.
- Tiklīdz vidējais arteriālais spiediens saglabājas zem 65 mmHg trīs secīgos rādījumos, norādot uz hipotensīvu notikumu:
 - * HPI rāda 100.
 - * Pārbaudiet pacienta hemodinamikas rādītājus, izmantojot HPI sekundāro ekrānu un citus primārā ekrāna parametrus, lai izpētītu hipotensijas potenciālo cēloni un sniegtu informāciju par iespējamo rīcības plānu.

13.1.13 Papildu parametri

- Sistoles tilpuma variācijas (SVV) un pulsa spiediena variācijas (PPV) jutīgi, dinamiski šķidruma reakcijas mērījumi, kas ļauj prognozēt, vai pirmsslodze ir palielināta, padodot vairāk šķidruma vai samazinot venozo slodzei nepakļauto tilpumu, izmantojot kompensējošus kontroles mehānismus vai zāles, — sirds reaģē, palielinot sistoles tilpumu [1]. Zemas SVV vai PPV vērtības norāda, ka pacients nereaģē uz šķidrumu; augstas vērtības norāda, ka pacients reaģē uz šķidrumu; starpā ir pelēka zona [6].
- Sistoliskais kritums (dP/dt) maksimālais arteriālā spiediena līknes kāpums, mērīts perifērā artērijā. Arteriālā spiediena dP/dt (pēc tā aprēķināšanas būtības izplūdes laikā) absolūtās vērtības ir zemākas nekā izovolēmiskais LV spiediens dP/dt-_{maks}, bet to izmaiņas ir cieši savstarpēji saistītas [1, 2].

Piezīme

dP/dt, kas mērīts perifērā artērijā, nav pētīts kā kreisā kambara kontraktilitātes mērījums visās pacientu populācijās.

Dinamiskais artēriju elastīgums (Ea_{dyn}) — kreisā kambara pēcslodzes mērījums arteriālajā sistēmā (artēriju elastīgums), saistīts ar kreisā kambara elastīgumu, tiek aprēķināts kā PPV un SVV attiecība [8]. Arteriālais elastīgums ir integrāls arteriālās slodzes parametrs, kas ietver sistēmisko asinsvadu pretestību (SVR), kopējo arteriālo atbilstību (C), kā arī sistoles un diastoles laika intervālus [9, 10].

Šo parametru savstarpējā saistība ar fizioloģisko statusu un to saistība ar klīnisko rezultātu ir rūpīgi izpētīta, izmantojot lielu klīniskās literatūras apjomu.

Vairums SV (vai SVI) un MAP ārstēšanas procedūru ietekmē galvenokārt SV un tā noteicošos faktorus pirmsslodzi, kontraktilitāti, pēcslodzi. Sniedzot palīdzību ārstēšanas lēmumu pieņemšanā, vienoti jānodrošina informācija par visiem trim aspektiem, jo tie bieži vien ir savstarpēji saistīti.

SVV ir ierobežots kā pirmsslodzes mērījums pacientiem, kuriem tiek veikta mehāniska ventilācija ar stabilu ventilēšanas frekvenci un ieelpas tilpumiem un kuriem nav intraabdominālas insuflācijas [6, 7]. Vislabāk SVV izmantot kopā ar sistoles tilpuma vai sirds izsviedes novērtējumu.

Tendenču izmaiņas dP/dt ir noderīgas lēmumu pieņemšanā, lai novērtētu kontraktilitātes izmaiņas kreisajā kambarī kopā ar sistoles tilpuma variāciju un sistoles tilpumu vai sirds izsviedi.

13-6. tabula 254. lpp. apliecina, ka dP/dt tendenču procentuālajām izmaiņām ir mazāka nobīde un lielāka precizitāte, salīdzinot ar absolūtajām dP/dt vērtībām.

13-6. tabula. dP/dt precizitātes salīdzinājums attiecībā uz minimāli invazīvi un neinvazīvi uzraudzītiem ķirurģiskajiem pacientiem

Pacientu nobīde ±dP/dt absolūtās vērtības precizitāte	Nobīde ± dP/dt procentuālo izmaiņu precizitāte	dP/dt procentuālo izmaiņu saskaņo- tība
–3,6 [–58,9, 51,7], mmHg/s	0,02 [-0,00; 0,04] %	88,9% [82,7%, 93,6%]
±	±	
83,6 [69,9, 97,4], mmHg/s	1,35 [1,34; 1,37] %	

UZMANĪBU

levērojiet piesardzību, izmantojot dP/dt absolūtās vērtības. Spiediens distāli mainās asinsvadu sašaurināšanās, kā arī berzes spēku asinsvados dēļ. Lai gan dP/dt var neprecīzi aprakstīt sirds kontraktilitāti, tendences var būt noderīgas.

levērojiet piesardzību, izmantojot dP/dt pacientiem ar smagu aortas stenozi, jo stenoze var samazināt sasaisti starp kreiso kambari un pēcslodzi.

Lai gan parametru dP/dt galvenokārt nosaka LV kontraktilitātes izmaiņas, to var ietekmēt pēcslodze vazoplēģisku stāvokļu laikā (venoarteriāla atsaiste). Šo periodu laikā dP/dt var neatspoguļot LV kontraktilitātes izmaiņas.

Normalizējot arteriālo elastīgumu ar kambara elastīgumu, to attiecība kļūst par kreisā kambara un arteriālās sistēmas saskaņošanas indeksu. Veicot saskaņošanu, tiek veikta optimāla asiņu pārvade no LV uz arteriālo sistēmu, nezaudējot enerģiju un ar optimālu sistolisko darbu [3, 8, 9].

Ir pierādīts, ka Ea_{dyn} sniedz potenciālās pēcslodzes reakcijas indikāciju, lai palielinātu MAP, nodrošinot tilpumu uz pirmsslodzi reaģējošiem, mehāniski ventilētiem pacientiem [4] un spontāni elpojošiem pacientiem [5]. Pēcslodzes reakcija, lai palielinātu MAP, ir potenciāli lielāka pie Ea_{dyn} vērtībām > 0,8 [4, 5, 8].

Ea_{dyn} neattiecas tikai uz pacientiem, kas tiek mehāniski ventilēti, jo tas ir aprēķins, kas tiek attēlots kā PPV/SVV attiecība [5, 8]. Ea_{dyn} vislabāk izmantot kopā ar sistoles tilpuma variāciju (ventilētiem pacientiem) un sistoles tilpuma vai sirds izsviedes novērtējumu.

SVV vai PPV, dP/dt un Ea_{dyn} ir kopīga īpašība — tās reti ir neatkarīgas viena no otras. Nodrošinot tilpumu, lai palielinātu pirmsslodzi un sistoles tilpumu, tiek palielināta sirds izsviede un arteriālais spiediens; līdz ar to palielinās kambara pēcslodze. Pēcslodzes palielināšana (aortas spiediena palielināšana), palielinot sistēmisko asinsvadu pretestību, samazina sirds sistoles tilpumu. Tā rezultātā palielinātais beigu sistoles tilpums izraisa sekundāru beigu diastoliskā tilpuma palielināšanos, jo kambarī pēc izsviedes ir lielāks asiņu atlikums, un šīs papildu asinis tiek pievienotas venozajai attecei, tādējādi palielinot kambara pildījumu, kas palielina kontraktilitāti (Frenka-Stārlinga mehānisms) un daļēji kompensē sistoles tilpuma samazinājumu, ko izraisījis sākotnējais pēcslodzes palielinājums.

SVV vai PPV, dP/dt un Ea_{dyn} ir paredzēti kā integrēti lēmuma atbalsta parametri, lai virzītu SV vai SV un MAP procedūras.

Lai nodrošinātu šo parametru veiktspēju, izmantojot NIBP uzraudzītus pacientus (ClearSight), salīdzinājumā ar minimāli invazīvi uzraudzītiem pacientiem (FloTrac), nobīde un vienošanās robežas (LoA) tika aprēķinātas SVV, PPV un Ea_{dyn}. Šīs analīzes rezultāts ar 95% ticamības intervāliem ir parādīts tālāk (13-7. tabula 255. lpp.). 95% ticamības intervāli tika aprēķināti, ņemot vērā atkārtotu mērījumu rezultātus no tā paša testēšanas subjekta, izmantojot Bland JM, Altman DG (2007) metodi. Bland-Altman diagrammas šiem parametriem ir redzamas 13-9. att. 256. lpp.

Parametrs	Nobīde [95% CI]	Zemākā LoA [95% CI]	Augstākā LoA [95% CI]	
SVV (%)	-0,18 [-0,25; -0,11]	-3,03 [-3,52; -2,53]	2,66 [2,17; 3,16]	
PPV (%)	-0,01 [-0,10; 0,08]	-3,78 [-4,40; -3,17]	3,76 [3,14; 4,38]	
Ea _{dyn}	0,04 [0,04; 0,05]	-0,29 [-0,33; -0,25]	0,38 [0,34; 0,42]	

13-7. tabula. 95% ticamības intervāla (TI) rezultāti nobīdei un vienošanās robežai (LoA)

13-9. attēls. Bland-Altman diagrammas SVV, PPV un Ea_{dyn}

13.1.14 Klīniskā validācija ar hipotensijas robežvērtību minimāli invazīvi pārraudzītiem pacientiem

Tika veikti retrospektīvi klīniskās validācijas pētījumi, lai novērtētu HPI diagnostisko veiktspēju hipotensijas un ar hipotensiju nesaistītu notikumu prognozēšanā minimāli invazīvi pārraudzītiem ķirurģiskiem un neķirurģiskiem pacientiem.

13.1.14.1 Ķirurģiski pacienti

Veikts retrospektīvs klīniskās validācijas pētījums, lai novērtētu HPI diagnostisko veiktspēju hipotensijas un ar hipotensiju nesaistīto notikumu prognozēšanā minimāli invazīvi pārraudzītiem ķirurģiskajiem pacientiem. 13-8. tabula 257. lpp. nodrošina pacientu demogrāfijas informāciju par šajā pētījumā iekļauto 1141 ķirurģisko pacientu. Hipotensijas notikumu skaits, kas iekļauts katram MAP mērķim, un pacientu datu ilguma (minūtēs) kopsavilkums ir pieejams tālāk šeit: 13-9. tabula 257. lpp..

Neķirurģiskos pacientus (skaits: 1141) var iedalīt sīkāk, kā aprakstīts tālāk 13-10. tabula 257. lpp..

AprakstsVērtībaPacientu skaits1141Dzimums (vīrietis/sieviete)631/510Vecums58,0±17,0KVL (m²)1,9±0,3Augums (cm)169,1±10,8Svars (kg)80,3±22,2

13-8. tabula. Pacientu demogrāfiskā informācija (minimāli invazīvi pārraudzīti ķirurģiski pacienti, N=1141)

13-9. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (minimāli invazīvi pārraudzīti ķirurģiskie pacienti)

Ierosinātie MAP mērķi Hipotensijas notikumu skaits		Kopējā datu garuma me- diāna	Vidējais kopējais datu ga- rums		
		(minūtes)	(±stand. nov., minūtes)		
55 mmHg	6315				
60 mmHg	4763				
65 mmHg	6447				
70 mmHg	3858	331,3	360,0±158,2		
75 mmHg	4050				
80 mmHg	3740				
85 mmHg	3336				

13-10. tabula. Ķirurģisku pacientu raksturlielumi (minimāli invazīvi, N=1141)

Ķirurģijas veids	pacientu skaits (% no kopējā)
vēders	333 (27,1%)
sirds	120 (9,7%)
kakls	83 (6,7%)
kraniāla	217 (17,6%)
ekstremitāte	126 (10,2%)
mugurkaula	62 (5,0%)
torakāla	92 (7,5%)
cits HRS	198 (16,1%)
КОРА	965 (100%)
*Piezīme. Dažiem pacientiem var būt veiktas dažādas procedūra	Is, tāpēc to kopējais skaits pārsniedz pacientu kopējo skaitu.

13.1.14.2 Neķirurģiski pacienti

Retrospektīvs klīniskās validācijas pētījums, lai novērtētu HPI diagnostisko veiktspēju hipotensijas un ar hipotensiju nesaistīto notikumu prognozēšanā minimāli invazīvi pārraudzītiem neķirurģiskajiem pacientiem. 13-11. tabula 258. lpp. nodrošina pacientu demogrāfisko informāciju par šajā pētījumā iekļautajiem 672 neķirurģiskiem pacientiem. Hipotensijas notikumu skaits, kas iekļauts katram MAP mērķim, un pacientu datu ilguma (minūtēs) kopsavilkums ir pieejams tālāk šeit: 13-12. tabula 258. lpp.. 672 neķirurģiskos pacientus var iedalīt sīkāk, kā aprakstīts tālāk 13-13. tabula 258. lpp..

13-11. tabula. Pacientu demogrāfijas informācija (minimāli invazīvi pārraudzīti neķirurģiski pacienti, N=672)

Apraksts	Vērtība
Pacientu skaits	672
Dzimums (vīrietis/sieviete)	430/242
Vecums	62,2±15,8
KVL (m ²)	2,0±0,3
Augums (cm)	171,4±11,3
Svars (kg)	88,0±27,4

13-12. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (minimāli invazīvi pārraudzīti neķirurģiskie pacienti)

lerosinātie MAP mērķi	Hipotensijas notikumu skaits	Mediānais kopējais datu garums (minūtes)	Vidējais kopējais datu ga- rums (±stand. nov., minūtes)
55 mmHg	5772		
60 mmHg	7125		
65 mmHg	11 029		
70 mmHg	14 845	1440,0	3321,8±17 900,3
75 mmHg	10 664		
80 mmHg	11 531		
85 mmHg	15 508		

13-13. tabula. Neķirurģisku pacientu raksturlielumi (minimāli invazīvi, N=672)

Diagnoze	pacientu skaits (% no kopējā)
sirds ICU	269 (40,0%)
neiroloģijas ICU	17 (2,5%)
sirds operāciju nodaļa	4 (0,6%)
intensīvās medicīniskās aprūpes nodaļa	9 (1,3%)
intensīvās ķirurģiskās aprūpes nodaļa	83 (12,4%)
intensīvās traumatoloģijas aprūpes nodaļa	67 (10%)
kardioloģijas nodaļa	4 (0,6%)
vispārējās medicīnas nodaļa	22 (3,3%)
plaušu nodaļa	8 (1,2%)
ķirurģijas nodaļa	138 (20,5%)
transplantācijas nodaļa	11 (1,6%)
nav zināms	40 (6,0%)
KOPĀ	672 (100%)

13.1.14.3 Hipotensijas robežvērtības klīniskā validācijas pētījuma rezultāti — minimāli invazīva pārraudzība

Uztvērēja operatora raksturlīknes (ROC) rezultātu analīze ķirurģiskajiem un citiem pacientiem apkopota tālāk šeit: 13-14. tabula 259. lpp. un 13-15. tabula 260. lpp..

Hipotensīvs notikums tiek aprēķināts, identificējot segmentu, kura garums ir vismaz 1 minūte, lai visiem datu punktiem šajā sadaļā parametrs MAP būtu mazāks par norādīto mainīgo kartes vērtību (55, 60, 65, 70, 75, 80 un 85). Notikuma (pozitīva) datu punkts tiek izvēlēts kā 5 minūšu paraugs pirms hipotensīvā notikuma. Ja secīgie hipotensīvie notikumi ir mazāk nekā 5 minūšu intervālā, pozitīvs paraugs tiek definēts kā pirmais paraugs uzreiz pēc iepriekšējā hipotensijas notikuma.

Ar hipotensiju nesaistīts notikums tiek aprēķināts, identificējot datu punktu segmentus tā, lai segments būtu vismaz 20 minūšu attālumā no visiem hipotensīvajiem notikumiem, kā arī visiem datu punktiem šajā segmentā MAPbūtu mazāks par norādīto mainīgo kartes vērtību (55, 60, 65, 70, 75, 80 un 85). Viens ar notikumu nesaistīts (negatīvs) datu punkts tiek izvēlēts katram ar hipotensiju nesaistītu notikumu segmentam.

Patiesi pozitīvs rezultāts, kā aprakstīts šeit: 13-14. tabula 259. lpp. un 13-15. tabula 260. lpp., ir jebkurš notikuma (pozitīva) datu punkts ar HPI vērtību, kas ir lielāka par vai vienāda ar izvēlēto robežvērtību. Jutība ir patiesi pozitīvu rezultātu un notikumu (pozitīvu) kopējā skaita attiecība ar pozitīvu rezultātu, kas definēts kā datu punkts ne vēlāk kā 5 minūtes pirms hipotensīva notikuma. Nepatiesi negatīvs rezultāts ir jebkurš pozitīvs datu punkts ar HPI vērtību, kas ir mazāka par robežvērtību.

Patiesi negatīvs rezultāts, kā aprakstīts šeit: 13-14. tabula 259. lpp. un 13-15. tabula 260. lpp., ir jebkurš negatīvs (bez notikuma) datu punkts ar HPI vērtību, kas ir mazāka par izvēlēto robežvērtību. Specifiskums ir patiesi negatīvo rezultātu un ar notikumu nesaistīto (negatīvo) rezultātu kopējā skaita attiecība, kad negatīvais rezultāts definēts kā datu punkts vismaz 20 minūšu attālumā no jebkura hipotensīva notikuma. Viltus pozitīvs rezultāts ir jebkurš negatīvs datu punkts ar HPI vērtību, kas ir lielāka par vai vienāda ar robežvērtību.

Atskaitē tiek iekļauta arī pozitīvā prognostiskā vērtība (PPV), negatīvā prognostiskā vērtība (NPV) un laukums zem ROC līknes (AUC) par katru mainīgo MAP mērķa vērtību šeit: 13-14. tabula 259. lpp. un 13-15. tabula 260. lpp..

HPI robež- vērtība	Mainīgā MAP vērtība (mmHg)	PPV [ticamības in- tervāls]	NPV [ticamības intervāls]	Specifiskums (%) [95% ticamības intervāls]	Jutīgums (%) [95% ticamības intervāls]	AUC
	55	99,1 =(5583/5634) [97,7; 99,8]	88,4 =(5586/6318) [86,6; 90,0]	99,1 =(5586/5637) [97,9; 99,8]	88,4 =(5583/6315) [83,1; 91,7]	0,95 [0,93; 0,97]
	60	99,8 =(3958/3964) [99,6; 100,0]	86,5 =(5156/5961) [84,2; 88,5]	99,9 =(5156/5162) [99,8; 100,0]	83,1 =(3958/4763) [75,4; 88,2]	0,94 [0,92; 0,96]
	65	99,8 =(5346/5358) [99,5; 99,9]	76,8 =(3648/4749) [73,1; 80,1]	99,7 =(3648/3660) [99,3; 99,9]	82,9 =(5346/6447) [77,5; 87,1]	0,95 [0,93; 0,96]
85	70	98,8 =(2551/2583) [97,8; 99,5]	81,6 =(5784/7091) [79,1; 83,7]	99,4 =(5784/5816) [99,0; 99,8]	66,1 =(2551/3858) [63,7; 68,6]	0,87 [0,86; 0,89]
	75	98,5 =(2715/2755) [97,8; 99,2]	78,7 =(4922/6257) [76,1; 81,2]	99,2 =(4922/4962) [98,8; 99,6]	67,0 =(2715/4050) [64,5; 69,4]	0,87 [0,86; 0,88]
	80	99,3 =(2590/2607) [98,8; 99,8]	78,0 =(4071/5221) [75,1; 80,6]	99,6 =(4071/4088) [99,2; 99,9]	69,3 =(2590/3740) [66,9; 71,5]	0,88 [0,86; 0,89]
	85	97,7 =(2204/2256) [96,1; 99,1]	73,6 =(3164/4296) [70,5; 76,5]	98,4 =(3164/3216) [97,3; 99,4]	66,1 =(2204/3336) [63,7; 68,4]	0,87 [0,85; 0,88]
* Dati pieejam	i Edwards Lifesci	iences				

13-14. tabula. Klīniskā validācijas pētījuma rezultāti* (minimāli invazīvi pārraudzīti ķirurģiskie pacienti)

HPI robež- vērtība	Mainīgā MAP vērtība (mmHg)	PPV [ticamības in- tervāls]	NPV [ticamības intervāls]	Specifiskums (%) [95% ticamības intervāls]	Jutīgums (%) [95% ticamības intervāls]	AUC
	55	98,7 =(5028/5095) [97,0; 99,8]	98,0 =(36 308/37 052) [97,5; 98,4]	99,8 =(36 308/36 375) [99,6; 100,0]	87,1 =(5028/5772) [84,7; 89,1]	0,97 [0,96; 0,97]
	60	96,1 =(5729/5963) [90,6; 99,4]	97,0 =(44 955/46 351) [96,3; 97,6]	99,5 =(44 955/45 189) [98,7; 99,9]	80,4 =(5729/7125) [76,9; 83,4]	0,95 [0,94; 0,96]
85	65	99,0 =(9726/9828) [97,8; 99,8]	95,4 =(27 312/28 615) [94,1; 96,5]	99,6 =(27 312/27 414) [99,2; 99,9]	88,2 =(9726/11 029) [85,8; 90,2]	0,98 [0,97; 0,98]
	70	99,0 =(13 024/13 162) [98,0; 99,6]	92,9 =(23 939/25 760) [90,7; 94,7]	99,4 =(23 939/24 077) [98,9; 99,8]	87,7 =(13 024/14 845) [84,8; 90,1]	0,98 [0,97; 0,98]
	75	96,8 =(8509/8793) [94,4; 98,6]	94,8 =(38 946/41 101) [93,2; 96,0]	99,3 =(38 946/39 230) [98,8; 99,7]	79,8 =(8509/10664) [75,0; 83,8]	0,96 [0,96; 0,97]
	80	95,8 =(9724/10 154) [93,0; 98,1]	95,0 =(34 611/36 418) [94,0; 96,0]	98,8 =(34 611/35 041) [98,0; 99,4]	84,3 =(9724/11 531) [81,6; 86,7]	0,96 [0,95; 0,97]
	85	96,0 =(13 189/13 741) [93,1; 98,3]	92,9 =(30 359/32 678) [91,4; 94,2]	98,2 =(30 359/30 911) [96,9; 99,3]	85,0 =(13 189/15 508) [82,6; 87,2]	0,96 [0,95; 0,97]

13-15. tabula. Klīniskā validācijas pētījuma rezultāti* (minimāli invazīvi pārraudzīti neķirurģiskie pacienti)

Dati pieejami Edwards Lifesciences

13-16. tabula 261. lpp. ir norādīta hipotensijas notikumu procentuālā daļa un laika-notikuma dati attiecīgā HPI diapazonā ķirurģiskiem pacientiem, kas piedalījās klīniskās validācijas pētījumā. Šie dati ir norādīti, izmantojot laika intervālus, kas ir atlasīti, pamatojoties uz to, cik ātri hipotensijas notikumi vidēji attīstījās ķirurģiskiem pacientiem. Tāpēc, pamatojoties uz klīniskās validācijas pētījuma datiem, sadalā 13-16. tabula 261. lpp. ir dati attiecībā uz ķirurģijas pacientiem laika logā, kas atbilst 15 minūtēm. Šī analīze tiek veikta, ņemot paraugus katram pacientam no validācijas datu kopas un apskatot hipotensīvu notikumu nākotnē 15 minūšu meklēšanas intervālā. Tiklīdz ir atrasts noteikta parauga hipotensīvais notikums, tiek fiksēti laika-notikuma dati, kas ir laiks starp paraugu un hipotensīvo notikumu. Laika-notikuma statistika ir vidējais notikuma laiks visiem paraugiem, kam ir bijis notikums konkrētajā meklēšanas intervālā.

13-17. tabula 262. lpp. ir norādīta hipotensijas notikumu procentuālā dala un laika-notikuma dati attiecīgā HPI diapazonā neķirurģiskiem pacientiem, kas piedalījās klīniskās validācijas pētījumā. Šie dati ir norādīti, izmantojot laika intervālus, kas ir atlasīti, pamatojoties uz to, cik ātri hipotensijas notikumi vidēji attīstījās neķirurģiskiem pacientiem. Tāpēc, pamatojoties uz klīniskās validācijas pētījuma datiem, sadalā 13-17. tabula 262. lpp. ir dati attiecībā uz neķirurģiskiem pacientiem laika logā, kas atbilst 120 minūtēm. Šī analīze tiek veikta, ņemot paraugus katram pacientam no validācijas datu kopas un apskatot hipotensīvu notikumu nākotnē 120 minūšu meklēšanas intervālā. Tiklīdz ir atrasts noteikta parauga hipotensīvais notikums, tiek fiksēti laika-notikuma dati, kas ir laiks starp paraugu un hipotensīvo notikumu. Laika-notikuma statistika ir vidējais notikuma laiks visiem paraugiem, kam ir bijis notikums konkrētajā meklēšanas intervālā.

Notikumu biežums, ko rāda 13-16. tabula 261. lpp. un 13-17. tabula 262. lpp., ir to paraugu skaita, kam ir bijis notikums konkrētajā meklēšanas intervālā, un paraugu kopējā skaita attiecība. Tas ir noteikts katra MAP mērķa paraugiem katrā atsevišķajā HPI diapazonā no 10 līdz 99, kā parādīts šeit: 13-16. tabula 261. lpp. un 13-17. tabula 262. lpp..

UZMANĪBU

HPI parametra informācija, ko sniedz 13-16. tabula 261. lpp. un 13-17. tabula 262. lpp., ir paredzēta kā vispārīgas vadlīnijas un var neattēlot konkrēta pacienta pieredzi. Pirms ārstēšanas sākuma ieteicams pārbaudīt pacienta hemodinamikas rādītājus.

13-16. tabula. Notikumu rādītāju analīze (ķirurģiskie, minimāli invazīvi, N=1141)

HPI diapa-	55 mmHg	60 mmHg	65 mmHg	70 mmHg	75 mmHg	80 mmHg	85 mmHg
zons	MAP mērķis						
	Notikumu						
	attiecība						
	(%);	(%);	(%);	(%);	(%);	(%);	(%);
	Laiks-						
	notikums						
	minūtēs:						
	mediāna [10 [.]						
	percentile,						
	90 [.] percenti-						
	le]						
10–14	17,5	11,0	14,4	22,9	31,1	24,8	29,2
	9 [3,7; 14]	9 [3,7; 13,7]	8 [3,3; 14]	8,7 [4; 13,7]	8,3 [3,7; 13,3]	7,7 [3,7; 13,3]	8,3 [3,7; 13,7]
15–19	19,9	12,5	18,2	21,8	30,9	26,4	28,1
	7,8 [2,7; 13,7]	9 [3,7; 13,7]	8,3 [3,7; 13,7]	8,3 [3,7; 14]	8,3 [3,7; 13,7]	8 [3,3; 13,7]	8,3 [3,3; 13,7]
20–24	17,9	15,1	21,0	26,2	32,9	28,1	31,4
	8,3 [3; 13,3]	8,3 [3,3; 14]	8,3 [3,7; 14]	8,3 [3,4; 13,7]	8,3 [3,3; 14]	8 [3,3; 13,4]	8,3 [3,3; 13,7]
25–29	21,6	18,9	24,2	27,8	30,3	30,7	33,4
	8,3 [3; 13,7]	8 [3,3; 13,3]	8,7 [3,3; 13,3]	8,3 [3,3; 13,7]	8,3 [3,3; 13,7]	8 [3,3; 13,7]	8 [3; 13,7]
30–34	22,3	23,4	29,2	32,9	36,3	30,2	35,7
	7,7 [2,7; 13,7]	7,3 [3; 13,7]	7,3 [2,7; 13]	8 [3; 13,7]	8,3 [3; 13,7]	7,7 [3; 13,7]	8 [3; 13,3]
35–39	24,1	28,8	34,9	36,0	39,5	33,4	38,2
	7,3 [2,7; 13,3]	7,3 [2,7; 13,3]	6,7 [2,7; 12,7]	7,7 [2,7; 13,3]	7,7 [2,7; 13,7]	7,3 [3; 13,3]	7 [3; 13,3]
40-44	27,6	35,0	44,8	41,7	42,9	37,1	43,2
	7 [2,3; 13]	7,3 [2,3; 13]	6,3 [2,3; 12,7]	7 [2,7; 13,3]	7 [2,3; 13]	7,3 [2,7; 13,3]	7,3 [2,7; 13,3]
45-49	30,0	38,8	47,8	46,4	48,6	38,7	46,9
	6 [2; 13]	6,7 [2,3; 13,3]	6,7 [2,3; 13]	7 [2,7; 13,3]	6,7 [2,3; 13]	7,3 [2,7; 13,7]	6,7 [2,7; 13]
50–54	32,9	42,3	52,6	48,9	49,6	42,3	48,2
	6,3 [2; 13]	6 [2; 13,3]	6 [2; 13,3]	6,7 [2,3; 12,7]	6,7 [2,3; 13]	7 [2,3; 13]	6,7 [2,3; 12,7]
55–59	37,7	46,3	57,0	52,1	52,8	44,2	52,8
	5,7 [1,7; 12,7]	5,7 [2; 12,7]	5,8 [2; 13]	6,7 [2,3; 13]	6,3 [2; 12,7]	6,3 [2; 13]	6,7 [2,3; 13]
60–64	40,2	54,6	64,6	56,6	58,3	54,7	55,5
	6 [1,7; 12,7]	5,7 [1,7; 12,7]	5,7 [2; 12,3]	6,7 [2,3; 13]	6 [2; 12,7]	6,3 [2; 13]	6 [2; 12,7]
65–69	48,0	61,9	68,7	63,1	65,8	59,4	62,8
	5,7 [1,7; 13]	4,7 [1,7; 11,3]	5 [1,7; 12,3]	6 [2; 12,7]	6 [2; 12,7]	6 [2; 13]	5,3 [2; 12,3]
70–74	60,7	68,7	79,5	71,4	73,6	69,4	70,6
	5,3 [1,3; 12,7]	4,3 [1,7; 12]	4,7 [1,7; 12]	5,7 [1,7; 13]	5 [1,7; 12,3]	5,3 [1,7; 12,7]	5 [1,7; 12,3]
75–79	68,5	78,1	85,5	77,4	79,2	73,5	76,0
	4,7 [1,3; 12]	4,3 [1,3; 11,3]	4,3 [1,3; 11,7]	5 [1,7; 12,3]	5 [1,3; 12]	5 [1,5; 12]	5 [1,3; 11,7]
80-84	78,7	84,6	88,8	82,6	82,6	78,1	81,4
	4,3 [1; 11,7]	4,3 [1,3; 11]	4 [1,3; 11]	4,7 [1,3; 12]	4,7 [1,3; 12]	4,7 [1,3; 12]	4,7 [1,3; 11,3]

HPI diapa-	55 mmHg	60 mmHg	65 mmHg	70 mmHg	75 mmHg	80 mmHg	85 mmHg
zons	MAP mērķis						
	Notikumu						
	attiecība						
	(%);	(%);	(%);	(%);	(%);	(%);	(%);
	Laiks-						
	notikums						
	minūtēs:						
	mediāna [10 [.]						
	percentile,						
	90 [.] percenti-						
	le]						
85–89	84,5	90,2	90,9	85,8	88,1	86,1	86,0
	4 [1; 11,3]	4 [1; 11]	3,7 [1,3; 11,3]	4,3 [1,3; 11,7]	4 [1,3; 11,7]	4,7 [1,3; 12]	4 [1,3; 11,3]
90–94	92,9	94,7	94,5	91,4	90,7	90,4	88,2
	3,7 [1; 11]	3,3 [1; 10,3]	3 [1; 10,3]	3,7 [1; 11,3]	3,3 [1; 11]	3,7 [1; 12]	3,3 [1; 10,7]
95–99	96,8	97,3	98,0	96,9	96,9	96,4	95,7
	1,3 [0,3; 8,3]	1,3 [0,3; 8]	1,3 [0,3; 7,7]	1,3 [0,3; 8,7]	1,3 [0,3; 8,7]	1,3 [0,3; 9]	1,3 [0,3; 8,7]

13-17. tabula. Notikumu rādītāju analīze (neķirurģiskie, minimāli invazīvi, N=672)

HPI diapa- zons	55 mmHg MAP mērķis	60 mmHg MAP mērķis	65 mmHg MAP mērķis	70 mmHg MAP mērķis	75 mmHg MAP mērķis	80 mmHg MAP mērķis	85 mmHg MAP mērķis
	Notikumu attiecība (%);						
	Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]						
10–14	20,5 50 [8,7; 101,3]	19,7 44,3 [9,3; 102,3]	9,6 49,3 [9,7; 106]	12,5 45 [9; 101,3]	16,6 47,2 [9; 103]	18,6 48,3 [10; 101,7]	24,7 41 [8,3; 101,2]
15–19	20,6 45,7 [10,3; 103,3]	20,8 44 [8,3; 100,7]	12,6 44,3 [10; 105,6]	17,2 45,7 [8; 104]	21,8 44,3 [9,3; 100]	21,1 50 [10; 104]	29,1 40,7 [8,7; 98]
20–24	22,7 47 [10,7; 104,7]	21,8 43,3 [9; 101,3]	16,8 40,3 [8,3; 102,1]	20,0 45,7 [8,7; 101,7]	24,7 43,7 [8,7; 100,3]	24,1 48,3 [9,7; 104]	31,4 43 [7,7; 101,3]
25–29	22,9 47 [10; 103,3]	24,8 40,3 [8; 101,7]	20,9 39,3 [7,1; 102]	24,6 40,7 [7,7; 100,7]	26,8 42,7 [8; 101]	28,1 44,7 [9,3; 101,7]	33,5 41,7 [7,3; 100,3]
30–34	24,9 46,3 [8; 103,3]	29,1 39,7 [7,3; 100,3]	24,0 37,3 [7; 101]	29,8 36 [6,3; 98]	30,8 37,7 [7; 98,7]	31,4 42 [8,7; 98,7]	37,5 38,3 [6,7; 97,7]
35–39	30,4 42,3 [6,7; 100,3]	32,0 37,7 [6; 100]	31,4 30 [5,7; 93,5]	35,9 29,3 [5,3; 98]	34,6 30,7 [5,3; 96]	35,8 41 [7; 97,3]	44,7 34,7 [5,7; 95,3]
40-44	35,9 36,7 [6,3; 100]	37,5 33,3 [5,3; 98]	38,4 27,3 [5; 90]	41,9 24,7 [4,7; 94,7]	41,1 25,5 [4,3; 92,3]	40,9 35,3 [6,3; 95,3]	51,1 32,3 [5,3; 93]

HPI diapa-	55 mmHg	60 mmHg	65 mmHg	70 mmHg	75 mmHg	80 mmHg	85 mmHg
zons	MAP mērķis	MAP mērķis	MAP mērķis	MAP mērķis	MAP mērķis	MAP mērķis	MAP mērķis
	Notikumu	Notikumu	Notikumu	Notikumu	Notikumu	Notikumu	Notikumu
	attiecība	attiecība	attiecība	attiecība	attiecība	attiecība	attiecība
	(%);	(%);	(%);	(%);	(%);	(%);	(%);
	Laiks-	Laiks-	Laiks-	Laiks-	Laiks-	Laiks-	Laiks-
	notikums	notikums	notikums	notikums	notikums	notikums	notikums
	minūtēs:	minūtēs:	minūtēs:	minūtēs:	minūtēs:	minūtēs:	minūtēs:
	mediāna [10 [.]	mediāna [10 [.]	mediāna [10 [.]	mediāna [10 [.]	mediāna [10 [.]	mediāna [10 [.]	mediāna [10 [.]
	percentile,	percentile,	percentile,	percentile,	percentile,	percentile,	percentile,
	90 [.] percenti-	90 [.] percenti-	90 [.] percenti-	90 [.] percenti-	90 [.] percenti-	90 [.] percenti-	90 [.] percenti-
	le]	le]	le]	le]	le]	le]	le]
45–49	39,7 31 [5,3; 96,3]	41,9 26,3 [4,7; 96]	44,5 23,7 [4; 90]	47,8 19 [3,7; 88,3]	43,7 23,7 [4; 94]	42,6 30,7 [5,3; 92,3]	52,3 28 [5; 91]
50–54	42,0 29 [5; 94,7]	46,0 21,3 [4; 92,7]	48,2 19,7 [4; 91]	52,1 17,3 [3,3; 81,3]	47,6 19,7 [3,3; 91]	44,3 30 [5; 94]	52,5 24,7 [3,7; 93]
55–59	46,2	51,6	55,9	62,7	53,2	47,5	56,3
	27 [4,7; 93,3]	18 [3,3; 88,3]	17 [3,7; 87,9]	15,7 [3; 78,3]	17 [3, 85]	27 [4,3; 93,3]	20 [3,3; 87,3]
60–64	49,6 20,3 [4; 89]	58,1 15,7 [3; 83,4]	63,3 12,3 [2,7; 72,3]	71,9 12,3 [2,7; 76,3]	60,1 14 [2; 80]	53,5 19 [3; 89,3]	63,3 16 [2,7; 83,3]
65–69	61,1 12,7 [3; 77,7]	66,9 10,3 [2,3; 70,3]	69,7 9 [2; 52,3]	78,3 8,3 [1,7; 51]	69,5 10,3 [1,7; 68,7]	61,6 12,3 [2,3; 79,3]	70,6 11,3 [1,7; 75,1]
70–74	71,4	73,9	81,7	87,1	76,5	68,8	78,1
	9 [2; 50,3]	8 [1,7; 48,3]	7 [1,7; 25,3]	6,3 [1,3; 23,7]	8 [1,3; 52,3]	9 [1,7; 65,7]	8,7 [1,3; 62,7]
75–79	83,1	81,1	88,2	93,8	83,9	76,2	80,3
	7 [1,7; 18,3]	6,3 [1,3; 27,7]	6 [1,3; 17]	5 [1; 16]	6,7 [1; 34,7]	7 [1,3; 54,8]	6,7 [1; 50]
80-84	90,0	88,9	92,9	96,5	88,4	81,8	84,3
	6 [1,3; 16]	5,3 [1; 17,3]	5 [1; 15,7]	4,3 [1; 14,3]	5,3 [1; 18]	6 [1; 37]	5,3 [1; 34]
85–89	95,9	94,8	95,8	98,2	92,7	87,1	88,3
	5 [1,3; 14,3]	4,7 [1; 15]	4 [1; 13,7]	3,7 [1; 13]	4,3 [1; 16]	5 [1; 18,7]	4,3 [1; 16,7]
90–94	99,3	97,7	98,4	99,2	96,7	93,1	92,6
	3,3 [1; 12,3]	3,3 [1; 13,3]	2,7 [1; 11,3]	2,7 [0,7; 11]	3,3 [1; 13]	3,7 [1; 14,7]	3,3 [1; 14]
95–99	99,9	99,7	99,7	99,9	99,5	98,8	99,2
	1,3 [0,3; 8,3]	1,3 [0,3; 9,3]	1,3 [0,3; 7,7]	1 [0,3; 7,3]	1,3 [0,3; 9]	1,3 [0,3; 9,3]	1,3 [0,3; 9]

13.1.15 Klīniskā validācija ar hipotensijas robežvērtību neinvazīvi pārraudzītiem pacientiem

Tika veikti retrospektīvi klīniskās validācijas pētījumi, lai novērtētu HPI diagnostisko veiktspēju hipotensijas un ar hipotensiju nesaistīto notikumu prognozēšanā neinvazīvi pārraudzītiem ķirurģiskiem un neķirurģiskiem pacientiem.

13.1.15.1 Ķirurģiski pacienti

Veikts retrospektīvs klīniskās validācijas pētījums, lai novērtētu HPI diagnostisko veiktspēju hipotensijas un ar hipotensiju nesaistīto notikumu prognozēšanā neinvazīvi pārraudzītiem ķirurģiskajiem pacientiem. 13-18. tabula 264. lpp. nodrošina pacientu demogrāfiskā informāciju par šajā pētījumā iekļautajiem 927 ķirurģiskajiem pacientiem. Hipotensijas notikumu skaits, kas iekļauts katram MAP mērķim, un pacientu datu ilguma (minūtēs) kopsavilkums ir pieejams tālāk šeit: 13-19. tabula 264. lpp.. 927 ķirurģiskos pacientus var iedalīt sīkāk, kā aprakstīts tālāk 13-20. tabula 264. lpp..

13-18. tabula. Pacientu demogrāfiskā informācija (neinvazīvi pārraudzīti neķirurģiski pacienti, N=927)

Apraksts	Vērtība
Pacientu skaits	927
Dzimums (vīrietis/sieviete)	468/459
Vecums	57,9±13,9
KVL (m ²)	2,0±0,3
Augums (cm)	171,8±12,2
Svars (kg)	86,6±23,7

13-19. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (neinvazīvi pārraudzīti ķirurģiskie pacienti)

erosinātie MAP mērķi Hipotensijas notikumu skaits		Kopējā datu garuma me- diāna	Vidējais kopējais datu ga- rums
		(minūtes)	(±stand. nov., minūtes)
55 mmHg	971		
60 mmHg	2219		
65 mmHg	2561		
70 mmHg	2113	178,3	193,1±104,2
75 mmHg	2894	-	
80 mmHg	2440		
85 mmHg	3381		

13-20. tabula. Ķirurģisku pacientu raksturlielumi (neinvazīvi, N=927)

Ķirurģijas veids	pacientu skaits (% no kopējā)
sirds	110 (11,9%)
kolorektāla	15 (1,6%)
kraniāla	7 (0,8%)
auss	14 (1,5%)
ezofageāla	6 (0,6%)
acs	47 (5,1%)
sejas	24 (2,6%)
pēdas	2 (0,2%)
gastrointestināla	65 (7,0%)
ginekoloģijas	61 (6,6%)
plaukstas	1 (0,1%)
kājas	10 (1,1%)
aknas	11 (1,2%)
deguna	9 (1,0%)
ortopēdiska	13 (1,4%)
cita, kas nav sirds operācija	367 (39,6%)

Ķirurģijas veids	pacientu skaits (% no kopējā)	
aizkuņģa dziedzera	12 (1,3%)	
nieru	27 (2,9%)	
ādas	6 (0,6%)	
mugurkaula	1 (0,1%)	
torakāla	3 (0,3%)	
nav zināms	92 (9,9%)	
uroloģijas	24 (2,6%)	
KOPĀ*	927 (100%)	

13.1.15.2 Neķirurģiski pacienti

Retrospektīvs klīniskās validācijas pētījums, lai novērtētu HPI diagnostisko veiktspēju hipotensijas un ar hipotensiju nesaistīto notikumu prognozēšanā neinvazīvi pārraudzītiem neķirurģiskajiem pacientiem. 13-21. tabula 265. lpp. nodrošina pacientu demogrāfisko informāciju par šajā pētījumā iekļautajiem 424 neķirurģiskiem pacientiem. Hipotensijas notikumu skaits, kas iekļauts katram MAP mērķim, un pacientu datu ilguma (minūtēs) kopsavilkums ir pieejams tālāk šeit: 13-22. tabula 265. lpp..

424 neķirurģiskos pacientus var iedalīt sīkāk, kā aprakstīts tālāk 13-23. tabula 265. lpp..

13-21. tabula. Pacientu demogrāfijas informācija (neinvazīvi pārraudzīti neķirurģiski pacienti, N=424)

Apraksts	Vērtība
Pacientu skaits	424
Dzimums (vīrietis/sieviete)	286/138
Vecums	61,8±14,2
KVL (m ²)	2,0±0,2
Augums (cm)	174,5±9,7
Svars (kg)	83,0±19,4

13-22. tabula. Analīzes datu kopas garums un hipotensijas notikumu skaits (neinvazīvi pārraudzīti neķirurģiskie pacienti)

lerosinātie MAP mērķi	Hipotensijas notikumu skaits	Kopējā datu garuma me- diāna (minūtes)	Vidējais kopējais datu ga- rums (±stand. nov., minūtes)
55 mmHg	648		
60 mmHg	689		
65 mmHg	1672		
70 mmHg	1312	417,3	415,8±199,6
75 mmHg	2868		
80 mmHg	4375		
85 mmHg	4826		

13-23. tabula. Neķirurģisku pacientu raksturlielumi (neinvazīvi, N=424)

Diagnoze	pacientu skaits (% no kopējā)	
sirds	211 (49,8%)	

Diagnoze	pacientu skaits (% no kopējā)
smadzeņu	2 (0,5%)
gastrointestināla	8 (1,9%)
hipertensija	1 (0,2%)
hipotensija	5 (1,2%)
hipotermija	1 (0,2%)
iekšēja	8 (1,9%)
zarnu	1 (0,2%)
aknas	2 (0,5%)
neiroloģiska	69 (16,3%)
ortopēdiska	1 (0,2%)
pēcoperācijas stāvoklis	4 (0,9%)
plaušu	7 (1,7%)
nieru	2 (0,5%)
elpceļu	40 (9,4%)
sepse	18 (4,2%)
šoks	4 (0,9%)
trauma	8 (1,9%)
vaskulāra	32 (7,5%)
KOPĀ	424 (100%)

13.1.15.3 Hipotensijas robežvērtības klīniskā validācijas pētījuma rezultāti — neinvazīva pārraudzība

Uztvērēja operatora raksturlīknes (ROC) rezultātu analīze ķirurģiskajiem un citiem pacientiem apkopota tālāk šeit: 13-24. tabula 267. lpp. un 13-25. tabula 267. lpp..

Hipotensīvs notikums tiek aprēķināts, identificējot segmentu, kura garums ir vismaz 1 minūte, lai visiem datu punktiem šajā sadaļā parametrs MAP būtu mazāks par norādīto mainīgo kartes vērtību (55, 60, 65, 70, 75, 80 un 85). Notikuma (pozitīva) datu punkts tiek izvēlēts kā 5 minūšu paraugs pirms hipotensīvā notikuma. Ja secīgie hipotensīvie notikumi ir mazāk nekā 5 minūšu intervālā, pozitīvs paraugs tiek definēts kā pirmais paraugs uzreiz pēc iepriekšējā hipotensijas notikuma.

Ar hipotensiju nesaistīts notikums tiek aprēķināts, identificējot datu punktu segmentus tā, lai segments būtu vismaz 20 minūšu attālumā no visiem hipotensīvajiem notikumiem, kā arī visiem datu punktiem šajā segmentā MAPbūtu mazāks par norādīto mainīgo kartes vērtību (55, 60, 65, 70, 75, 80 un 85). Viens ar notikumu nesaistīts (negatīvs) datu punkts tiek izvēlēts katram ar hipotensiju nesaistītu notikumu segmentam.

Patiesi pozitīvs rezultāts, kā aprakstīts šeit: 13-24. tabula 267. lpp. un 13-25. tabula 267. lpp., ir jebkurš notikuma (pozitīva) datu punkts ar HPI vērtību, kas ir lielāka par vai vienāda ar izvēlēto robežvērtību. Jutība ir patiesi pozitīvu rezultātu un notikumu (pozitīvu) kopējā skaita attiecība ar pozitīvu rezultātu, kas definēts kā datu punkts ne vēlāk kā 5 minūtes pirms hipotensīva notikuma. Nepatiesi negatīvs rezultāts ir jebkurš pozitīvs datu punkts ar HPI vērtību, kas ir mazāka par robežvērtību.

Patiesi negatīvs rezultāts, kā aprakstīts šeit: 13-24. tabula 267. lpp. un 13-25. tabula 267. lpp., ir jebkurš negatīvs (bez notikuma) datu punkts ar HPI vērtību, kas ir mazāka par izvēlēto robežvērtību. Specifiskums ir patiesi negatīvo rezultātu un ar notikumu nesaistīto (negatīvo) rezultātu kopējā skaita attiecība, kad negatīvais rezultāts definēts kā datu punkts vismaz 20 minūšu attālumā no jebkura hipotensīva notikuma. Viltus pozitīvs rezultāts ir jebkurš negatīvs datu punkts ar HPI vērtību, kas ir lielāka par vai vienāda ar robežvērtību. Atskaitē tiek iekļauta arī pozitīvā prognostiskā vērtība (PPV), negatīvā prognostiskā vērtība (NPV) un laukums zem ROC līknes (AUC) par katru mainīgo MAP mērķa vērtību šeit: 13-24. tabula 267. lpp. un 13-25. tabula 267. lpp..

HPI robež- vērtība	Mainīgā MAP vērtība (mmHg)	PPV [ticamības in- tervāls]	NPV [ticamības intervāls]	Specifiskums (%) [95% ticamības intervāls]	Jutīgums (%) [95% ticamības intervāls]	AUC	
85	55	97,2 =(693/713) [94,9; 99,1]	94,3 =(4610/4888) [93,0; 95,3]	99,6 =(4610/4630) [99,2; 99,9]	71,4 =(693/971) [67,0; 75,0]	0,88 [0,86; 0,90]	
	60	97,9 =(1738/1775) [96,6; 98,9]	89,8 =(4244/4725) [88,2; 91,3]	99,1 =(4244/4281) [98,6; 99,6]	78,3 =(1738/2219) [75,9; 80,6]	0,91 [0,89; 0,92]	
	65	98,3 =(2011/2046) [97,1; 99,2]	89,2 =(4533/5083) [87,4; 90,7]	99,2 =(4533/4568) [98,7; 99,6]	78,5 =(2011/2561) [75,7; 81,1]	0,90 [0,89; 0,92]	
	70	96,7 =(1457/1506) [94,9; 98,4]	88,7 =(5157/5813) [87,2; 90,1]	99,1 =(5157/5206) [98,5; 99,5]	69 =(1457/2113) [66,4; 71,5]	0,86 [0,85; 0,88]	
	75	98,4 =(2075/2109) [97,4; 99,2]	85,6 =(4868/5687) [83,8; 87,1]	99,3 =(4868/4902) [98,9; 99,6]	71,7 =(2075/2894) [69,6; 73,7]	0,87 [0,85; 0,88]	
	80	99,2 =(1761/1775) [98,4; 99,8]	81,4 =(2963/3642) [78,5; 83,8]	99,5 =(2963/2977) [99,1; 99,9]	72,2 =(1761/2440) [69,7; 74,4]	0,87 [0,86; 0,88]	
	85	99,5 =(2586/2599) [98,9; 99,9]	69 =(1773/2568) [64,9; 72,8]	99,3 =(1773/1786) [98,4; 99,8]	76,5 =(2586/3381) [74,1; 78,6]	0,88 [0,87; 0,89]	
* Dati pieejami Edwards Lifesciences							

13-24. tabula. Klīniskā validācijas pētījuma rezultāti [*]	[•] (neinvazīvi pārraudzīti kirurģiskie pacienti)
	(

13-25. tabula. Klīniskā validācijas pētījuma rezultāti* (neinvazīvi pārraudzīti neķirurģiskie pacienti)

HPI robež- vērtība	Mainīgā MAP vērtība (mmHg)	PPV [ticamības in- tervāls]	NPV [ticamības intervāls]	Specifiskums (%) [95% ticamības intervāls]	Jutīgums (%) [95% ticamības intervāls]	AUC
85	55	99,2 =(486/490) [97,5; 100,0]	98,2 =(8693/9125) [97,7; 98,6]	100 =(8963/8967) [99,9; 100,0]	75 =(486/648) [67,9; 80,7]	0,88 [0,85; 0,91]
	60	99,4 =(541/544) [98,0; 100,0]	97,9 =(6931/7079) [97,2; 98,5]	100 =(6931/6934) [99,9; 100,0]	78,5 =(541/689) [73,4; 82,7]	0,90 [0,87; 0,92]
	65	99,8 =(1422/1425) [99,4; 100,0]	97 =(8012/8262) [95,9; 97,8]	100 =(8012/8015) [99,9; 100,0]	85 =(1422/1672) [82,0; 87,6]	0,92 [0,91; 0,94]
	70	99,2 =(1033/1041) [98,5; 99,8]	97,1 =(9367/9646) [96,5; 97,7]	99,9 =(9367/9375) [99,8; 100,0]	78,7 =(1033/1312) [74,7; 82,1]	0,9 [0,87; 0,91]
	75	98,2 =(2499/2544) [95,8; 99,7]	95,3 =(7449/7818) [94,1; 96,3]	99,4 =(7449/7494) [98,6; 99,9]	87,1 =(2499/2868) [84,8; 89,3]	0,94 [0,93; 0,95]
	80	98,8 =(3866/3913) [97,7; 99,6]	90,8 =(5048/5557) [88,5; 92,8]	99,1 =(5048/5095) [98,3; 99,7]	88,4 =(3866/4375) [86,1; 90,3]	0,94 [0,94; 0,95]

HPI robež- vērtība	Mainīgā MAP vērtība (mmHg)	PPV [ticamības in- tervāls]	NPV [ticamības intervāls]	Specifiskums (%) [95% ticamības intervāls]	Jutīgums (%) [95% ticamības intervāls]	AUC
	85	99,5 =(4218/4241) [98,8; 99,9]	84,2 =(3238/3846) [79,8; 87,7]	99,3 =(3238/3261) [98,4; 99,9]	87,4 =(4218/4826) [85,0; 89,5]	0,94 [0,94; 0,95]
* Dati nieeiam	i Edwards Lifesci	iences				

13-26. tabula 268. lpp. ir norādīta hipotensijas notikumu procentuālā daļa un laika-notikuma dati attiecīgā HPI diapazonā ķirurģiskiem pacientiem, kas piedalījās klīniskās validācijas pētījumā. Šie dati ir norādīti, izmantojot laika intervālus, kas ir atlasīti, pamatojoties uz to, cik ātri hipotensijas notikumi vidēji attīstījās ķirurģiskiem pacientiem. Tāpēc, pamatojoties uz klīniskās validācijas pētījuma datiem, sadaļā 13-26. tabula 268. lpp. ir dati attiecībā uz ķirurģijas pacientiem laika logā, kas atbilst 15 minūtēm. Šī analīze tiek veikta, ņemot paraugus katram pacientam no validācijas datu kopas un apskatot hipotensīvu notikumu nākotnē 15 minūšu meklēšanas intervālā. Tiklīdz ir atrasts noteikta parauga hipotensīvais notikums, tiek fiksēti laika-notikuma dati, kas ir laiks starp paraugu un hipotensīvo notikumu. Laika-notikuma statistika ir vidējais notikuma laiks visiem paraugiem, kam ir bijis notikums konkrētajā meklēšanas intervālā.

13-27. tabula 270. lpp. ir norādīta hipotensijas notikumu procentuālā daļa un laika-notikuma dati attiecīgā HPI diapazonā neķirurģiskiem pacientiem, kas piedalījās klīniskās validācijas pētījumā. Šie dati ir norādīti, izmantojot laika intervālus, kas ir atlasīti, pamatojoties uz to, cik ātri hipotensijas notikumi vidēji attīstījās neķirurģiskiem pacientiem. Tāpēc, pamatojoties uz klīniskās validācijas pētījuma datiem, sadaļā 13-27. tabula 270. lpp. ir dati attiecībā uz neķirurģiskiem pacientiem laika logā, kas atbilst 120 minūtēm. Šī analīze tiek veikta, ņemot paraugus katram pacientam no validācijas datu kopas un apskatot hipotensīvu notikumu nākotnē 120 minūšu meklēšanas intervālā. Tiklīdz ir atrasts noteikta parauga hipotensīvais notikums, tiek fiksēti laika-notikuma dati, kas ir laiks starp paraugu un hipotensīvo notikumu. Laika-notikuma statistika ir vidējais notikuma laiks visiem paraugiem, kam ir bijis notikums konkrētajā meklēšanas intervālā.

Notikumu biežums, ko rāda 13-26. tabula 268. lpp. un 13-27. tabula 270. lpp., ir to paraugu skaita, kam ir bijis notikums konkrētajā meklēšanas intervālā, un paraugu kopējā skaita attiecība. Tas ir noteikts katra MAP mērķa paraugiem katrā atsevišķajā HPI diapazonā no 10 līdz 99, kā parādīts šeit: 13-26. tabula 268. lpp. un 13-27. tabula 270. lpp..

UZMANĪBU

HPI parametra informācija, ko sniedz 13-26. tabula 268. lpp. un 13-27. tabula 270. lpp., ir paredzēta kā vispārīgi norādījumi un var neattēlot konkrēta pacienta pieredzi. Pirms ārstēšanas sākuma ieteicams pārbaudīt pacienta hemodinamikas rādītājus.

HPI diapa-	55 mmHg	60 mmHg	65 mmHg	70 mmHg	75 mmHg	80 mmHg	85 mmHg
zons	MAP mērķis						
	Notikumu						
	attiecība						
	(%);	(%);	(%);	(%);	(%);	(%);	(%);
	Laiks-						
	notikums						
	minūtēs:						
	mediāna [10 [.]						
	percentile,						
	90 [.] percenti-						
	le]						
10–14	13,1	25,0	9,1	15,1	22,8	29,3	34,0
	9,3 [4,9; 14]	8,7 [4; 13]	8,7 [3,7; 14]	9 [4; 14]	8 [4; 13,7]	8,7 [3,3; 13,7]	7,7 [3,3; 13]
15–19	9,4	25,0	10,9	14,0	21,6	26,3	41,1
	9 [4,3; 14]	8,7 [3,5; 12,9]	9 [3,7; 14]	8,3 [3,7; 13,3]	8,3 [3,7; 13,6]	8 [3,3; 13,3]	8 [3,3; 13,7]

13-26. tabula. Notikumu rādītāju analīze (ķirurģiskie, neinvazīvi, N=927)

HPI diapa-	55 mmHg	60 mmHg	65 mmHg	70 mmHg	75 mmHg	80 mmHg	85 mmHg
zons	MAP mērķis						
	Notikumu						
	attiecība						
	(%);	(%);	(%);	(%);	(%);	(%);	(%);
	Laiks-						
	notikums						
	minūtēs:						
	mediāna [10 [.]						
	percentile,						
	90 [.] percenti-						
	le]						
20–24	9,2	23,0	11,2	15,8	20,8	24,5	42,7
	8,7 [4; 14,1]	9 [4; 13,7]	8,7 [3,4; 13,7]	8,3 [3,7; 13,7]	9 [3,7; 14]	8 [3,3; 13,7]	7,3 [2,3; 13,3]
25–29	11,4	24,5	13,8	17,2	23,0	24,4	37,8
	8,7 [3,7; 13,6]	8,3 [3,7; 14]	8 [3,3; 13,3]	8,3 [3,3; 13,7]	8,7 [3,7; 14]	7,7 [3; 13,3]	7,7 [3; 13,7]
30–34	9,5	23,1	16,0	19,3	25,6	26,4	41,1
	9 [4; 13,7]	9 [4,3; 14]	8,3 [3,3; 13,5]	8 [3,3; 13,7]	8,3 [3,7; 14]	7,7 [3; 13,3]	7,3 [2,7; 13,3]
35–39	12,3	27,8	18,8	21,7	29,5	28,3	41,3
	8 [3,3; 13,7]	8,3 [3; 13,3]	8 [3, 14]	8 [3; 13,7]	8,7 [3,3; 14]	7,7 [3; 13,7]	7,3 [2,7; 13,7]
40-44	16,0	30,3	23,1	24,8	36,1	30,0	41,3
	8,3 [3,7; 13]	8,7 [3; 13,7]	7,7 [3; 13,3]	8 [3; 13,3]	8,3 [3; 13,7]	7,7 [3,3; 13,7]	6,7 [2,3; 13]
45–49	20,0	32,2	29,9	29,4	39,0	35,0	45,0
	7,7 [2,7; 13,7]	8 [3; 13,3]	7,7 [2,6; 13,7]	7,7 [2,7; 13,3]	7,7 [2,7; 13,3]	7,7 [3; 13,3]	6,7 [2; 13]
50–54	21,3	35,8	33,9	33,9	42,5	37,7	49,4
	7,7 [2,3; 13,7]	7,3 [2,7; 13,3]	7,3 [2,7; 13,3]	7,3 [2,3; 13,7]	7,7 [2,7; 13,3]	7 [2,5; 13]	7 [2,3; 13,3]
55–59	22,2	38,8	33,9	34,4	43,9	41,2	53,1
	7,3 [2,3; 13,3]	8,3 [2,3; 13,3]	7,7 [2,3; 13,7]	7,3 [2,3; 13,7]	7,7 [2,7; 13]	7,3 [2,3; 13]	7 [2,3; 13,3]
60–64	23,9	44,9	40,4	39,4	45,0	43,1	55,6
	6,7 [2,3; 13,3]	6,7 [2,3; 12,7]	7,3 [2,3; 13,3]	7,3 [2; 13,7]	7,7 [2,7; 13]	7 [2,3; 12,7]	6,7 [2,3; 13]
65–69	32,9	45,6	44,5	42,0	50,0	45,9	61,0
	6,3 [2; 13,3]	6,7 [2; 12,3]	6,7 [2,3; 13]	6,7 [2; 13,3]	7,3 [2,3; 13]	7 [2,3; 13,3]	7 [2,3; 13,3]
70–74	37,7	52,1	49,4	47,1	51,2	52,0	67,1
	6 [1,7; 12,3]	6,7 [2; 13,3]	6,7 [2; 13]	6,7 [2; 13,3]	7 [2; 12,8]	6,7 [2; 13,3]	7 [2; 13]
75–79	45,3	58,1	56,9	55,1	63,0	62,5	70,6
	5,7 [1,7; 11,7]	6 [2; 12,7]	6,3 [1,7; 12,7]	6 [2; 12,7]	6,3 [2; 12,7]	6,3 [1,7; 13,3]	6,3 [2; 13]
80-84	58,8	69,4	61,3	63,8	71,2	66,5	76,8
	5,3 [1,7; 11,7]	6 [1,7; 12,7]	6,2 [1,7; 13]	5,7 [1,7; 12,7]	6 [2; 12,7]	5,7 [1,7; 12,7]	5,3 [1,7; 13]
85–89	83,4	86,0	82,2	81,6	84,0	83,3	87,9
	4,3 [1,3; 11,3]	4,7 [1,3; 12,3]	5 [1,3; 12,3]	5 [1,3; 12,3]	5 [1,3; 12,7]	4,7 [1,3; 12]	5 [1,3; 12]
90–94	95,3	93,8	93,4	93,6	92,5	91,6	92,9
	3 [1; 10,7]	3,3 [1; 11]	3,3 [1; 10,7]	4 [1; 11,7]	3,7 [1; 11,7]	3,7 [1; 11,3]	3,7 [1; 11]
95–99	97,3	96,9	97,7	97,0	96,7	96,5	96,6
	1 [0,3; 7,3]	1,3 [0,3; 7,7]	1,3 [0,3; 8]	1,3 [0,3; 8,7]	1,3 [0,3; 8,3]	1,3 [0,3; 8,3]	1,3 [0,3; 8]

HPI diapa- zons	55 mmHg MAP mērķis	60 mmHg MAP mērķis	65 mmHg MAP mērķis	70 mmHg MAP mērķis	75 mmHg MAP mērķis	80 mmHg MAP mērķis	85 mmHg MAP mērķis
	Notikumu attiecība (%);						
	Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]						
10–14	16,1 63,3 [21; 103,7]	8,9 53,3 [10,1; 99,1]	14,6 60,3 [13,3; 107,5]	13,3 47,5 [9,3; 95,4]	17,7 26,5 [9; 95,5]	16,8 44,8 [11; 101,6]	28,7 35,7 [6,3; 95]
15–19	15,0 58 [14; 105,3]	8,7 46,3 [10; 97,7]	15,4 52 [11; 99]	15,1 44 [8,7; 105,5]	18,6 41 [8,4; 96,3]	18,6 32 [9; 91,8]	33,4 34,3 [8,6; 97,7]
20–24	12,7 54,3 [8,6; 98]	9,8 51 [10; 102,7]	15,7 42,5 [8,3; 102]	18,3 47 [8,5; 101,8]	21,8 44,3 [6,9; 98,3]	23,0 35,3 [9,9; 100,3]	31,0 28,5 [7,3; 76,7]
25–29	11,2 49,6 [8; 99,8]	10,6 43 [7,7; 103,9]	15,0 46,2 [11; 103,7]	21,7 42,7 [8,4; 100,9]	22,1 39 [6,8; 95,3]	25,2 32,7 [8,7; 97]	32,3 28,7 [7,7; 90,8]
30–34	11,1 40,7 [11,3; 99,6]	12,8 37,7 [8,7; 98,9]	17,2 41,3 [9,3; 102,3]	25,3 37,5 [8; 100]	27,4 35,7 [7,3; 94,3]	28,7 34,9 [6,7; 95,3]	34,4 26,4 [7,7; 93,1]
35–39	14,6 36,3 [8,7; 99,3]	13,7 39,8 [10,3; 104,4]	19,5 37,2 [6,7; 100,3]	29,5 36,6 [8,6; 96,7]	32,3 33,7 [6,3; 93,3]	29,1 30,5 [6,3; 84,8]	40,0 28 [7,7; 81]
40-44	17,0 34,8 [7; 102,1]	14,9 41 [6,3; 105,4]	22,8 26,3 [6,3; 96,4]	33,6 32,3 [7,7; 98]	39,2 29,7 [6; 98,4]	36,1 25,7 [5; 81,6]	45,1 22,3 [5; 87,1]
45–49	21,7 32,3 [6,3; 97,7]	18,5 27,7 [6,3; 94,7]	27,3 23,3 [5,7; 92,3]	34,0 29,2 [6; 91,3]	44,3 24 [4,7; 86,9]	43,5 25,9 [4,3; 85,3]	50,1 23 [4,7; 81,9]
50–54	25,1 27,3 [5,7; 92,6]	23,2 20 [5,7; 91,4]	33,2 27 [6; 94,4]	37,9 28,7 [6; 93,6]	49,9 21,3 [5,7; 86,3]	46,5 22,7 [4,3; 83,8]	49,8 19,7 [4,7; 85,7]
55–59	28,3 24 [5,4; 85,7]	25,9 16,7 [4,3; 78,3]	32,4 22,8 [5; 96,7]	43,5 28,2 [5,9; 99,4]	53,8 20,7 [5,3; 84,4]	50,5 21,7 [5,3; 82,3]	52,6 18 [3; 78]
60–64	28,2 18 [4,3; 82,8]	28,2 16 [4,7; 79,1]	34,6 16,3 [4,7; 89,7]	46,4 26 [4,3; 93,3]	55,4 20,7 [5,3; 85,3]	53,6 22,7 [4,7; 80,3]	58,1 16,3 [3,3; 81,2]
65–69	33,1 14,7 [3,7; 60]	29,3 13,8 [4; 80,7]	42,3 14,3 [4; 78,5]	51,3 20,3 [4,3; 90,9]	61,7 18 [4,3; 83,8]	60,3 20,3 [3,7; 80,7]	66,6 13,3 [2,7; 69,8]
70–74	38,2 13 [3,3; 58,1]	34,3 11,5 [3; 72,4]	46,0 12 [3; 61,3]	54,3 17,7 [3,3; 81,8]	70,0 14,7 [3; 79,3]	68,4 16 [2,7; 80,7]	66,6 12,3 [1,7; 57,3]

13-27. tabula. Notikumu rādītāju analīze (neķirurģiskie, neinvazīvi, N=424)

HPI diapa- zons	55 mmHg MAP mērķis Notikumu attiecība (%); Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]	60 mmHg MAP mērķis Notikumu attiecība (%); Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]	65 mmHg MAP mērķis Notikumu attiecība (%); Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]	70 mmHg MAP mērķis Notikumu attiecība (%); Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]	75 mmHg MAP mērķis Notikumu attiecība (%); Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]	80 mmHg MAP mērķis Notikumu attiecība (%); Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]	85 mmHg MAP mērķis Notikumu attiecība (%); Laiks- notikums minūtēs: mediāna [10 [.] percentile, 90 [.] percenti- le]
75–79	51,5	49,8	60,7	64,5	77,7	74,3	75,6
	9,3 [2,3; 24,5]	9,3 [3; 30,6]	11 [2,7; 63,6]	12 [3; 60,7]	10 [2; 44,9]	10 [1,7; 59,8]	8,3 [1,3; 39,3]
80-84	73,9	73,5	79,6	76,7	82,9	83,8	80,9
	8,3 [2,3; 18,7]	9,3 [2,3; 19,2]	8 [2; 19,3]	9 [2; 35,1]	8,3 [1,4; 22,4]	7,7 [1,3; 43,7]	6,7 [1; 25,7]
85–89	95,8	93,1	96,3	95,7	95,6	94,3	92,4
	7,3 [1,7; 16,7]	8 [1,7; 17,3]	5,3 [1,3; 15,4]	6,7 [1,3; 17,2]	6 [1,3; 15,7]	5,7 [1; 17,3]	5 [1; 16]
90–94	99,5	100	99,7	99,7	99,8	99,7	99,3
	4,7 [1; 14,3]	5,7 [1; 16]	3,7 [1; 12,3]	4,3 [1; 15,3]	3,7 [1; 13]	3,7 [1; 13,7]	3 [1; 12]
95–99	100	100	99,8	99,9	99,9	99,8	99,7
	1 [0,3; 9,7]	1,3 [0,3; 10,9]	1 [0,3; 8]	1,3 [0,3; 9,3]	1,3 [0,3; 8,7]	1 [0,3; 7,7]	1 [0,3; 8]

13.1.16 Papildu klīniskie dati

13.1.16.1 Pētījuma konstrukcija

Tika veikts prospektīvs vienas grupas, atklāts daudzcentru pētījums par hipotensijas novēršanu un ārstēšanu pacientiem, kuriem tiek veikts arteriālā spiediena monitorings ar Acumen Hypotension Prediction Index funkciju (HPI pētījums), lai pilnīgāk izprastu to, kā Acumen Hypotension Prediction Index (HPI) funkcija ar tās pieejamajiem pacientu hemodinamikas datiem ietekmē hemodinamiskās nestabilitātes noteikšanu un hipotensijas operācijas laikā samazināšanu, veicot nekardiālas operācijas. Salīdzinājuma grupa bija retrospektīva vēsturiskā kontroles grupa (N=22 109) ar pacienta līmeņa datiem no bezpeļņas akadēmiskās konsorcija grupas jeb Multicenter Perioperative Outcomes Group (MPOG), kas apkopo perioperatīvos datus no slimnīcām visās Amerikas Savienotajās Valstīs. Visiem pacientiem šajā pētījumā tika izmantota arteriālā caurulīte.

HPI pētījuma galvenais mērķis bija noteikt, vai Acumen HPI funkcijas izmantošana hemodinamikas pārvaldībai nekardiālās operācijās samazina hipotensijas operācijas laikā (IOH, definēts kā MAP < 65 mmHg ilgumu vismaz par 1 minūti), salīdzinot ar vēsturisko retrospektīvo kontroles grupu. IOH ilguma mērīšana tika veikta līdzvērtīgi gan MPOG kontroles grupai, gan HPI pētījuma prospektīvajai grupai. Visi IOH notikumi tika mērīti, un par tiem tika ziņots. Pacientiem ar vairākiem IOH notikumiem tie tika atsevišķi mērīti un apvienoti ar kopējo katra pacienta operāciju laiku, lai iegūtu kopējā IOH ilguma mērījumu. Vienīgā atšķirība: MPOG grupas dati tika nodrošināti vienas minūtes intervālos, bet prospektīvās grupas dati — 20 sekunžu intervālos.

HPI pētījums bija vienas grupas atklāts pētījums, kas veikts ar 485 piemērotiem pacientiem (460 pivotāliem pacientiem un 25 papildu iekļautiem pacientiem) 11 pētījumu centros Amerikas Savienotajās Valstīs. Katrā centrā reģistrēto pacientu skaits nepārsniedza 97 (20% no visas populācijas). Centri, kas piedalījās šajā vēsturiskajā kontroles grupā, tika pētīti arī prospektīvi, lai noteiktu, vai Acumen funkcijas lietošana, lai paredzētu hipotensiju 15 minūšu laikā pirms faktiskā notikuma, varētu samazināt IOH vidējo ilgumu par vismaz 25% [11].

Iekļaušanas un izslēgšanas kritēriji. Potenciālie pacienti tika izslēgti no dalības pētījumā, ja skrīninga un reģistrācijas procesa laikā tika noteikts, ka tie atbilst tālāk norādītiem iekļaušanas un izslēgšanas kritērijiem. 13-28. tabula 272. lpp. un 13-29. tabula 273. lpp. norāda pētījuma laikā lietotos iekļaušanas un izslēgšanas kritērijus. MPOG grupu pacientu pieejamo datu dēļ HPI un MPOG grupu iekļaušanas un izslēgšanas kritēriji nedaudz atšķirās. Konkrēta iekļaušanas kritēriju atšķirība ir tā, ka pētnieks nosaka vidēja vai augsta riska nekardiālu operāciju un identificē plānoto hospitalizāciju naktī. Būtiskas noteiktas atšķirības starp abiem

norādītajiem izslēgšanas kritērijiem ir: pacienti, kas ir grūtnieces/baro bērnu ar krūti, kuriem ir zināmi klīniski nozīmīgi šunti sirdī un zināma vidēja līdz smaga aortas un mitrālā vārstuļa saslimšana.

lekļaušanas kritēriji	Izslēgšanas kritēriji		
 Rakstiska informēta piekrišana Vecums ≥ 18 gadi Amerikas Anesteziologu biedrības (American Society of Anesthesiologists — ASA) fiziskā stāvokļa statuss 3 vai 4 Mērena vai augsta riska ar sirdi nesaistīta operācija (piemēram, ortopēdiska, mugurkaula, uroloģijas un vispārēja operācija) Plānota spiediena pārraudzība ar arteriālo caurulīti Vispārēja anestēzija Paredzamais operācijas ilgums vismaz ≥3 stundar kopš indukcijas Plānota nakts slimnīcā 	 Izslegšanas kriteriji Dalība citā (iejaukšanās) pētījumā Invazīvas asinsspiediena pārraudzības kontrindi- kācijas Paciente ir grūtniece un/vai baro bērnu ar krūti Neatliekama operācija Zināmi klīniski svarīgi intrakardiāli šunti Pacients, kura MAP mērķis operācijas laikā būs < 65 mmHg Zināma aortas stenoze ar vārstuļa laukumu ≤ 1,5 cm² Zināma mērena vai smaga aortas regurgitācija Zināma mērena vai smaga mitrālā regurgitācija Zināma mērena vai smaga mitrālā stenoze Pacientam vai ķirurģiskās procedūras veidam ir zināms SVV ierobežojums (piem., ieelpas tilpums < 8 ml/kg no teorētiskā ideālā svara, spontā- na ventilācija, persistējoša sirds aritmija, zināma priekškambaru fibrilācija, atvērta sirds operācija, sirdsdarbības/elpošanas ātruma (HR/RR) attiecība < 3,6) Pašreizēja persistējoša priekškambaru fibrilācija Zināma akūta hroniska sirds mazspēja Kraniotomija Apdegumu dēļ veiktas operācijas Pacienti, kuriem ir intraaortāls balonsūknis (IABP) vai kambaru darbības palīgierīce(-es) Pacients pārvests no intensīvās aprūpes nodaļas, vajadzīgi vairāki vazoaktīvi līdzekļi un ir diagnosti- cēta aktīva sepse. 		

13-28. tabula. HPI prospektīvo pacientu atlases kritēriji

 Tiek saņemta aprūpe iestādē, plānojot piedalīties prospektīvā Hypotension Prediction Index pro- grammatūras pētījumā Operācijas datums laikā no 2017. gada 1. janvāra līdz 2017. gada 31. decembrim Pieauguši pacienti, kuru vecums ir vismaz 18 gadi Pēc izvēles veikta uzņemšana tajā pašā dienā vai stacionārs slimnieks Amerikas Anesteziologu biedrības (American So- ciety of Anesthesiologists — ASA) fiziskā stāvokļa Sākumstāvokļa vidējais arteriālais spiediens < 65 mmHg (kā sākumstāvoklis tiek izmantots asinsspiediena mērījums, kas iegūts uzreiz pirms operācijas, vai pirmais derīgais asinsspiediena mērījums operācijas laikā) Vairāku vazoaktīvu infūziju lietošana operācijas laikā (fenilefrīns, norepinefrīns, vazopresīns, do- pamīns, dobutamīns vai epinefrīns) Neatliekama operācija Sirds (ar sūkni vai bez), apdegumu apstrāde vai 	lekļaušanas kritēriji	Izslēgšanas kritēriji		
 statuss 3 vai 4 Vispārēja anestēzija Asinsspiediena pārraudzība, izmantojot invazīvu arteriālās caurulīti pārraudzību > 75% izmeklējuma (lai izmantotu arteriālās caurulītes, kas ievietotas pēc indukcijas) Izmeklējuma ilgums (definēts kā laiks no pacienta ievešanas telpā līdz izvešanai no tās) ≥ 180 minūtes 	 Tiek saņemta aprūpe iestādē, plānojot piedalīties prospektīvā Hypotension Prediction Index pro- grammatūras pētījumā Operācijas datums laikā no 2017. gada 1. janvāra līdz 2017. gada 31. decembrim Pieauguši pacienti, kuru vecums ir vismaz 18 gadi Pēc izvēles veikta uzņemšana tajā pašā dienā vai stacionārs slimnieks Amerikas Anesteziologu biedrības (American So- ciety of Anesthesiologists — ASA) fiziskā stāvokļa statuss 3 vai 4 Vispārēja anestēzija Asinsspiediena pārraudzība, izmantojot invazīvu arteriālās caurulīti pārraudzību > 75% izmeklēju- ma (lai izmantotu arteriālās caurulītes, kas ievie- totas pēc indukcijas) Izmeklējuma ilgums (definēts kā laiks no pa- cienta ievešanas telpā līdz izvešanai no tās) ≥ 180 minūtes 	 Sākumstāvokļa vidējais arteriālais spiediens < 65 mmHg (kā sākumstāvoklis tiek izmantots asinsspiediena mērījums, kas iegūts uzreiz pirms operācijas, vai pirmais derīgais asinsspiediena mērījums operācijas laikā) Vairāku vazoaktīvu infūziju lietošana operācijas laikā (fenilefrīns, norepinefrīns, vazopresīns, do- pamīns, dobutamīns vai epinefrīns) Neatliekama operācija Sirds (ar sūkni vai bez), apdegumu apstrāde vai intrakraniāla operācija 		

13-29. tabula. MPOG vēsturiskās kontroles pacientu atlases kritēriji

IOH gadījumu skaits MPOG grupā bija 88% (n=19 445/22 109), un ārstēšanas datums bija laikā no 2017. gada 1. janvāra līdz 2017. gada 31. decembrim. Reģistrācijas datums MAP grupā bija laikā no 2019. gada 16. maija līdz 2020. gada 24. februārim. Sekundārais efektivitātes mērķa kritērijs bija kopējā laukuma noteikšana zem laika un MAP līknes visiem laika posmiem, kuros MAP < 65 mmHg katram pacientam. Šis mērķa kritērijs korelē ar ilgumu, un šī mērķa kritērija aprakstošā analīze tika prezentēta, izmantojot vidējo rādītāju, standarta novirzi (SN), mediānu, minimālo un maksimālo vērtību.

Primārais drošuma mērķa kritērijs bija tādu nopietnu nevēlamo notikumu procentuālā vērtība, kuros iekļauti perioperatīvi notikumi, pēcoperācijas sarežģījumi un ar ierīci saistīti nopietni nevēlamie notikumi. Sekundārais šī pētījuma mērķis (sekundārais efektivitātes mērķa kritērijs) bija noteikt, vai Acumen MAP funkcijas nodrošinātie norādījumi samazina sarežģījumu kopējo rādītāju, kā norādīts tālāk.

- Sirdsdarbības apstāšanās epizodes pēc operācijas bez letāla iznākuma
- Nāve slimnīcā
- Insults
- Akūta nieru bojājums (AKI) 30 dienu laikā pēc procedūras
- Miokarda bojājums nekardiālas operācijas (MINS) laikā 30 dienu laikā pēc procedūras

13.1.16.2 Pacienta demogrāfiskie dati

13-30. tabula 273. lpp. un 13-31. tabula 274. lpp. nodrošina pieejamās pacientu demogrāfiskās informācijas kopsavilkumu potenciālajai klīniskajai grupai (HPI) un vēsturiskajai kontroles grupai (MPOG), kā arī procedūrām, kas veiktas pacientiem HPI grupā.

Apraksts		HPI (ārestēšanai paredzē- tā populācija)	HPI (pilna analīzes kopa)	MPOG (pilna analīzes kopa)
Pacientu skaits		460	406*	22 109
Dzimums	Vīrietis	51,7 (n=238)	53,0 (n=215)	57,8 (n=12 779)

13-30. tabula. Pacienta	demogrāfiskie dati (MPOG pētījums)
-------------------------	------------------------------------

Apraksts		HPI (ārestēšanai paredzē- tā populācija)	HPI (pilna analīzes kopa)	MPOG (pilna analīzes kopa)
	Sieviete	48,3 (n=222)	47,0 (n=191)	42,2 (n=9330)
Vecums (gadi)	Vidējais ± SN	63,0±12,97	62,8±13,0	65,3±13,8
	Mediāna (min.–maks.)	65 (19–94)	65 (19–89)	65 (18–90)
BMI	Mediāna	28,09	28,09	28,1
	(25. un 75. procentīle)	(24,37; 32,81)	(24,41; 32,86)	(24,2; 32,9)
ASA rādītājs	11**	0,2 (n=1)	0,25 (n=1)	0,0 (n=0)
	111	91,5 (n=421)	92,1 (n=374)	80,83 (n=17 870)
	IV	8,0 (n=37)	7,6 (n=31)	19,17 (n=4239)
	Nav norādīts	0,2 (n=1)	0,0 (n=0)	0,0 (n=0)
Operācijas ilgums	Vidējais ± SN	338,1±145,4	363,6±134,0	355,2±145,8
(minūtes, N=458)	Mediāna	315,5	336	317
	(25. un 75. procentīle)	(235, 416)	(262, 430)	(245, 427)
		(n=458)		

* Pilnas analīzes kopas (Full Analysis Set — FAS) pārstāv tos pacientus no ārstēšanai paredzētās (Intent-to-Treat — ITT) populācijas, kuru operācijas ilgums ir ≥ 3 stundas.

** ASA II pacients tika identificēts kā novirze no protokola, bet netika izslēgts no ITT un FAS populācijām, jo šis pacients atbilda definētajiem kritērijiem (operācija > 3 stundas un hemodinamiskā stāvokļa pārraudzības dati). Šis pacients tika iekļauts efektivitātes un drošuma analīzēs, kaut gan atbilstoši iekļaušanas/izslēgšanas kritērijiem šo pacientu nevajadzēja reģistrēt pētījumā.

13-31. tabula. Procedūras tips (HPI)

Procedūras tips	% (n/N)
Mugurkaula operācija	18,5 (85/460)
Hepatektomija	13,7 (63/460)
Vipla procedūra	10,0 (46/460)
Vaskulāra (apjomīga)	8,5 (39/460)
Cita	8,5 (39/460)
Nefrektomija	5,7 (26/460)
Cita uroģenitāla operācija	5,4 (25/460)
Cistektomija	5,0 (23/460)
Pankreatektomija	5,0 (23/460)
Nieru transplants	4,3 (20/460)
Galvas un kakla operācija	3,9 (18/460)
Kompleksa kombinētā onkoloģiskā operācija (iekļaujot vismaz 2 atsevišķus orgānus)	3,0 (14/460)
Izpētes laparotomija	3,0 (14/460)
Kolektomija	2,8 (13/460)
Adrenalektomija	2,6 (12/460)
Gastrektomija	2,0 (9/460)
Cita kuņģa un zarnu trakta operācija	2,0 (9/460)

Procedūras tips	% (n/N)
Gurna revīzija	1,7 (8/460)
Prostatektomija	1,7 (8/460)
HIPEC	1,3 (6/460)
Histerektomija ar audzēja masas samazināšanu	1,3 (6/460)
Holecistektomija	0,9 (4/460)
Atkārtota ortopēdiska operācija	0,9 (4/460)
Splenektomija	0,9 (4/460)
Bariatrijas operācija	0,4 (2/460)
Aknu transplantācija	0,4 (2/460)
Sigmoidektomija	0,4 (2/460)
Nav norādīts	0,2 (1/460)

MPOG grupas operāciju tipi tika noteikti, izmantojot pašreizējās procedūru terminoloģijas (Current Procedural Terminology — CPT) grupēšanu. MPOG grupā iekļautas galvas un kakla; krūškurvja ārējās un iekšējās torakālās; mugurkaula un muguras smadzeņu; augšējās vai apakšējās vēdera daļas; uroloģijas; ginekoloģijas; vīriešu reproduktīvo orgānu; iegurņa; gurna/kājas/pēdas; pleca/rokas/plaukstas; radioloģiskas; dzemdniecības un citas procedūras.

13-32. tabula 275. lpp. nodrošina HPI un MPOG grupu operāciju tipu salīdzinājumu, nosakot pēc CPT grupēšanas.

Operācijas tips	н	PI	MPOG		
	Pacientu skaits	Procenti no kop- skaita	Pacientu skaits	Procenti no kop- skaita	
Galva un kakls	18	3,4	2024	10,2	
Krūškurvja operācija	0	0	3257	16,5	
Mugurkaula operācija	85	16,2	3331	16,8	
Vēdera augšdaļa	157	29,9	3838	19,4	
Vēdera apakšdaļa	40	7,6	1314	6,6	
Uroloģiska	114	21,7	2017	10,2	
Ginekoloģiska/dzemdniecības	20	3,8	190	1,0	
Ortopēdiska	12	2,3	2224	11,2	
Nozīmīga vaskulāra	39	7,4	0	0	
Cita	40	7,6	1596	8,1	
Piezīme. IOH ilgums pēc operācijas	s tipa MPOG populācijai	nav pieeiams.			

13-32. tabula. Operācijas tips pēc CPT grupēšanas

Piezime. 10H ilgums pec operacijas tipa MPOG populacijai nav pieejan

13.1.16.3 Pētījuma rezultāti

13-33. tabula 276. lpp. parāda uztvērēja darba raksturlielumu (receiver operating characteristics, ROC) analīzi par visiem HPI pacientiem, par kuriem ir pieejami dati analīzei (N = 482). ROC analīze, kas redzama šeit: 13-33. tabula 276. lpp., ir identiska analīzei, kas veikta klīniskās validācijas pētījumiem (aprakstīti iepriekš šeit: 13-14. tabula 259. lpp. un 13-15. tabula 260. lpp.). Detalizētu aprakstu par hipotensīvo notikumu, ar hipotensiju nesaistīto notikumu, jutības un specifiskuma definēšanu un aprēķinus skatiet šeit: 13-33. tabula 276. lpp., Hipotensijas robežvērtības klīniskā validācijas pētījuma rezultāti — minimāli invazīva pārraudzība 259. lpp.

HPI robežvērtī- ba	PPV [95% ticamības intervāls]	NPV [95% ticamības intervāls]	Specifiskums (%) [95% ticamības in- tervāls]	Jutīgums (%) [95% ticamības intervāls]	AUC
85	98,4 (=821/834) [97,6; 99,3]	90,3 (=6782/7507) [89,7; 91,0]	99,8 (=6782/6795) [99,7; 99,9]	53,1 (=821/1546) [50,6; 55,6]	0,84
* Dati pieejami Edv	wards Lifesciences				

13-33. tabula. Uztvērēja operatora raksturlīkne (ROC) HPI pacientiem (N = 482	33. tabula. U	Jztvērēja operatora	raksturlikne (ROC)	HPI pacientiem	(N = 482)*
---	---------------	---------------------	--------------------	-----------------------	------------

Efektivitāte. HPI pētījums tika izstrādāts, lai novērtētu Acumen HPI funkcijas kā lēmumu pieņemšanas atbalsta rīka iespēju samazināt IOH ilgumu par vismaz 25% ķirurģijas pacientiem, kam nepieciešama uzlabota hemodinamiskā stāvokļa pārraudzība. Hipotensijas operācijas laikā (IOH) epizode tika definēta kā vidējais arteriālais spiediens (MAP), kas ir zemāks par 65 vismaz trīs (3) 20 sekunžu notikumos katram pacientam visos centros.

Primārais efektivitātes mērķa kritērijs ir centra vidējo vērtību un standarta noviržu svērtā vidējā vērtība, kas apvienota tādā pašā pacientu proporcijā, kāda iekļauta MPOG grupā. Šī svērtā vidējā vērtība un tās pareizi aprēķinātā standarta novirze tika salīdzināta ar aprēķiniem, kas iegūti no MPOG grupas pacientiem.

HPI pētījumā tika izpildīts primārais efektivitātes mērķa kritērijs. Pilnas analīzes kopas HPI pivotālo pacientu vidējais IOH ilgums bija 11,97±13,92 minūtes, salīdzinot ar MPOG vēsturiskās kontroles vidējo IOH, kas bija 28,20±42,60 minūtes. 13-34. tabula 276. lpp. parāda, ka šis rezultāts nozīmē 57,6% samazinājumu, salīdzinot ar MPOG vēsturisko kontroli (p < 0,0001). Ņemot vērā gadījumus, kad operācijas laikā netika piedzīvotas IOH epizodes, novērojams IOH samazinājums par 65% (p < 0,0001).

13-34.	tabula.	Vidēiais IQ) OH ilaums –	— primārais	efektivitātes	mērka	kritēriis
				P			

Statistika	HPI (pacienti=406)	MPOG (pacienti=22 109)	p vērtība
Izlases apjoms (n)	293	19 446	
Kopējās IOH minūtes	3508	548 465	
IOH vidējā vērtība (minūtes)**	11,97	28,20	< 0,0001*
IOH STD	13,92	42,60	

Piezīme. IOH aprēķināšanai izmantota standarta metode; STD aprēķināšanai izmantota pūla metode (pivotāls pacients ar IOH epizodi testējamajā rokā).

Standarta metode — IOH epizode tiek definēta kā vismaz trīs secīgi novērojumi ar MAP < 65. FAS pivotālie pacienti ar vismaz 3 stundas ilgu operāciju.

* Analīzē izmantots vienpusējs nelīdzvērtīgo variantu t-tests. Nominālā alfa vērtība testam ir 0,025.

** Kad HPI grupas datu analīzei tiek izmantots 60 sekunžu intervāls, vidējais IOH ilgums nedaudz palielinās no 11,97 līdz 12,59; arī šī vērtība ir statistiski nozīmīgi atšķirīga no MPOG 28,20 vidējā IOH ar p vērtību < 0,0001.

Sekundārā efektivitātes mērķa kritērija jeb kopējā laukuma noteikšana zem laika līknes (AUC) un MAP visiem laika posmiem, kuros MAP < 65 mmHg katram pacientam, rezultāti ir iekļauti šeit: 13-35. tabula 276. lpp.

13-35. tabula. Hipotensijas operācijas laikā AUC — ITT, pivotālie pacienti

Pētījuma kategorija	Pacients	AUC vidējā vērtība (min * mmHg)	AUC SN (min * mmHg)	AUC mediāna (min * mmHg)	AUC diapa- zons (min * mmHg)	AUC Q3-Q1 (min * mmHg)
Visi pivotālie pacienti	457	46,38	82,75	16,67	833,00	54,00
Visi pivotālie pacienti ar vismaz vienu epizodi	328	64,63	91,46	32,33	832,00	68,00
Visi pivotālie pacienti, ku- ru operācijas ilgums ir ≥ 3 stundas	406	47,07	85,30	16,83	833,00	51,00

Pētījuma kategorija	Pacients	AUC vidējā vērtība (min * mmHg)	AUC SN (min * mmHg)	AUC mediāna (min * mmHg)	AUC diapa- zons (min * mmHg)	AUC Q3-Q1 (min * mmHg)
Visi pivotālie pacienti, ku- ru operācijas ilgums ir ≥ 3 stundas un kuriem ir vismaz viena IOH epizode	293	65,23	94,36	32,00	832,00	62,67
Visi pivotālie pacienti, ku- ru operācijas ilgums ir < 3 stundas	51	40,89	58,94	12,33	291,00	71,33
Visi pivotālie pacienti, ku- ru operācijas ilgums ir < 3 stundas un kuriem ir vismaz viena IOH epizode	35	59,58	62,94	37,00	290,00	73,33
Piezīme. Standarta metode - ITT pivotālie pacienti ar derīg	– IOH epizode ju operācijas l	e tiek definēta kā v aiku.	vismaz trīs secīgi r	novērojumi ar MA	^D < 65.	L

Tika veikta analīze, lai novērtētu HPI efektivitāti, samazinot IOH, ja notikusi iedalīšana pēc MAP līmeņa. Tika salīdzināts IOH ilgums HPI un MPOG grupā, iedalot pēc MAP līmeņa starp 50 un 70 mmHg atbilstoši standarta aprēķinu metodei. 13-36. tabula 277. lpp. parāda, ka visos MAP līmeņos, izņemot MAP < 50, vidējais IOH ilgums HPI pētījuma pacientiem bija statistiski būtiski mazāks nekā tas, par ko ziņots katrā MPOG MAP līmenī.

13-36. tabula	. Efektivitāte,	iedalot pēc MA	P līmeņa, HP	l pētījums p	pret MPOG v	vēsturisko kontroli
---------------	-----------------	----------------	--------------	--------------	-------------	---------------------

MAP vērtība	Statistika	HPI (pacienti=406)	MPOG (pacien- ti=22 109)	p vērtība
HPI < 50	Izlases apjoms (n)	28	8555	
	Kopējās IOH minūtes	97	35 790	
	IOH vidējā vērtība (minūtes)	3,45	4,20	0,1967
	IOH STD	3,56	13,10	
HPI < 55	Izlases apjoms (n)	84	12 484	
	Kopējās IOH minūtes	341	80 115	
	IOH vidējā vērtība (minūtes)	4,06	6,40	< 0,0001
	IOH STD	4,30	15,40	
HPI < 60	Izlases apjoms (n)	188	16 561	
	Kopējās IOH minūtes	1098	212 362	
	IOH vidējā vērtība (minūtes)	5,84	12,80	< 0,0001
	IOH STD	7,31	24,10	
HPI < 65	Izlases apjoms (n)	293	19 446	
	Kopējās IOH minūtes	3508	548 465	
	IOH vidējā vērtība (minūtes)	11,97	28,20	< 0,0001
	IOH STD	13,92	42,60	
HPI < 70	Izlases apjoms (n)	375	20 986	
	Kopējās IOH minūtes	10 241	1 185 983	
	IOH vidējā vērtība (minūtes)	27,31	56,50	< 0,0001
	IOH STD	28,79	70,40	

MAP vērtība	Statistika	HPI (pacienti=406)	MPOG (pacien- ti=22 109)	p vērtība
Piezīme. Standarta meto	de — IOH epizode, kas definēta kā	vismaz trīs secīgi novēroju	ımi ar MAP < MAP vērtību	definējošu IOH.
Iekļauti FAS pivotālie pac	ienti, kuru operācijas ilgums ir visr	naz 3 stundas. Studenta t-	tests tika lietots, kā norādī	ts SAP.

Klīniskā pētījuma laikā intraoperatīvas hipotensijas ilguma samazinājums bija atkarīgs no klīniskā lēmuma par to, kad, kāda un kādā veidā lietota ārstēšana atbilstoši HPI parametra un HPI sekundārā ekrāna norādēm. Iejaukšanās tipi: koloīds, kristaloīds, asins produkti, vazopresori un inotropi. Īpaši nozīmīgi bija salīdzināt pacientu un iejaukšanās biežuma modeli ar HPI robežvērtību, t. i., kad HPI parametrs paredzēja hemodinamisko nestabilitāti (HPI > 85). Skat. 13-37. tabula 278. Ipp. Šie dati liecina, ka HPI pievienoja vērtību, nodrošinot trauksmi un ieskatu sekundārajā ekrānā, tāpēc ārsts varēja iejaukties savlaicīgāk un ar piemērotām metodēm.

lejaukšanās	HPI grupa	oa Pētījuma dalībnieki				lejaukša	nās gadījun	ıs	
veids		N	n	n/N (%)	p vērtība ^a	N	n	n/N (%)	p vērtība ^b
Koloīds	HPI > 85	78	58	74,4	0,0004	134	87	64,9	< 0,0001
	HPI ≤ 85	78	36	46,2		134	47	35,1	
Kristaloīds	HPI > 85	163	134	82,8	< 0,0001	360	250	69,4	< 0,0001
	HPI ≤ 85	163	80	49,1		360	110	30,6	
Asins produkti	HPI > 85	24	18	75,0	0,0781	56	34	60,7	0,0245
	HPI ≤ 85	24	12	50,0		56	22	39,3	
Vazopresors	HPI > 85	307	277	90,2	< 0,0001	1604	1156	72,1	< 0,0001
	HPI ≤ 85	307	189	61,6		1604	448	27,9	
Inotrops	HPI > 85	87	72	82,8	< 0,0001	187	131	70,1	< 0,0001
	HPI ≤ 85	87	39	44,8		187	56	30,0	
a, b: p vērtība no l	oģistiskā regres	sijas mode	a ar HPI ≤ .	85 kā atsauci	, a — pacients	, b — iejau	Ikšanās gad	dījums. N = ko	pējais

13-37. tabula. Pacientu un iejaukšanās gadījumu biežuma modelis pēc HPI robežvērtības

a, b: p vērtība no loģistiskā regresijas modeļa ar HPI ≤ 85 kā atsauci, a — pacients, b — iejaukšanās gadījums. N = kopējais pacientu vai iejaukšanās gadījumu skaits, n = pacienti vai gadījumi ar iejaukšanos.

Drošība. Acumen HPI funkcijas drošums tika pierādīts, izmantojot to ķirurģijas pacientiem, kuriem nepieciešama uzlabota hemodinamiskā stāvokļa pārraudzība.

- Nevienam pacientam netika novēroti izskatītie notikumi, kas varētu būt saistīti ar Acumen HPI funkciju.
- Netika izskatīts neviens ADE vai SADE, kas saistīts ar Acumen HPI funkciju.
- Nebija neviena negaidīta ADE (0%), kas saistīts ar HPI funkciju.
- Nebija neviena ar HPI funkciju saistīta vai nesaistīta nāves gadījuma.

Sekundārais drošuma mērķa kritērijs ir aprakstoša statistika, ko veidoja 30 dienu pēcoperācijas AE pabeigto gadījumu (completed cases, CC) populācijā. 13-38. tabula 278. lpp. parāda 30 dienu pēcoperācijas saliktā mērķa kritērija komponentus pabeigto gadījumu (CC) populācijā. Rezultāti parāda, ka salikto notikumu attiecība bija 4,75% (saliktie notikumi =19 [95% TI: 2,88; 7,32]), kur vienam pacientam bija vairāk nekā viens atsevišķs saliktais elements). MPOG grupā apkopotie drošuma dati iekļāva mirstību (375, 1,83%); 1. pakāpes AKI (2068, 9,35%); 2. pakāpes AKI (381, 1,72%); 3. pakāpes AKI (152, 0,69%); un miokarda traumu [MINS] (178, 0,81%).

13-38. tabula. HPI pētījums — 30 dienu pēcoperācijas salikto mērķa kritēriju komponenti — CC analīzes populācija (pivotālie pacienti, n = 400)

Analīzes mērķa kritērijs	AE notikums		POD dienas pēc operācijas			
	Notikumi (%)	[95% TI]	Vidējā vērtība	Mediāna	Diapazons	
Sirdsdarbības apstāšanās pēc operācijas bez letāla iznākuma	1 (0,25)	0,01; 1,38	2,00	2,00	2, 2	

Analīzes mērķa kritērijs	AE notikums		POD dienas pēc operācijas		ācijas
	Notikumi (%)	[95% TI]	Vidējā vērtība	Mediāna	Diapazons
Nāve slimnīcā	0 (0,00)	0,00; 0,92	Nav piemēro- jams	Nav piemēro- jams	Nav piemēro- jams
Insults	0 (0,00)	0,00; 0,92	Nav piemēro- jams	Nav piemēro- jams	Nav piemēro- jams
Akūta nieru trauma — vispārēja	16 (4,00)	2,30; 6,41	5,94	1,00	0; 27
Akūta nieru trauma — 1. pakāpe	11 (2,75)	1,38; 4,87	6,82	1,00	0; 27
Akūta nieru trauma — 2. pakāpe	3 (0,75)	0,15; 2,18	6,33	7,00	2; 10
Akūta nieru trauma — 3. pakāpe	2 (0,50)	0,06; 1,79	0,50	0,50	0; 1
Miokarda trauma (MINS)	3 (0,75)	0,15; 2,18	1,67	1,00	0; 4
CC – pabojata (pověrtějama) aruna TL – ticamihac interválc, přeoporácijac diopac (POD) – AESTOT SCOT					

CC = pabeigta (novērtējama) grupa, TI = ticamības intervāls, pēcoperācijas dienas (POD) = AESTDT-SGDT

Populācijas "nodoms ārstēt" (n = 460) analīzē tika atklāti 3 (0,066%) miokarda traumas (MINS) gadījumi un 17 (3,7%) akūtas nieru traumas (AKI) gadījumi.

Uzturēšanās ilgums slimnīcā un intensīvās aprūpes nodaļā HPI grupai ir pieejams šeit: 13-39. tabula 279. lpp.

Mērķa kritērijs	n	Vidējā vēr-	Mediāna	Diap	azons	[95% pre	ecīzais TI]
		tiba		Min.	Maks.	Zemākais	Augšējais
Uzturēšanās ilgums slimnīcā (LOS), dienas	455	6,8	5,3	0,3	50,5	6,2	7,3
Uzturēšanās ilgums intensī- vajā aprūpē (LOS), dienas	151	2,7	2,0	0,1	27,0	2,2	3,1

13-39. tabula. Uzturēšanās ilgums

13.1.16.4 Pētījuma kopsavilkums

Šie rezultāti parāda būtisku vidējā operācijas laika hipotensijas (IOH) rādītāja samazinājumu, kas ir konsekvents vairākumā pētījuma centru; vairākumā centru vidējā IOH ilguma samazinājums bija > 25%, un visos centros, izņemot vienu, tika pārsniegti 35%; vidējā IOH samazinājums bija diapazonā no 23% līdz 72%. Pētījuma rezultāti liecina, ka IOH ilgums samazinājās līdz 11,97 minūtēm (SN 13,92), atspoguļojot samazinājumu par 57,6% (p < 0,0001). Šis samazinājums ir klīniski būtisks, jo IOH, kura ilgums ir vismaz 1 minūte, ir saistīts ar perioperatīviem sarežģījumiem un mirstību, piemēram, no AKI, MINS un insulta [12].

Jutības analīze, iekļaujot pētījuma centru apkopošanas, mainīgo faktoru un no ārstējamās grupas izslēgto pacientu datu pārskatīšanu, būtiski nemainīja šo klīniski nozīmīgo secinājumu par vidējās hipotensijas operācijas laikā (IOH) samazinājumu.

Rezultāti parādi, ka Acumen HPI funkcijas drošums tika pierādīts, izmantojot to ķirurģijas pacientiem, kuriem nepieciešama uzlabota hemodinamiskā stāvokļa pārraudzība, un netika novēroti nekādi ar ierīci saistīti nevēlamie notikumi. Turklāt salikto notikumu attiecība 4,75% (saliktie notikumi =19 [95% TI: 2,88; 7,32]) ir zema, ņemot vērā, ka pacientu ASA fiziskais stāvoklis bija 3 un 4 un tiem tiek veikta nekardiāla operācija.

Šajā atmaskotajā prospektīvā-vēsturiskā salīdzinājuma pētījumā tika parādīts IOH samazinājums, izmantojot HPI programmatūras funkciju. Šim pētījumam ir ierobežojumi, kas pakārtoti potenciālai novirzei saistībā ar klīniskā speciālista informētību prospektīvajā grupā un salīdzinājumu ar vēsturisko grupu.

13.1.16.5 Secinājums

Šī pētījuma rezultāti ir uzticami un sniedz derīgus zinātniskus pierādījumus, ka Acumen HPI funkcija ir droša un nodrošināja statistiski un klīniski nozīmīgu vidējās IOH samazinājumu. Tas nozīmē, ka Acumen HPI efektīvi nosaka hemodinamisko nestabilitāti un būtiski samazina hipotensiju operācijas laikā, ja to izmanto ķirurģijas pacientiem, kuriem nepieciešama hemodinamiskā stāvokļa pārraudzība nekardiālas operācijas laikā.

13.1.17 Atsauces

- 1 De Hert et al, Evaluation of Left Ventricular Function in Anesthetized Patients Using Femoral Artery dP/dtmax. Journal of Cardiothoracic and Vascular Anesthesia 2006; 20(3): 325-330.
- 2 Tartiere et al, Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur Journal of Heart Failure 2007; 9: 477–483.
- 3 Monge Garcia MI, Orduna PS, Cecconi M. Understanding arterial load. Intensive Care Med 2016; 42: 1625-1627.
- **4** Monge Garcia MI, Manuel Gracia Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, Cecconi M. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Critical Care 2014; 18: 626-637.
- 5 Cecconi M, Monge Garcia MI, Romero MG, Mellinghof J, Caliandro F, Grounds RM, Rhodes A. 2015. The Use of Pulse Pressure Variation and Stroke Volume Variation in Spontaneously Breathing Patients to Assess Dynamic Arterial Elastance and to Predict Arterial Pressure Response to Fluid Administration. Anesth Analg 2015; 120: 76-84.
- **6** Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness. A "gray zone" approach. Anesthesiology 2011; 115: 231-241.
- 7 Cannesson M, Musard H, Desebbe O, Boucau C, Simon R, Henaine R, Lehot JJ. The Ability of Stroke Volume Variations Obtained with Vigileo/FloTrac System to Monitor Fluid Responsiveness in Mechanically Ventilated. Anesth Analg 2009; 108: 513-517.
- 8 Pinsky MR. Protocolized Cardiovascular Management Based on Ventricular-arterial Coupling. In: Functional Hemodynamic Monitoring. Update in Intensive Care and Emergency Medicine (44). Springer-Verlag, Berlin, 2004; 381-395.
- **9** Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol, Heart Circ Physiol 1983; 245: H773-H780.
- 10 Chantler PD, Lakatta EG, Najjar S. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 2008; 105: 1342-1351.
- **11** Shah NJ, Mentz G, Kheterpal S. The incidence of intraoperative hypotension in moderate to high risk patients undergoing non-cardiac surgery: A retrospective multicenter observational analysis. J Clin Anest. 2020; 66: 109961.
- 12 Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: A retrospective cohort analysis. Anesthesiology. 2017 Jan; 126(1): 47-65.

13.2 Globālās hipoperfūzijas indeksa (GHI) algoritma funkcija

Globālā hipoperfūzijas indeksa (GHI) algoritmu var aktivizēt, ja ir pievienots Swan-Ganz katetrs un oksimetrijas kabelis. GHI algoritms izmanto CCO algoritma (STAT CO [sCO]) vai RVCO algoritma (CO_{RV}) un oksimetrijas algoritma (SvO₂) ievadi, lai noteiktu GHI vērtību. Globālās hipoperfūzijas indeksa(GHI) algoritms sniedzārstam fizioloģiskos datus par iespējamību, ka pacientam varētu izveidoties hemodinamiska nestabilitāte. GHI algoritmu ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kam tiek nodrošināta uzlabota hemodinamiskā stāvokļa pārraudzība ar Swan-Ganz katetru. Tiek uzskatīts, ka GHI algoritms nodrošina papildinformāciju par pacienta prognozētu risku turpmāk piedzīvot klīniskā stāvokļa pasliktināšanos, kā arī palīdz identificēt pacientus, kuriem klīniskā stāvokļa pasliktināšanās risks ir zems. Izstrādājumu prognozes ir paredzētas tikai atsaucei, un nedrīkst pieņemt lēmumus par ārstēšanu, kuru pamatā ir tikai GHI algoritma prognozes. Gaidāma hemodinamiskā nestabilitāte korelē ar gadījumiem, kad jaukto venozo asiņu skābekļa piesātinājums (SvO₂) samazinās līdz 60% vai mazāk uz vienu minūti.

Piesardzības pasākums. Ja ārsts uzskata, ka globālās hipoperfūzijas notikumu prognoze, ko definē kā jaukto venozo asiņu skābekļa piesātinājuma (SvO₂) vērtību ≤ 60%, konkrētam pacientam nebūtu jēgpilna, ārsts var izvēlēties atcelt GHI kā galvenā parametra atlasi.

UZMANĪBU

Neprecīzu GHI vērtību iespējamie cēloņi:

- Neprecīzi sirds izsviedes mērījumi
- Neprecīzi SvO₂ mērījumi
- Nepareizs katetra novietojums vai pozīcija
- Pārmērīgas plaušu artērijas asins temperatūras izmaiņas. Daži faktori, kas līdz ar citiem izraisa asins temperatūras variācijas:
 - * statuss pēc kardiopulmonālās šuntēšanas operācijas;
 - * centralizēti ievadīti asins produktu dzesēti vai sildīti šķīdumi;
 - * secīgu kompresijas ierīču lietošana.
- Trombu veidošanās uz termistora
- anatomiskas novirzes (piemēram, sirds šunts);
- Pārmērīgas pacienta kustības
- Elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi
- straujas sirds izsviedes izmaiņas.

Globālās hipoperfūzijas indeksa (GHI) algoritma precizitāti, izmantojot uzlabotu Swan-Ganz katetru un HemoSphere oksimetrijas kabeli, veido vairāki faktori: katetrs ir pareizi novietots, pacienta CCO kabelis vai spiedienkabelis ir pareizi pievienots, oksimetrijas kabelis ir pareizi pievienots, un oksimetrijas algoritms ir kalibrēts.

Klīniskās validācijas pētījumi (skat. Klīniskā validācija 284. lpp.) liecina, ka GHI ir precīzs un tādējādi ir izmantojams pacientiem tipiskā hemodinamikas rādītāju svārstību diapazonā un klīniskajā praksē ķirurģisko procedūru gadījumā. Neķirurģisko procedūru veidi un pētīto operāciju veidi ir noteikti šeit: 13-44. tabula 285. lpp. un 13-45. tabula 285. lpp., lai informētu ārstus par pētīto pacientu populāciju.

13.2.1 Globālās hipoperfūzijas indeksa parametra pārskats

Globālās hipoperfūzijas indeksa parametrs GHI, kuru var konfigurēt kā galveno parametru visos monitoringa ekrānos, rāda vesela skaitļa vērtību no 0 līdz 100 — augstākas vērtības norāda lielāku turpmākas hemodinamiskās nestabilitātes iespējamību.

Tāpat kā venozās oksimetrijas parametrs, arī GHI vērtība tiek atjaunināta ik pēc 2 sekundēm. Kad GHI vērtība sasniedz vai pārsniedz 75, GHI parametra elements tiek iezīmēts sarkanā krāsā. Ja GHI vērtība sasniedz vai pārsniedz 75 trijos secīgos lasījumos (kopā 6 sekundes), tiek aktivizēta vidēja līmeņa trauksme.

GHI trauksmes un trauksmes funkcijas atšķirsies ar izvēlētajām GHI attēlošanas opcijām, kā aprakstīts šeit: 13-40. tabula 281. lpp..

Displeja opcija	Skaņas un vizuālais trauk- smes signāls	Trauksmes ziņojumi infor- mācijas joslā
Galvenais parametrs	Jā	Jā
Galvenais parametrs (trauk- smes skaņas signāls izslēgts)	Nē	Jā
Netiek rādīts	Nē	Nē

13-40. tabula.	GHI displei	a konfigurā	ciias
		a	

Atšķirībā no citiem izmērītajiem parametriem GHI trauksmes robežvērtības nav pielāgojamas, jo GHI nav fizioloģisks parametrs ar atlasāmu mērķa diapazonu (kā tas ir, piemēram, sirds izsviedes gadījumā), bet drīzāk fizioloģiska stāvokļa iespējamība. Lietotājam programmatūrā tiek rādīta trauksmes robežvērtība, bet vadīklas, ar

kuru palīdzību var mainīt trauksmes robežvērtības, ir atspējotas. GHI parametra trauksmes robežvērtība (≥ 75 sarkanajā trauksmes diapazonā) ir fiksēta vērtība, ko nevar mainīt. Kaut gan GHI trauksmes robežvērtības nevar pielāgot, GHI parametra trauksmi var izslēgt tāpat kā galvenajiem parametriem ar pielāgojamiem trauksmes/ mērķa diapazoniem. Skat. Mērķu un trauksmju konfigurēšana vienam parametram 138. lpp.

GHI trauksmes robežvērtība ir norādīta šeit: 13-41. tabula 282. lpp. un D-4. tabula 406. lpp.. Algoritma veiktspējas raksturlielumi trauksmes robežvērtībai ar vērtību 75 ir norādīti šeit: 13-46. tabula 286. lpp., kā arī ietverti klīniskās validācijas sadaļā.

13.2.2 Globālās hipoperfūzijas indeksa (GHI) parametra rādījums

GHI vērtība tiks atjaunota ik pēc 2 sekundēm un attēlota kā procentuāls vienādojums hipoperfūzijas notikuma varbūtībai skalā no 0 līdz 100. Jo lielāka vērtība, jo lielāka hipoperfūzijas notikuma iespējamība (SvO₂ ≤ 60% vismaz vienu minūti).

13-41. tabula 282. lpp. sniegts detalizēts izskaidrojums, GHI grafiskā attēlojuma elementu (tendences līknes, skalas segmenta [kontrolpults attēlojumā], trauksmes skaņas signālu un parametra vērtības [elementu attēlojumā]) interpretācija un aprakstīta ieteicamā lietotāja rīcība, kad GHI ir konfigurēts kā galvenais parametrs.

BRĪDINĀJUMS

Globālās hipoperfūzijas indeksu GHI nedrīkst izmantot kā vienīgo faktoru pacientu ārstēšanai. Pirms ārstēšanas sākuma ieteicams pārbaudīt visus pacienta hemodinamikas rādītājus.

GHI vērtība	Grafiskie dis- pleja elementi	Skaņas signāls	Vispārīga interpretācija	leteicamā lietotāja rīcība
GHI < 75	Balta	Nav	Pacienta hemodinamika norāda, ka ir zema līdz vidēja hipoperfūzi- jas notikuma iespējamība. Zema GHI vērtība neizslēdz hipoperfūzi- jas notikumu nākotnē.	Turpiniet pacienta hemodinami- kas monitoringu. Esiet vērīgs at- tiecībā uz pacienta hemodinami- kas izmaiņām, izmantojot primā- ro monitoringa ekrānu, GHI un parametru un organisma stāvokļa galveno parametru tendences.
GHI ≥ 75	Sarkans (mirgo)	Nav	Pastāv augsta iespējamība, ka ķirurģiskam pacientam nākamo 15 minūšu laikā radīsies hipoper- fūzijas notikums.	Pārbaudiet pacienta hemodina- miku un asins plūsmu, lai izpētī- tu hipoperfūzijas augstās varbūtī- bas potenciālo cēloni un sniegtu informāciju par iespējamo rīcības plānu.
GHI ≥ 75 un sa- glabājas trijos ilgstošos rādīju- mos (6 sekun- des)	Sarkans (mirgo)	Vidējas prioritā- tes trauksmes skaņas signāls	Pastāv augsta iespējamība, ka ķi- rurģiskam pacientam radīsies hi- poperfūzijas notikums.	Pārbaudiet pacienta hemodina- miku, izmantojot citus primārā ekrāna parametrus, lai izpētītu hi- poperfūzijas augstās varbūtības potenciālo cēloni un sniegtu in- formāciju par iespējamo rīcības plānu.
GHI=100	Sarkans (mirgo)	Vidējas prioritā- tes trauksmes skaņas signāls	Pacientam ir hipoperfūzija un pa- stāv išēmijas risks.	Pārbaudiet pacienta hemodina- mikas rādītājus un citus primārā ekrāna parametrus, lai izpētītu hi- poperfūzijas potenciālo cēloni un sniegtu informāciju par iespēja- mo rīcības plānu.

13-41. tabula. GHI vērtības grafiskie un skaņas displeja elementi

13.2.3 GHI kā galvenais parametrs

GHI var konfigurēt kā galveno parametru, veicot darbības, kas aprakstītas sadaļā Parametru maiņa 91. lpp..

GHI attēlojums vairākos veidos atšķiras no citiem galvenajiem parametriem. Citu galveno parametru attēlojums ir aprakstīts šeit: Statusa indikatori 92. lpp.

13-10. attēls. GHI galvenā parametra elements

GHI tiek attēlots, kā norādīts 13-10. att. 283. lpp., kad tas ir konfigurēts kā galvenais parametrs visos ekrānos, izņemot kontrolpults ekrānu (13-11. att. 283. lpp.). Papildinformāciju par kontrolpults ekrānu skatiet šeit: Kontrolpults ekrāns 98. lpp.

13-11. attēls. GHI galvenā parametra kontrolpults ekrāns

Visos pārraudzības ekrānos, izņemot kontrolpults ekrānu, parametra vērtības fonta krāsa apzīmē parametra statusu, kā attēlots šeit: 13-42. tabula 283. lpp. Kontrolpults ekrānā GHI ir tādi paši trauksmes un mērķa diapazoni, bet tie tiek rādīti, kā attēlots šeit: 13-11. att. 283. lpp.

13-42. tabula. GHI parametra statusa krās

Parametra statusa krāsa	Zemākā robežvērtība Augstākā robežvērti	
Pelēka	Darbības kļū	mes stāvoklis
Balta	0	74
Mirgojošs sarkans/pelēks	75	100

13.2.4 GHI trauksme

Ja GHI ir konfigurēts kā galvenais parametrs un vērtība pārsniedz augšējo robežvērtībuno 75 vai ir līdzvērtīga tai trīs secīgos rādījumos, tiek aktivizēta vidējas prioritātes trauksme, norādot lietotājam, ka pacienta tendences liecina par iespējamu hemodinamisku nestabilitāti un hipoperfuzijas notikumu. Atskan trauksmes signāls, tiek parādīts dzeltens vizuāls trauksmes indikators, parametra statusa krāsa kļūst sarkana, un parametra vērtība mirgo. GHI trauksmes robežvērtība, kas ir redzama šeit: 13-42. tabula 283. lpp., iedala parādāmo diapazonu zemākas un augstākas hipoperfūzijas iespējamības apgabalos. GHI izmanto funkcijas, kas izgūtas no sCO vai CO_{RV} un SvO₂ mērījumiem datu atbalstītā modelī, kas izstrādāts retrospektīvas analīzes veidā, izmantojot datu bāzi ar datiem par ķirurģiskiem un neķirurģiskiem pacientiem; tajā iekļauti komentēti hipoperfūzijas (definēta kā $SvO_2 \le 60\%$ vismaz 1 minūti) un ar hipoperfūziju nesaistīti notikumi. GHI ir redzams kā vesela vērtība diapazonā no 0 līdz 100. Hipoperfūzijas iespējamības novērtējumā, izmantojot GHI, jāņem vērā gan parādītā vērtība diapazonā no 0 līdz 100, gan saistītā parametra krāsa (balta/sarkana). GHI trauksmes signāla skaļums, tāpat kā citu HemoSphere Alta uzlabotajā monitoringa platformā pieejamo trauksmju skaļums, ir pielāgojams. Skatiet Trauksmes stāvokļi/mērķi 133. lpp., lai iegūtu informāciju par trauksmes izslēgšanu un trauksmes skaļuma konfigurēšanu. GHI trauksmes aktivizācija tiks reģistrēta datu lejupielādes failā pēc atjauninājuma ar GHI, kas pārsniedz trauksmes robežvērtību.

Izslēdziet GHI trauksmes signālu. Pieskaroties trauksmes signāla izslēgšanas ikonai navigācijas joslā, GHI trauksme tiek izslēgta uz 15 minūtēm. Parametra elementā tiek parādīts atskaites taimeris. Pēc pauzes trauksmes signāli atsāk skanēt. Ja GHI vērtība kļūst zemāka par 65, kad vēl nav pagājušas 15 minūtes, trauksmes signāla pauze beidzas un iespējama trauksmes signāla atkārtota aktivizācija, ja atkal rodas GHI trauksmes

UZMANĪBU

GHI parametrs var nesniegt iepriekšēju norādi par iespējamu globālas hipoperfūzijas notikumu situācijās, kurās klīniska iejaukšanās izraisa pēkšņu nefizioloģisku hipoperfūzijas notikumu. Šādā gadījumā GHI funkcija bez aizkaves nodrošinās vidējas trauksmes uznirstošo logu, un tiks parādīta GHI vērtība 100, norādot, ka pacientam ir hipoperfūzijas notikums.

13.2.5 Klīniskā izmantošana

Globālās hipoperfūzijas indeksu GHI var konfigurēt kā galveno parametru pārraudzības ekrānā.

Ja GHI ir konfigurēts kā galvenais parametrs, monitoringa ekrānā parādās GHI un tendences grafiks.

- Trauksme rodas gadījumā, kad GHI ir lielāks par vai vienāds ar 75.
- Ja GHI ir mazāks par 75:
 - Tendences līnija un vērtība tiek attēlota baltā krāsā.
 * Turpiniet pacienta hemodinamikas pārraudzību. Esiet vērīgs attiecībā uz pacienta hemodinamikas izmaiņām, izmantojot primāro monitoringa ekrānu, GHI un parametru un organisma stāvokļa galveno rādītāju tendences.
- Ja GHI pārsniedz 75, pārbaudiet pacienta hemodinamiku, izmantojot citus primārā ekrāna parametrus, lai izpētītu augstas hipoperfūzijas iespējamības potenciālo cēloni un sniegtu informāciju par iespējamo rīcības plānu.
- Ja jauktais skābekļa piesātinājums ir zemāks par 60% 6 secīgos rādījumos (12 sekundes), liecinot par hipoperfuzīvu notikumu:
 - GHI rāda 100.
 - Pārbaudiet pacienta hemodinamiku, izmantojot citus primārā ekrāna parametrus, lai izpētītu hipoperfūzijas potenciālo cēloni un sniegtu informāciju par iespējamo rīcības plānu.

13.2.6 Klīniskā validācija

Kopā tika īstenotas 4 retrospektīvas datu kopas, lai apstiprinātu algoritmu un novērtētu GHI parametra diagnostisko veiktspēju. Divās datu kopās ir gan ķirurģiskie (OR), gan neķirurģiskie (ICU) dati, vienai no datu kopām ir tikai ICU dati, un vienai ir tikai OR dati. 13-43. tabula 284. lpp.: šeit ir pieejami katras datu kopas pacientu numuri.

Datu kopa	VAI	ICU
Datu kopa 1 (N=67)	66	63
Datu kopa 2 (N=25)	25	25
Datu kopa 3 (N=20)	0	20
Datu kopa 4 (N=98)	98	0

13-43. tabula. Pacientu numuri GHI algoritma klīniskās validācijas datu kopās

Datu kopa	VAI	ICU
Kopā = 297	189	108

13-44. tabula 285. lpp.: pacienta demogrāfiskie dati un ICU diagnoze ICU pacientiem.

13-44. tabula. Pacienta demogrāfiskie dati un ICU diagnoze (ICU pacienti, N=108)

Apraksts		Intensīvās aprūpes nodaļas pacienti, visas datu kopas
Pacientu skaits		108
Vecums (gadi)		61,7±13
KVL (m ²)		2,1±0,33
Dzimums (% vīriešu)		76 [70,4]
Ar plaušu hipertensiju (pacientu skaits [% no kopējā pacientu skaita])		32 [29,6%]
Diagnoze uzņemšanas brīdī (pacientu skaits [% no kopējā pacientu skaita])	akūta nieru mazspēja	1 [0,9%]
	sirds slimība	88 [81,5%]
	šķidrumu pārliešanas	2 [1,9%]
	vairāku sistēmu orgānu mazspēja	1 [0,9%]
	pneimonija	1 [0,9%]
	plaušu tūskas izraisīta hipotensija	2 [1,9%]
	sepse	12 [11,1%]
	nav ziņots	1 [0,9%]

13-45. tabula 285. lpp. nodrošina pacientu demogrāfiskos datus un ķirurģisko pacientu operācijas veidu (N=189).

13-45. tabula. Pacientu demogrāfijas informācija un operācijas veidi (ķirurģiski pacienti, N=189)

Apraksts		Intensīvās aprūpes nodaļas pacienti, visas datu kopas
Pacientu skaits		189
Vecums (gadi)		60,4±13,2
KVL (m ²)		2,02±0,31
Dzimums (% vīriešu)		123 [65,1%]
Ar plaušu hipertensiju (pacientu skaits [9	6 no kopējā pacientu skaita])	54 [28,6%]
Operācijas veids (pacientu skaits [% no kopējā pacientu skaita])	sirds operācija (CABG, vārstuļa nomaiņa u.c.)	134 [70,9%]
	plaušu transplantācija	28 [14,8%]
	sirds transplantācija	8 [4,2%]
	sirds kambara palīgierīces ievietošana	3 [1,6%]
	aortas loka aneirismas rekonstrukcija	6 [3,2%]
	Bentāla procedūra	1 [0,5%]
	kraniektomija	1 [0,5%]
	audzēja izņemšana	1 [0,5%]
	laparotomija	1 [0,5%]
	krūškurvja aneirismas rekonstrukcija	1 [0,5%]

Apraksts		Intensīvās aprūpes nodaļas pacienti, visas datu kopas
	ventrikulārā septālā defekta slēgšana	1 [0,5%]
	nav ziņots	4 [2,3%]

13.2.6.1 Klīniskās validācijas pētījuma rezultāti

Hipoperfūzijas notikums tiek aprēķināts, identificējot vismaz 1 minūti ilgu segmentu tādā garumā, lai visiem datu punktiem sadaļā būtu SvO₂ \leq 60%. Pozitīvs datu punkts ir jebkurš punkts šajā globālajā hipoperfūzijas notikumā vai globālās hipoperfūzijas notises laika logā, kas rodas pirms globālās hipoperfūzijas notikuma.

Globālās hipoperfūzijas logs ir laiks, kamēr SvO₂ fizioloģiski pāriet uz globālu hipoperfūziju, un ir konstatēts, ka tās ir 30 minūtes atbilstoši klīniskās validācijas datu kopām, kas norādītas sadaļā 13-43. tabula 284. lpp.. Negatīvie datu punkti ir visi punkti, kas nav apzīmēti kā pozitīvi un kuru SvO₂ pārsniedz 60%.

Lai apstiprinātu un novērtētu GHI algoritma veiktspēju, tika apvienoti visi kā pozitīvi un negatīvi apzīmētie datu punkti validācijas pacientiem, kas aprakstīti sadaļā 13-44. tabula 285. lpp. un 13-45. tabula 285. lpp., un tika aprēķināti tālāk minētie veiktspējas rādītāji.

- Jutīgums: patiesi pozitīvo rezultātu skaits attiecībā pret kopējo pozitīvo datu punktu skaitu. Patiesi pozitīvi paraugi ir trauksmes, kas ģenerētas, kad paraugi apzīmēti kā pozitīvi.
- Specifiskums: patiesi negatīvo rezultātu skaits attiecībā pret kopējo negatīvo datu punktu skaitu. Patiesi negatīvi paraugi ir datu punkti, kuriem nav ģenerēta trauksme un kas arī apzīmēti kā negatīvi.
- Pozitīva prognostiskā vērtība (PPV): patiesi pozitīvo gadījumu attiecība pret kopējām pozitīvajām prognozēm.
- Negatīvā prognostiskā vērtība (NPV): patiesi negatīvo gadījumu attiecība pret kopējām negatīvajām prognozēm.
- Laukums zem uztvērēja operatora raksturlīknes (ROC AUC): mērījums, kas nosaka, cik labi algoritms atšķir pozitīvos un negatīvos paraugus.
- F1 rādītājs: harmoniskais vidējais rādītājs starp jutīgumu (atsaukšanu) un PPV (precizitāti)

GHI algoritma veiktspēja ir sniegta sadaļā 13-46. tabula 286. lpp. visiem klīniskās validācijas datu kopu pacientiem.

GHI	Jutīgums (%) [95% ticamības intervāls]	Specifiskums (%) [95% tica- mības inter- vāls]	PPV [95% tica- mības inter- vāls]	NPV [95% tica- mības inter- vāls]	ROC AUC [95% ticamības inter- vāls]	F1 rādītājs 95% ticamības inter- vāls]
75	84,4 [84,2; 84,6]	89,0 [88,9; 89,1]	83,3 [83,1; 83,5]	89,7 [89,6; 89,8]	94,3 [94,23; 94,37]	83,85 [83,73; 83,97]

13-46. tabula. Klīniskās validācijas pētījuma rezultāti — visi pacienti*

* Dati pieejami Edwards Lifesciences

13.3 Smadzeņu automātiskās regulācijas indeksa (CAI) algoritms

Smadzeņu automātiskās regulācijas indekss (CAI) ir atvasināts parametrs, kas kvantificē dinamisko relāciju starp vidējo arteriālo spiedienu (MAP) un absolūto asins skābekļa piesātinājuma līmeni (StO₂) galvas smadzeņu audos. CAI rādītājs ir paredzēts kā surogātmērījums, kas nosaka, vai galvas smadzeņu automātiskā regulācija varētu būt neskarta vai traucēta, izsakot to kā saskaņotības līmeni starp MAP (kā galvas smadzeņu perfūzijas spiediena surogātmērījumu) un galvas smadzeņu StO₂ (kā galvas smadzeņu asins plūsmas surogātmērījumu). CAI rādītājs nav pieejams pediatrijas režīmā. Informāciju par StO₂ pārraudzību ar ForeSight IQ sensoru galvas smadzeņu audos skat. ForeSight oksimetra kabeļa pievienošana 215. lpp..

Algoritms CAI saņem ievades datus no StO₂ algoritma un izmanto šos datus kopā ar MAP datiem no APCO algoritma, lai aprēķinātu abu parametru saskaņotību, un izvada CAI kā atvasināto parametru, izmantojot tendenču diagrammu un indeksa vērtību.

Parametrs CAI var uzlabot ārsta izpratni par hemodinamiskā stāvokļa izmaiņām, kas ir galvas smadzeņu desaturizācijas notikumu pamatā. Tas palīdz ārstam atpazīt/identificēt iespējamos cēloņus, piemēram, ja samazinās StO₂ un rodas klīniskie notikumi, kas saistīti ar StO₂ samazinājumu (piem., hipotensija pretēji nepietiekamam skābekļa saturam).

Parametram nav trauksmju diapazonu, un tas tiek parādīts kā skaitlis diapazonā no 0 līdz 100.

Augsta CAI vērtība nozīmē, ka MAP un StO₂ parametru saskaņotība ir lielāka, un tas norāda ārstam, ka MAP izmaiņu rezultātā var rasties vienlaicīgas galvas smadzeņu skābekļa piesātinājuma izmaiņas, jo galvas smadzeņu automātiskā regulācija, visticamāk, ir traucēta. Savukārt zema CAI vērtība nozīmē mazāku saskaņotību starp abiem parametriem, tāpēc MAP izmaiņu rezultātā var nenotikt vienlaicīgas galvas smadzeņu skābekļa piesātinājuma izmaiņas, jo smadzeņu automātiskā regulācija, visticamāk, nav traucēta.

UZMANĪBU

Neprecīzu CAI vērtību iespējamie cēloņi:

- Neprecīzi vidējā arteriālā spiediena (MAP) mērījumi
- Neprecīzi galvas smadzeņu StO₂ mērījumi

Klīniskās validācijas pētījumi (skat. Klīniskā validācija 288. lpp.) liecina, ka CAI tādējādi ir izmantojams pacientiem tipiskā hemodinamikas rādītāju svārstību diapazonā un klīniskajā praksē ķirurģisko procedūru gadījumā. Lai informētu ārstus par pētīto pacientu populāciju, pētīto operāciju veidi ir noteikti šeit: 13-48. tabula 288. lpp..

13.3.1 Lietošanas indikācijas

Galvas smadzeņu automātiskās regulācijas indeksa (CAI) algoritms ir informatīvs indekss, kas paredzēts kā surogātmērījums, lai noskaidrotu, vai galvas smadzeņu automātiskā regulācija varētu būt neskarta vai traucēta, un to izsaka saskaņotības līmenis vai tās trūkums, salīdzinot vidējo arteriālo spiedienu (MAP) un absolūto asins skābekļa piesātinājuma līmeni (StO₂) pacienta galvas smadzeņu audos. MAP iegūst HemoSphere spiedienkabelis, un parametra StO₂ vērtību iegūst ForeSight oksimetra kabelis. CAI ir paredzēts lietošanai pacientiem, kuru vecums ir vairāk nekā 18 gadi un kuriem tiek veikta uzlabota hemodinamiskā stāvokļa pārraudzība. CAI rādītājs nav indicēts lietošanai, ārstējot jebkādas saslimšanas vai stāvokļus, un nedrīkst pieņemt lēmumus par terapiju, izmantojot tikai galvas smadzeņu automātiskās regulācijas indeksa (CAI) algoritmu.

13.3.2 Paredzētais lietojums

Galvas smadzeņu automātiskās regulācijas indeksa (CAI) algoritmu paredzēts izmantot tikai kvalificētiem vai apmācītiem darbiniekiem slimnīcas intensīvās aprūpes vidē. Algoritms paredzēts kā surogātmērījums, kas nosaka, vai galvas smadzeņu automātiskā regulācija varētu būt neskarta vai traucēta, izsakot to kā saskaņotības līmeni vai trūkumu starp MAP un galvas smadzeņu StO₂.

13.3.3 Smadzeņu adaptīvā indeksa (CAI) parametra rādījums

CAI vērtība tiek atjaunināta ik pēc 20 sekundēm un parāda vērtību diapazonā no 0 līdz 100. Šī vērtība ir vienāda ar saskaņotības līmeni starp vidējo arteriālo spiedienu (MAP) un absolūto asins skābekļa piesātinājuma līmeni (StO₂) galvas smadzeņu audos. Augsta CAI vērtība (CAI ≥ 45) nozīmē, ka MAP un StO₂ parametru saskaņotība ir lielāka, un tas norāda ārstam, ka MAP izmaiņu rezultātā var rasties vienlaicīgas galvas smadzeņu skābekļa piesātinājuma izmaiņas, jo galvas smadzeņu automātiskā regulācija, visticamāk, ir traucēta. Savukārt zema CAI vērtība (CAI < 45) nozīmē mazāku saskaņotību starp abiem parametriem, tāpēc MAP izmaiņu rezultātā var nenotikt vienlaicīgas galvas smadzeņu skābekļa piesātinājuma izmaiņas, jo smadzeņu automātiskā regulācija, visticamāk, nav traucēta.

Parametru elementā MAP avots ir parādīts, kā redzams šeit: 13-12. att. 288. lpp..

13-12. attēls. CAI galvenā parametra tendenču rādījums un parametra elements

13-47. tabula 288. lpp.: šeit ir detalizēts CAI parametra vērtības skaidrojums un interpretācija, kā arī ieteiktā lietotāja darbība.

BRĪDINĀJUMS

Galvas smadzeņu automātiskas regulācijas indekss (CAI), nedrīkst lietot kā vienīgo rādītāju pacientu ārstēšanai. Pirms ārstēšanas sākuma ieteicams pārbaudīt visus pacienta hemodinamikas rādītājus.

CAI vērtība	Vispārīga interpretācija	leteicamā lietotāja rīcība		
CAI < 45	MAP un StO ₂ saistība ir vāja/mērena. Iespējamās MAP izmaiņas, visticamāk, nav saistītas ar StO ₂ izmaiņām. Vistica- māk, galvas smadzeņu automātiskā re- gulācija nav traucēta.	Nav		
CAI ≥ 45	MAP un StO ₂ saistība ir spēcīga. Iespēja- mās MAP izmaiņas, visticamāk, ir saistī- tas ar vienlaicīgām StO ₂ izmaiņām. Vis- ticamāk, galvas smadzeņu automātiskā regulācija ir traucēta.	Pārskatiet atsevišķās MAP un StO ₂ ten- dences. Ņemiet vērā, ka potenciālās MAP izmaiņas, visticamāk, ir saistītas ar vienlaicīgām StO ₂ izmaiņām (piem., MAP kritums var būt saistīts ar StO ₂ kritumu) un ka galvas smadzeņu auto- mātiskā regulācijas spēja, visticamāk, ir traucēta.		

13-47. tabula. Vispārīgās interpretācijas un ieteiktās darbības attiecībā uz CAI vērtībām

13.3.4 Klīniskā validācija

Šai analīzei kopā tika izmantoti 50 klīniskie gadījumi (sirds operācijas un vispārējas operācijas) trīs dažādos centros (Northwestern University, Čikāga, ASV; UC Davis, Sakramento, ASV; Amsterdam UMC, Amsterdama, Nīderlande). 13-48. tabula 288. lpp.: šeit norādīti katra centra pacientu numuri, pacientu demogrāfiskie dati un operācijas veidi no visiem trim centriem.

rs	Pacientu skaits	Vecums (ga- di)	Dzimums	Augums (cm)	Svars (kg)
University,	18	66±10	4 sievietes	173±13	89±30

13-48. tabula. Pacienta demogrāfiskie dati

Centrs	Pacientu skaits	Vecums (ga- di)	Dzimums	Augums (cm)	Svars (kg)	Operācijas veids
Northwestern University,	18	66±10	4 sievietes	173±13	89±30	Sirds operācija
Čikāga, ASV			14 vīrieši			(N=12)
						Vispārēja ope- rācija
						(N=6)
UC Davis,	9	61±17	4 sievietes	169±9	79±20	Vispārēja ope-
Sakramento, ASV			5 vīrieši			rācija
Centrs	Pacientu skaits	Vecums (ga- di)	Dzimums	Augums (cm)	Svars (kg)	Operācijas veids
----------------	--------------------	--------------------	-------------	-------------	------------	--------------------------
Amsterdam UMC,	23	58±16	7 sievietes	180±11	83±15	Sirds operācija
Amsterdama,			16 vīrieši			(N=16)
Nīderlande						Vispārēja ope- rācija
						(N=7)

13.3.5 Klīniskās validācijas rezultāti

Lai validētu CAI, tika veikta uztvērēja operatora raksturlīknes (ROC) analīze, lai novērtētu tā spēju atšķirt neskartu galvas smadzeņu automātiskās regulācijas (I klases) statusus no traucētas galvas smadzeņu automātiskās regulācijas (I klases) statusus no traucētas galvas smadzeņu automātiskās regulācijas (I klases) statusus no traucētas galvas smadzeņu automātiskās (I klases) statusus no traucētas galvas smadzeņu automātiskās regulācijas (I klases) statusus no traucētas galvas smadzeņu automātiskās (I klases) statusus no traucētas galvas smadzeņu automātiskās regulācijas (I klases) statusus no traucētas galvas smadzeņu automātiskās (CBF) un MAP līkņu retrospektīvu analīzi, lai iegūtu izmantotos laika sēriju klīniskos datus.

Izmantojot šos datus, aprēķināta tālāk norādītā veiktspējas raksturlielumi.

- Jutīgums: patiesi pozitīvo rezultātu rādītājs; patiesi pozitīvo rezultātu skaits attiecībā pret kopējo pozitīvo notikumu skaitu. TP/P=TP/(TP+FN). Patiesi pozitīvi (TP) rezultāti definēti kā II klases (traucēta galvas smadzeņu automātiskā regulācija) datu punkti ar atbilstošu CAI vērtību, kas ir lielāka par vai vienāda ar norādītu robežvērtību. Viltus negatīvi (FN) rezultāti definēti kā II klases (traucēta galvas smadzeņu automātiskā regulācija) datu punkti ar atbilstošu CAI vērtību, kas ir mazāka par norādīto robežvērtību.
- Specifiskums: patiesi negatīvo rezultātu rādītājs; patiesi negatīvo rezultātu skaits attiecībā pret kopējo negatīvo notikumu skaitu. TN/N=TN/(TN+FP). Patiesi negatīvi (TN) rezultāti definēti kā I klases (neskarta galvas smadzeņu automātiskā regulācija) datu punkti ar atbilstošu CAI vērtību, kas ir mazāka par norādītu robežvērtību. Viltus pozitīvi (FP) rezultāti definēti kā I klases (neskarta galvas smadzeņu automātiskā regulācija) datu punkti ar atbilstošu CAI vērtību, kas ir norādītu robežvērtību.
- ROC AUC: laukums zem ROC līknes (AUC) apkopo veiktspējas rādītājus kā vienu skaitli (no 0,5 līdz 1) ar lielāku AUC, kas saistīta ar labāku algoritma veiktspēju.

CAI algoritma veiktspējas mērķi definēti, kā minēts tālāk.

Jutīgums un specifiskums ≥ 80% pie robežvērtības 45.

Parametra CAI veiktspēja izvēlētajai robežvērtībai 45 norādīta tālāk 13-49. tabula 289. lpp..

CAI	Jutīgums (%) [95% ticamības	Specifiskums (%) [95% ticamī-	ROC AUC [95% ticamības in-
	intervāls]	bas intervāls]	tervāls]
45	82	94	0,92
	[75; 88]	[91; 96]	[0,89; 0,94]

13-49. tabula. ROC analīzes rezultāti klīniskajiem datiem (N=50)

13-50. tabula 289. lpp.: šeit pieejama kļūdu matrica, kas izmantota, lai aprēķinātu jutīgumu/specifiskumu CAI robežvērtībai 45.

		Smadzeņu automātiskā regulācija		
		Pozitīvs (traucēta)	Negatīvs (neskarta)	
CAI	Pozitīvs	1812	493	
	(CAI ≥ 45)	(TP)	(FP)	
	Negatīvs	392	7851	
	(CAI < 45)	(FN)	(TN)	

13-50. tabula. CAI kļūdu matrica norādītajai robežvērtībai 45

Turklāt sadaļā 13-51. tabula 290. lpp. norādīts laiks procentuālā izteiksmē, kad CAI < 45, un laiks procentuālā izteiksmē, kad CAI ≥ 45, attiecībā uz datu kopām, kas iekļautas ārējos validācijas pētījumos (aprakstīti šeit: 13-49. tabula 289. lpp.).

Datu kopa	Laiks procentuālā izteiksmē, kad CAI < 45	Laiks procentuālā izteiksmē, kad CAI ≥ 45
Ārējā klīniskā validācija (N=50)	78,15	21,85

Lai novērtēto iespējamos blakusefektus attiecībā uz CAI veiktspēju, ROC analīze tika atkārtota katram centram atsevišķi. Rezultātu kopsavilkums pieejams šeit: 13-52. tabula 290. lpp., 13-53. tabula 290. lpp. un 13-54. tabula 290. lpp.. Rezultāti parāda, ka CAI veiktspēja ir konsekventa dažādos centros, ko pierāda gandrīz identiskie AUC rādītāji. AUC ticamības intervāli, jutīgums un specifiskums dažādos centros atšķiras, jo atšķiras centros reģistrēto pacientu skaits, kā arī pozitīvo un/vai negatīvo notikumus skaits šiem pacientiem.

13-52. tabula. ROC analīzes rezultāti UC Davis klīniskajiem datiem (N=9)

CAI	Jutīgums (%) [95% ticamības	Specifiskums (%) [95% ticamī-	ROC AUC [95% ticamības in-
	intervāls]	bas intervāls]	tervāls]
45	82	89	0,90
	[66; 93]	[67; 98]	[0,77; 0,96]

13-53. tabula. ROC analīzes rezultāti Northwestern University klīniskajiem datiem (N=18)

CAI	Jutīgums (%) [95% ticamības	Specifiskums (%) [95% ticamī-	ROC AUC [95% ticamības in-
	intervāls]	bas intervāls]	tervāls]
45	74	93	0,87
	[61; 87]	[89; 98]	[0,79; 0,95]

13-54. tabula. ROC analīzes rezultāti Amsterdam UMC klīniskajiem datiem (N=23)

CAI	Jutīgums (%) [95% ticamības	Specifiskums (%) [95% ticamī-	ROC AUC [95% ticamības in-	
	intervāls]	bas intervāls]	tervāls]	
45	84	96	0,93	
	[74; 89]	[94; 97]	[0,89; 0,96]	

Piezīme

Klīniski optimālā robežvērtība 45 CAI algoritmam ir definēta, izmantojot datu kopas, kas ir pilnībā nošķirtas un neatkarīgas no ārējās klīniskās validācijas datu kopām. Kā parādīts sadaļā 13-49. tabula 289. lpp., CAI ar izvēlēto robežvērtību 45 var precīzi atšķirt traucētas automātiskās regulācijas stāvokļus no neskartas automātiskās regulācijas stāvokļiem.

leguvumu-risku analīze

CAI rādītājs paredzēts kā surogātmērījums, kas nosaka, vai galvas smadzeņu automātiskā regulācija varētu būt neskarta vai traucēta, izsakot to kā saskaņotības līmeni vai trūkumu starp diviem esošiem hemodinamiskajiem parametriem MAP un StO₂ galvas smadzeņu audos. ROC analīze, salīdzinot ar traucētas un neskartas galvas smadzeņu automātiskās regulācijas zelta standarta etiķetēm, parāda, ka CAI var precīzi atšķirt traucētas galvas smadzeņu automātiskās regulācijas stāvokļus no netraucētas galvas smadzeņu automātiskās regulācijas stāvokļiem, kad spēkā ir izvēlētā robežvērtība 45. Traucētas un neskartas galvas smadzeņu automātiskās regulācijas sakritība starp CAI un zelta standarta etiķetēm ir spēcīga, bet nav nevainojama. Tomēr ieguvumi atsver riskus, jo CAI var uzlabot ārsta izpratni par MAP izmaiņu iespējamo ietekmi uz galvas smadzeņu perfūziju.

Kaut gan CAI rādītājs tiek parādīts monitorā kā indeksa vērtība un tendenču grafiks, gan StO₂, gan MAP tendences joprojām tiek atsevišķi rādītas monitorā, lai ārsts varētu tās pārskatīt un izmantot ārstēšanas lēmumu pieņemšanā, pamatojoties uz šīm atsevišķajām vērtībām. CAI rādītājs nav indicēts lietošanai, ārstējot jebkādas saslimšanas vai stāvokļus, un nedrīkst pieņemt lēmumus par terapiju, izmantojot tikai galvas smadzeņu automātiskās regulācijas indeksa (CAI) vērtību.

13.4 Atbalstīta šķidrumu pārvaldība

Acumen atbalstītās šķidrumu pārvaldības (AFM) programmatūras funkcija sniedz atbalstu klīnisko lēmumu pieņemšanai par pacienta šķidrumu pārvaldību.

13.4.1 levads

BRĪDINĀJUMS

Pacienta ārstēšanas laikā nedrīkst paļauties tikai uz atbalstītās šķidruma pārvaldības funkciju. Lai izvērtētu reakciju uz šķidrumu, visas pārraudzības sesijas laikā ieteicams pārskatīt pacienta hemodinamiskos rādītājus.

Sesijas laikā atbalstītās šķidrumu pārvaldības (AFM) funkcija darbojas dažādos stāvokļos. Katrs no šiem stāvokļiem ir aprakstīts šeit: 13-55. tabula 291. lpp.

Stāvoklis	AFM informācijas paneļa pa- ziņojums	Definīcija	
Parādīta uzvedne	leteikta bolus injekcija/leteikta testa bolus injekcija	Paziņojums, kas norāda lietotājam veikt kādu no šīm darbībām: 1) pieņemt un informēt monitoru par šķidruma ievadīšanas sāku- mu vai 2) noraidīt ieteikumu.	
Nav parādīta uzved- ne	Šķidrums nav ieteikts	Šķidrums nav ieteicams.	
Noraidīt	AFM ieteikumi apturēti	Lietotāja darbība, ar kuru tiek noraidīta AFM uzvedne, tādējādi piemērojot AFM funkcijai 5 minūšu klusuma periodu, kurā netiek saņemti jauni paziņojumi.	
Pieņemts	Tiek veikta bolus injekcija	Šķidruma bolus injekcija, ko lietotājs ir pieņēmis un izvēlējies tā ievadīšanu.Pēc Lietotāja bolus palaišanas var tikt parādīts a ziņojums "Tiek veikta bolus injekcija" .	
Analīze noraidīta		Bolus injekcijas šķidrums, kura analīzi lietotājs ir noraidījis un kurš netiks nodrošināts AFM programmatūrai analīzes veikšanai.	
Pabeigts	Bolus injekcija pabeigta	Lietotāja pabeigta bolus šķidruma injekcija.	
Notiek analīze	Bolus injekcija pabeigta; Notiek hemodinamiskās reakcijas ana- līze	AFM algoritma analizēta šķidruma bolus injekcija. Tā tika ievadī- ta, ievērojot norādīto ātrumu un tilpuma ierobežojumus, un ir pieejama nepieciešamā informācija, lai izvērtētu hemodinamisko reakciju uz šķidrumu.	

13-55. tabula. AFM algoritma stāvokļi

13.4.2 Darbības princips

AFM programmatūras funkcija ir izstrādāta, lai vadītu optimālu intravenozo šķidrumu ievadīšanu. Tā ietver uz noteikumiem balstītu algoritmu, kas sniedz šķidrumu pārvaldības ieteikumus, atpazīstot reakciju veidus uz šķidrumiem un izmantojot pacienta hemodinamiskos datus un iepriekšējās reakcijas uz šķidrumu ievadīšanu. Pastāv tālāk norādītās ievades.

 Lietotāja iestatījumi (t. i., Šķidruma plūsmas stratēģija [vēlamās izmaiņas sistoles tilpumā: 10%, 15% vai 20%], Ķirurģijas režīms [Atvērts vai Laparoskopija/guļus uz vēdera] un Šķidruma trasēšana [Šķidruma mērītājs vai Manuāls]).

- Hemodinamiskie dati no arteriālā spiediena balstītas analīzes (sirdsdarbības ātrums [PR], vidējais arteriālais spiediens [MAP], sistoles tilpums [SV], sistoles tilpuma variācija [SVV], sistēmiskā asinsvadu pretestība [SVR] un SV izmaiņu ātrums pēdējo divu minūšu periodā).
- Šķidruma ievadīšanas dati (šķidruma bolus injekcijas sākuma laiks un apturēšanas laiks, šķidruma bolus injekcijas tilpums).
- Reakciju uz šķidrumu nosaka pēc sistoles tilpuma izmaiņām, ko mēra ar Acumen IQ sensoru, savukārt AFM algoritma šķidrumu ieteikumi ir balstīti uz paredzamo sistoles tilpuma pieaugumu, ko daļēji aprēķina, mērot reakciju uz šķidrumu. Šī prognoze ir balstīta uz informāciju, kas iegūta no tālāk norādītajiem datiem.
 - Pacientu populācijas modelis. Izmanto datus par attiecībām starp sistoles tilpuma procentuālo pieaugumu (%ΔSV) un sistoles tilpuma variāciju (SVV), kas iegūti no pacientu reakcijas uz 500 ml šķidruma, kurš ievadīts dažādos SVV līmeņos (N = 413 pacienti).¹

¹ Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a "gray zone" approach. Anesthesiology. 2011 Aug; 115(2): 231-41.

• **Pacienta individuālā bolus injekciju vēsture.** Izmanto datus par pašreiz pārraudzītā pacienta reakciju uz šķidruma ievadīšanu.

Informācijas kopums algoritmam ļauj noteikt delta sistoles tilpumu, nosakot bolus injekcijas, kas tika ievadītas līdzīga hemodinamiskā stāvokļa gadījumā, kā arī apkopot minētās reakcijas, ņemot vērā sistemātiskās nobīdes (proti, modelēt pacienta faktiskās reakcijas uz šķidrumu palielināšanos vai samazināšanos) un izvērtējot prognozi atbilstoši pacienta bolus injekcijas vēstures informācijas kvalitātei, lai nodrošinātu galīgo prognozi.

- Galīgā prognoze tiek salīdzināta ar izvēlēto šķidruma plūsmas stratēģiju, lai noteiktu, vai jāsniedz šķidruma ieteikums. Ja prognozētais delta sistoles tilpums ir lielāks par atlasīto šķidruma plūsmas stratēģiju, algoritma izvade ir šķidruma ieteikuma uzvedne, kas redzama hemodinamiskā stāvokļa monitorā. Ja prognozētais sistoles tilpums nav lielāks par atlasīto šķidruma plūsmas stratēģiju, algoritms nesniedz šķidruma ieteikumu, vai ja ir ierobežota informācija par pacienta bolus injekciju vēsturi, algoritms var ieteikt testa bolus. Papildinformāciju par iespējamo AFM algoritma statusu skatiet šeit: 13-56. tabula 297. lpp.
- AFM programmatūras funkcijas sniegtie šķidrumu ieteikumi koncentrējas uz SV un CO neatkarīgi no MAP. Tāpēc AFM var ieteikt šķidrumu, ja pacients ir normotensīvs. Pirms AFM algoritma ieteikuma vai AFM algoritma testa ieteikuma akceptēšanas ir ieteicams pilnībā pārskatīt pacienta hemodinamisko statusu.

UZMANĪBU

Atbalstītās šķidruma pārvaldības programmatūras funkcija paļaujas uz ārsta sniegto informāciju, lai precīzi novērtētu reakciju uz šķidrumu.

Ir svarīgi, lai būtu atlasīts atbilstošs **Ķirurģijas režīms** un vēlamā **Šķidruma plūsmas stratēģija**. Atlasītais **Ķirurģijas režīms** un **Šķidruma plūsmas stratēģija** ietekmē AFM šķidrumu ieteikumus. Nepareizi atlasīts **Ķirurģijas režīms** vai **Šķidruma plūsmas stratēģija** var ietekmēt AFM ieteikumu biežumu. Ir svarīgi arī, lai sistēmā būtu ievadīta pareiza informācija par šķidrumu ievadīšanu (tilpums un ilgums). Papildinformāciju par iespējām **Šķidruma plūsmas stratēģija** un **Ķirurģijas režīms** skatiet šeit: Atbalstītas šķidrumu pārvaldības iestatījumi 295. Ipp. Papildinformāciju par šķidrumu ievadīšanu skatiet šeit: Šķidrumu pārvaldība, izmantojot AFM programmatūras funkciju 298. lpp.

Ja AFM programmatūras funkcija paredz, ka pacients reaģēs uz šķidrumu, tā sniedz ziņojumu, kas norāda, ka šķidruma ievadīšana var uzlabot pacienta hemodinamisko stāvokli. Ja AFM programmatūras funkcija paredz, ka pacients nereaģēs uz šķidrumu, sistēma neiesaka šķidruma ievadīšanu.

AFM funkcija attēlo arī attiecīgos hemodinamiskos parametrus, kā arī nodrošina pašreizējā pacienta statusa un kopējā katram pacientam ievadītā šķidruma tilpuma reāllaika trasēšanu. AFM funkcija ir pieejama, ja spieķkaula artērijas katetram ir pievienots Acumen IQ sensors.

UZMANĪBU

AFM funkcijas sniegtos šķidrumu pārvaldības ieteikumus var ietekmēt šādi faktori:

- neprecīzi FT-CO mērījumi;
- akūtas izmaiņas FT-CO mērījumos, kas ir sekundāras attiecībā pret vazoaktīvo zāļu ievadīšanu, pacienta novietojuma maiņu vai ķirurģisku iejaukšanos;
- asiņošana, kuras ātrums ir līdzvērtīgs vai lielāks par šķidruma ievadīšanas ātrumu;
- arteriālās caurulītes traucējumi.

Pirms AFM ieteikumu ievērošanas vienmēr pārskatiet pacienta hemodinamisko stāvokli.

Lai sniegtu šķidrumu pārvaldības ieteikumus, AFM programmatūras funkcijai ir nepieciešams precīzs sistoles tilpuma variācijas (SVV) mērījums. Pacientiem jābūt:

- mehāniski ventilētiem;
- ar ieelpas tilpumu $\ge 8 \text{ ml/kg}$.

Piezīme

Vienlaicīgi izmantojot gan AFM algoritmu, gan HPI parametru viedās trauksmes, ir svarīgi ņemt vērā, ka AFM algoritma šķidrumu ieteikumi ir balstīti uz šķidrumu reakcijas prognozi, savukārt HPI parametru viedās trauksmes ir balstītas uz iespējamo iekšējo mehānismu identificēšanu, lai novērstu vai ārstētu hipotensiju. Abas minētās programmatūras funkcijas ņem vērā dažādus mērķa rādītājus un hemodinamiskos apstākļus, tāpēc tie jāizvērtē neatkarīgi viens no otra. Pirms piemērotākās rīcības noteikšanas jāpārskata pacienta pašreizējā hemodinamika. Lai iegūtu papildinformāciju par minēto funkciju, skatiet Acumen Hypotension Prediction Index (HPI) programmatūras funkcija 239. lpp.

13.4.3 AFM programmatūras funkcijas palīdzības ekrāni

AFM programmatūras palīdzības ekrāni ir pieejami, lai sniegtu lietotājam atbalstu vispārīgu jautājumu risināšanā. Lai piekļūtu AFM algoritma palīdzības ekrāniem, pieskarieties palīdzības ikonai AFM informācijas

AFM informācijas panelis ir pieejams sānu panelī Atbalstīta šķidrumu pārvaldība.

?

AFM algoritma palīdzības ekrānos ir informācija par to, kā sākt izmantot AFM funkciju, kā arī vispārīgi jautājumi par sistēmas darbību. Katrā AFM algoritma palīdzības ekrānā pieskarieties jautājumam, kas jūs interesē, un skatiet īsu atbildi. Lai iegūtu papildinformāciju, sazinieties ar Edwards pārstāvi.

13.4.4 AFM programmatūras funkcijas sākšana vai restartēšana

1. Lai nodrošinātu precīzu pārraudzību, Acumen IQ sensors ir jānullē līdz atmosfēras spiedienam. Pieskarieties

ikonai **Nulle** navigācijas joslā VAI

Nospiediet fizisko nullēšanas pogu kas atrodas tieši uz spiedienkabeļa (tikai modelim HEMPSC100), un turiet to nospiestu trīs sekundes (skat. 9-1. att. 166. lpp.). Detalizētu informāciju par pārraudzību ar HemoSphere spiedienkabeli un Acumen IQ sensoru skat. FloTrac sensora, FloTrac Jr sensora un Acumen IQ sensora pārraudzība 168. lpp..

2. Pieskarieties ikonai **Klīniskie rīki** → pogai **Atbalstīta šķidrumu pārvaldība**. Ja ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet **Atbalstīta šķidrumu pārvaldība**.

Piezīme

Ja atbalstītā šķidrumu pārvaldība tiek sākta aktīvas GDT trasēšanas sesijas laikā, lietotājs saņem paziņojumu, ka tiks izbeigta esošā trasēšanas sesija.

- lestatiet vēlamos AFM iestatījumus vienumiem Ķirurģijas režīms (Laparoskopija/guļus uz vēdera vai Atvērts), Šķidruma plūsmas stratēģija (10%, 15% vai 20%). Skat. Atbalstītas šķidrumu pārvaldības iestatījumi 295. lpp.
- 4. Ar papildtastatūru ievadiet parametru **Maksimālais Izmeklējuma Tilpums**. Vērtības ievadīšana ir nepieciešama AFM sesijas sākšanai.

Maksimālais izmeklējuma tilpums nodrošina lietotājam paredzēto šķidruma tilpumu visam izmeklējumam, balstoties uz pieejamo informāciju izmeklējuma sākumā. Pacienta šķidrumu vajadzības izmeklējuma gaitā mainās, tāpēc šo vērtību nevar uzskatīt kā vadlīniju un absolūtu robežvērtību starp optimālu un pārmērīgu šķidruma ievadīšanu.

Aktīvas AFM sesijas laikā statusa joslā tiek parādīta trauksme, ja kopējais ar AFM funkciju ievadītais šķidrums tuvojas (līdz 500 ml) vai pārsniedz iepriekš iestatīto **Maksimālais izmeklējuma tilpums**, lai izvairītos no iespējamas šķidruma pārslodzes. **Maksimālais izmeklējuma tilpums** vērtība neierobežo AFM funkcijas darbību un neietekmē AFM šķidrumu ieteikumus. Šo vērtību var mainīt AFM iestatījumu ekrānā jebkurā

AFM informācijas panelī.

Ja AFM sesijas laikā notiek elektroenerģijas padeves pārrāvums, pēc elektroenerģijas padeves atjaunošanās sesija atkal jāatsāk. Ja viena pacienta pārraudzība tiek atsākta pēc monitora ieslēgšanas, pašreizējam pacientam ievadīto bolus injekciju vēsture tiek notīrīta, taču kopējais ar AFM funkciju ievadītais tilpums un **Maksimālais izmeklējuma tilpums** vērtība saglabājas.

5. AFM informācijas panelī pieskarieties pogai Inicializēt.

13-13. attēls. AFM algoritma informācijas panelis — sesijas inicializācija

13.4.5 AFM informācijas paneļa attēlojums

AFM informācijas paneli (redzams šeit: 13-13. att. 295. lpp.) var skatīt sānu panelī, kad AFM sesija ir aktīva. AFM

informācijas paneli jebkurā laikā var samazināt, pieskaroties **Klīniskie rīki** ikonai **etta b**navigācijas joslā. Ja AFM informācijas panelis ir samazināts, informācijas joslā ir redzama šķidruma statusa ikona. Lai atjaunotu

AFM informācijas paneli sānu panelī, pieskarieties šķidruma statusa ikonai **kon**ai informācijas joslā vai piekļūstiet tam, izmantojot sānu paneli. Informācijas joslas ikonas skat. 13-56. tabula 297. lpp..

13.4.6 Atbalstītas šķidrumu pārvaldības iestatījumi

Pārskatiet visus iestatījumus, pirms sākt AFM sesiju. AFM sesiju nevar sākt, ja nav nullēts pievienotais Acumen IQ sensors un iestatīts **Maksimālais izmeklējuma tilpums**. Lai pielāgotu ar atbalstītas šķidrumu pārvaldības

funkciju saistītos iestatījumus, pieskarieties iestatījumu ikonai AFM informācijas paneļa labajā malā.

13.4.6.1 Šķidruma trasēšana

Parametram **Šķidruma trasēšana** atlasiet vērtību **Šķidruma mērītājs** vai **Manuāls**, ar bultiņām pārslēdzoties starp izvēlnes opcijām.

Režīmā **Manuāls** lietotājs ir atbildīgs par ievadītā bolus šķidruma tilpuma norādīšanu. Izmantojot šķidruma mērītāju, lietotājs ievada bolus mērķa tilpumu, un šķidruma mērītājs izseko šķidruma ievades sākumu, beigas un plūsmas ātrumu, kad lietotājs ir atvēris un aizvēris šķidruma līniju.

Piezīme

Pēc noklusējuma AFM funkcijas inicializēšanai nepieciešams savienojums ar šķidruma mērītāju. AFM funkciju pēc izvēles var lietot režīmā **Manuāls**. Lai iegūtu papildinformāciju par šī uzlabotā iestatījuma maiņu, sazinieties ar vietējo Edwards pārstāvi.

13.4.6.2 Šķidruma plūsmas stratēģija

Ir svarīgi, lai būtu noteikta pareiza **Šķidruma plūsmas stratēģija**. Atlasītā šķidruma plūsmas stratēģija ietekmē AFM šķidruma ieteikumus. Atlasot iespēju **Šķidruma plūsmas stratēģija**, kas nav salāgota ar ārsta noteikto šķidrumu pārvaldības stratēģiju, veidosies nevēlami šķidrumu ieteikumi (piem., ārsts vēlas ierobežotu šķidruma plūsmas stratēģiju, taču AFM iestatījumos kā **Šķidruma plūsmas stratēģija** izvēlas **10%**) vai šādu ieteikumu nebūs (piem., ārsts vēlas brīvu šķidruma plūsmas stratēģiju, taču AFM iestatījumos kā **Šķidruma plūsmas stratēģija** izvēlas **20%**).

Parametram **Šķidruma plūsmas stratēģija** atlasiet vērtību **10%**, **15%** vai **20%**, ar bultiņām pārslēdzoties starp izvēlnes opcijām.

Piezīme

Šķidruma plūsmas stratēģija var noderēt, lai padarītu AFM algoritmu brīvāku (10%) vai ierobežotu tā (20%) šķidrumu ieteikumus. Noklusējuma iestatījums ir 15%. Šī vērtība norāda procentuālās izmaiņas sistoles tilpumā, reaģējot uz 500 ml bolus injekcijas šķidruma. Lai izmantotu AFM programmatūras funkciju, nav jāievada 500 ml bolus injekcijas šķidruma. Procentuālās izmaiņas tiek koriģētas, lai nodrošinātu izlīdzinājumu ar ievadītā šķidruma apjomu. Mazāka procentuālā vērtība norāda uz zemāku šķidruma ieteikuma robežvērtību, tāpēc tas ir brīvāks iestatījums.

13.4.6.3 Ķirurģijas režīms

Parametram **Ķirurģijas režīms** atlasiet vērtību Atvērtsvai **Laparoskopija/guļus uz vēdera**, ar bultiņām pārslēdzot izvēlnes opcijas.

Piezīme

Ir svarīgi, lai būtu atlasīts atbilstošs **Ķirurģijas režīms**. Atlasītais ķirurģijas režīms ietekmē to, kā AFM algoritms interpretē SVV. Nepareizi atlasot **Ķirurģijas režīms**, var tikt sniegti neatbilstoši šķidrumu ieteikumi. Ja pacientam tiek veikta laparoskopiska procedūra vai viņš atrodas guļus stāvoklī un iestatījumam **Ķirurģijas režīms** ir atlasīta

opcija **Atvērts**, AFM var sniegt papildu šķidrumu ieteikumus. Ja pacientam tiek veikta **Atvērts** procedūra un iestatījumam **Ķirurģijas režīms** ir atlasīta opcija **Laparoskopija/guļus uz vēdera**, AFM algoritms var aizturēt šķidrumu ieteikumus.

13.4.6.4 Maksimālais izmeklējuma tilpums

Maksimālais izmeklējuma tilpums nodrošina lietotājam paredzētā mērķa šķidruma tilpuma ievadīšanu visa izmeklējuma apjomam; to iestata ārsts izmeklējuma sākumā, balstoties uz konkrētajā brīdī pieejamajiem klīniskajiem datiem. Pacienta šķidrumu vajadzības izmeklējuma gaitā mainās, tāpēc šo vērtību nevar uzskatīt par noteicošo un absolūtu robežvērtību starp optimālu un pārmērīgu šķidruma ievadīšanu. Aktīvas AFM sesijas laikā tiek parādīts vizuāls paziņojums, kad kopējais ar AFM funkciju ievadītais šķidrums tuvojas (līdz 500 ml) vai pārsniedz iepriekš iestatīto Maksimālais izmeklējuma tilpums, lai izvairītos no iespējamas šķidruma pārslodzes. Maksimālais izmeklējuma vērtība neierobežo AFM funkcijas darbību un neietekmē AFM šķidrumu ieteikumus. Šīs vērtības ievadīšana ir nepieciešama, lai sāktu AFM sesiju, un to var mainīt jebkurā brīdī AFM sesijas laikā paziņojumā vai AFM iestatījumu ekrānā. Lai iestatītu Maksimālais izmeklējuma tilpums, kad AFM sesija vēl nav sākta, nospiediet pogu Maksimālais izmeklējuma tilpums un ar papildtastatūru ievadiet tilpumu AFM sesijai.

Maksimālais izmeklējuma tilpums	
ml	

Ja **Maksimālais izmeklējuma tilpums** jau ir ievadīts, pašreizējā **Maksimālais izmeklējuma tilpums** vērtība ir redzama iestatījumu ekrānā. Lai mainītu **Maksimālais izmeklējuma tilpums**, pieskarieties pogai un ievadiet jauno vērtību, izmantojot papildtastatūru.

Piezīme

Ja vēlaties mainīt **Maksimālais izmeklējuma tilpums**, jaunajai vērtībai jābūt lielākai par kopējo tilpumu, kas ir norādīts AFM informācijas panelī.

AFM šķidruma statu- sa ikona informācijas joslā	AFM šķidruma statu- sa ikona AFM infor- mācijas panelī	Nozīme
	Inicializēšana	Notiek AFM sesijas inicializācija.
	I	leteicams šķidrums. Paredzamās sistoles tilpuma % izmaiņas pārsniedz iestatījumā Šķidruma plūsmas stratēģija noteikto robežvērtību (10%, 15%, 20%). Ja AFM algo- ritms iesaka šķidrumu, galīgā prognoze ir balstīta uz datiem no populāci- jas modeļa un konkrētā pacienta bolus injekciju vēstures.

AFM šķidruma statu- sa ikona informācijas joslā	AFM šķidruma statu- sa ikona AFM infor- mācijas panelī	Nozīme
		leteikta testa bolus injekcija.
		Testa bolus injekcija ir ieteicama, lai iegūtu papildinformāciju par pacien- ta reakciju uz šķidrumu. Ja AFM algoritms iesaka testa bolus injekciju, galīgā prognoze satur nelielu vai nekādu daudzumu datu par konkrētā pacienta bolus vēsturi un galvenokārt paļaujas uz pacientu populācijas modeli, aktivizējot testa bolus injekcijas ieteikumu, ja SVV > 9% ķirurģijas režīmā Atvērts vai SVV > 12% ķirurģijas režīmā Laparoskopija/guļus uz vēdera .
		Šķidrums nav ieteicams.
		AFM programmatūras funkcija neiesaka šķidrumu (neveic AFM ieteiku- mu vai testa bolus injekciju), ja noteikti fizioloģiskie rādītāji uzrāda, ka šķidrums nav ieteicams. Šis statuss ir redzams, ja AFM programmatūras funkcija ir apguvusi, ka pacientam iepriekš nav bijusi reakcija uz šķidru- mu konkrētajā hemodinamiskajā stāvoklī, izvērtējot individuāla pacienta bolus vēsturi. Ja nav informācijas par individuālā pacienta bolus vēsturi, funkcija paļaujas uz SVV un neiesaka šķidrumu, ja SVV ≤ 9%ķirurģijas režīmā Atvērts vai SVV ≤ 12% ķirurģijas režīmā Laparoskopija/guļus uz vēdera .
	Bolus injekcija pabeigta Bolus injekcijas tiloums	Bolus injekcija ir pabeigta.
	100 mt	Pārskatiet informāciju AFM informācijas panelī un pieņemiet lēmumu par analīzi.
		AFM režīms ir pauzēts.
		AFM programmatūras funkcija neieteiks šķidrumu šāda stāvokļa gadīju- mā. Pāreja uz pauzētu stāvokli notiek, ja AFM programmatūra gaida lietotā- ja reakciju (kopējais trasētais tilpums tuvojas vai pārsniedz maksimālo izmeklējuma tilpumu), sistēma konstatē nestabilus spiediena mērījumus vai arī spiedienkabelis ir atvienots.
		AFM režīms ir atlikts.
	4m 58s	Šķidruma bolus ieteikums ir noraidīts. Tiek aktivizēts piecu minūšu tai- meris, un AFM programmatūras funkcija neiesaka šķidrumu šajā periodā.
	Natiek homodinamiekās saskaijas analītas	Bolus injekcija ir pabeigta un tiek analizēta.
U 2:55	3:02 atlikušais laiks (aptuvens)	AFM algoritms analizē hemodinamisko reakciju uz bolus injekciju. Prog- nozētais atlikušais laiks ir redzams informācijas joslā un AFM informācijas panelī. Kamēr algoritms veic bolus analīzi, poga Lietotāja bolus nebūs pieejama un lietotājs nesaņems no algoritma nekādus šķidruma ieteiku- mus.
		Tiek veikta bolus injekcija.
		Šī ikona ir redzama dažādos šķidruma līmeņos, lai norādītu, ka notiek aktīva bolus ievadīšana (manuāli vai ar šķidruma mērītāju).

13.4.7 Šķidrumu pārvaldība, izmantojot AFM programmatūras funkciju

Kad AFM algoritms ir palaists, AFM funkcija atbalsta šķidrumu optimizāciju divos veidos: iesakot vai neiesakot šķidrumu. Navigācijas joslā vai AFM informācijas panelī ir redzama ikona, kas norāda programmatūras ieteikumu (sk.: 13-56. tabula 297. lpp.). Lai ievadītu šķidrumu, kad AFM funkcija to neiesaka, atveriet šķidruma līniju (**Šķidruma mērītājs**) vai pieskarieties pogai **Lietotāja bolus** (**Manuāls**).

Izvēloties ievērot AFM šķidruma ieteikumu vai atlasot **Lietotāja bolus**, tiek parādīta uzvedne un sākas šķidruma ievadīšanas darbplūsma.

Šķidruma ievadīšanas darbplūsma tiek izmantota, lai iegūtu informāciju par šķidruma ievadīšanu, ko AFM algoritms izmanto, lai analizētu hemodinamisko reakciju uz šķidruma bolus injekciju. Gan AFM algoritma šķidruma ieteikuma, gan pieprasīta **Lietotāja bolus** gadījumā tiek ievērotas tālāk norādītās darbplūsmas. Tālāk aprakstītajās darbplūsmās ir norādītas darbības, kas lietotājam jāveic režīmā **Šķidruma mērītājs** vai **Manuāls**.

Piezīme

Pēc noklusējuma AFM funkcijas inicializēšanai nepieciešams savienojums ar šķidruma mērītāju. AFM funkciju pēc izvēles var lietot režīmā **Manuāls**. Lai iegūtu papildinformāciju par šī uzlabotā iestatījuma maiņu, sazinieties ar vietējo Edwards pārstāvi.

13.4.7.1 Šķidrumu ievadīšanas darbplūsma — Acumen IQ šķidruma mērītājs

Kad pievienots Acumen IQ šķidruma mērītājs, izmantojiet tālāk aprakstīto AFM programmatūras darbplūsmu. Acumen IQ šķidruma mērītājs ir sterila, vienreizlietojama ierīce, kas izseko šķidruma ātrumu šķidruma daudzumam, kas tiek piegādāts pacientam caur intravenozo līniju, kurai pieslēgts ar līnijas savienojumu. Norādījumus par AFM programmatūras funkcijas izmantošanu bez šķidruma mērītāja skatiet šeit: Šķidrumu ievadīšanas darbplūsma — manuālais režīms 304. lpp. Konkrētus norādījumus par ierīces ievietošanu un lietošanu, kā arī saistītos brīdinājumus, piesardzības pasākumus un piezīmes skatiet Acumen IQ šķidruma mērītāja komplektācijā ietvertajos lietošanas norādījumos. Acumen IQ šķidruma mērītājs ir saderīgs ar HemoSphere Alta AFM kabeli. HemoSphere Alta AFM kabeli var pievienot bieži lietoto kabeļu pieslēgvietai HemoSphere Alta monitorā.

- 1. Acumen IQ šķidruma mērītājs
- 2. Acumen IQ šķidruma mērītāja un HemoSphere Alta AFM kabeļa savienojums
- HemoSphere Alta AFM kabeļa savienojums ar HemoSphere Alta uzlaboto monitoru
- 5. HemoSphere Alta uzlabotais monitors
- 3. HemoSphere Alta AFM kabelis

13-14. attēls. Acumen IQ šķidruma mērītāja un HemoSphere Alta AFM kabeļa savienojuma pārskats

Acumen IQ šķidruma mērītāja pievienošanas darbības

Pilnus norādījumus par savienojuma izveidi skatiet Acumen IQ šķidruma mērītāja lietošanas instrukcijā.

- 1. Detalizētus norādījumus par šķidruma mērītāja iestatīšanu un tā savienošanu līnijā ar intravenozo līniju skatiet Acumen IQ šķidruma mērītāja lietošanas instrukcijā.
- 2. Pārliecinieties, ka orientācija ir pareiza, un pievienojiet HemoSphere Alta AFM kabeli vienai no piecām bieži lietoto kabeļu pieslēgvietām HemoSphere Alta monitora labās puses panelī.
- 3. Savienojiet Acumen IQ šķidruma mērītāju ar Acumen AFM kabeļa galu, kas norādīts ar (2) šeit: 13-14. att. 299. lpp..

Acumen IQ šķidruma mērītāja šķidrumu ievadīšanas darbplūsma

1. Atskan skaņas signāls, un AFM informācijas panelī tiek parādīts ziņojums "**leteikta bolus injekcija**", ja algoritms iesaka šķidruma bolus injekciju.

Piezīme

Ja AFM algoritms neiesaka šķidrumu pacientam un ir pagājušas 40 sekundes, ziņojums "**leteikta bolus injekcija**" pazūd no informācijas paneļa.

- Ziņojums par šķidruma ievadīšanu aicina lietotāju pārskatīt pacienta hemodinamikas rādītājus un sākt šķidruma bolus injekciju, ja lietotājs piekrīt ieteikumam. Lai noraidītu ieteikumu, pieskarieties pogai Noraidīt. Šķidruma ieteikumi tiks apturēti uz piecām minūtēm. Lai turpinātu ievadīt bolus injekciju, pārejiet uz 3. darbību.
- 3. Norādiet vērtību Šķidruma veids, izmantojot bultiņas izvēlnes opciju pārslēgšanai.

Opcijas: nātrija hlorīda injekciju šķīdums 0,9% (NaCl 0,9%), Ringera laktāta šķīdums (RL — dēvēts arī par nātrija laktāta šķīdumu un Hārtmena šķīdumu), PlasmaLyte, Dextran 40, albumīns 5%, hidroksietilciete 6%.

UZMANĪBU

Ja tiek izmantoti šķidrumi, kas nav norādīti minētajā sarakstā **Šķidruma veids**, vai izvēlēts neatbilstošs šķidruma veids, iespējama mērījumu neprecizitāte.

Piezīme

Kad ir pievienots šķidruma mērītājs, jānorāda parametrs **Šķidruma veids**.

Piezīme

Var būt gadījumi, kad AFM algoritma ieteikums ir jānoraida, ja pēc pacienta hemodinamikas rādītāju pārskatīšanas šķidruma ievadīšana nav nepieciešama, vai ķirurģiskās situācijās, kad šķidruma ievadīšana ir nepiemērota. Ņemiet vērā, ka bieža bolus ieteikumu noraidīšana var ierobežot AFM algoritma lietderīgumu turpmākas šķidruma ieteikumu sniegšanu. Lai noraidītu bolus injekcijas ieteikumu, pieskarieties pogai **Noraidīt**.

4. Lai ievadītu vēlamo tilpumu, pieskarieties pogai Mērķa bolus injekcijas tilpums. Šī darbība ir neobligāta.

Piezīme

AFM programmatūras funkcija var analizēt tikai tās šķidruma bolus injekcijas, kuru tilpums ir no 100 līdz 500 ml un kuru ievadīšanas ātrums ir no 1 līdz 10 l stundā. Ja vēlaties, lai AFM funkcija veiktu šķidruma bolus injekcijas analīzi, pārliecinieties, vai tilpums un ievadīšanas ātrums atbilst nepieciešamajiem diapazoniem.

- 5. Lai sāktu bolus ievadīšanu, atveriet šķidruma līniju.
- 6. Kad bolus ievadīšana ir sākta, AFM informācijas panelī ir redzams ziņojums "**Tiek veikta bolus injekcija**" un mērītājs, kas parāda pašreizējo ievadīto bolus tilpumu.

Kad sasniegts mērķa tilpums, krāsa ap tilpuma mērītāju kļūst zaļa.

7. Kad ievadīts vēlamais bolus tilpums, aizveriet šķidruma līniju.

Piezīme

Bolus ievadīšanas ātrums ir atkarīgs no bolus apturēšanas, līdzko ir pabeigta šķidruma ievadīšana. Nepareizs bolus ievadīšanas ātrums var ietekmēt novērtējuma precizitāti par hemodinamisko reakciju uz bolus injekcijas šķidrumu, kā arī turpmāko AFM algoritma ieteikumu uzticamību.

UZMANĪBU

Mainīgu faktoru klātbūtne bolus injekcijas ievadīšanas laikā var izraisīt nepareizus AFM programmatūras sniegtos šķidruma ieteikumus. Tāpēc bolus injekcijas, kas ievadītas mainīgu faktoru klātbūtnē, nav jāņem vērā. Iespējamie mainīgie faktori var būt šādi (bet ne tikai):

- Bolus injekcijas ievadīšanas laikā ievadīts vazoaktīvais līdzeklis
- Papildu šķidrums, kas ievadīts pēc primārās bolus injekcijas
- Pacienta pārvietošana
- Ventilatorās izmaiņas
- Ķirurģiska manipulācija
- Arteriālās caurulītes traucējumi

- * Ārēja kompresija (t.i., spiediens uz A līniju)
- * ABG parauga ņemšana, ātrā skalošana
- * Caurulītes pārmērīga slāpēšana
- Asinsvadu saspiešana
- Papildu šķidruma līnija vienlaicīgi atvērta bolus injekcijas ievadīšanas laikā
- Zināma akūta hemorāģija šķidruma ievadīšanas laikā
- Neprecīzi FT-CO mērījumi
- 8. Pārbaudiet, vai AFM algoritma informācijas panelī parādītais parametrs **Šķidruma veids** ir atbilstošs. Ja tas nav atbilstošs, pieskarieties pogai **Šķidruma veids**, lai rediģētu datus.

Mainot parametru **Šķidruma veids**, pārbaudiet, vai parādītā parametra **Bolus injekcijas tilpums** vērtība joprojām ir pareiza. Ja nepieciešams, pielāgojiet tilpumu, pieskaroties rediģēšanas ikonai blakus pogai **Bolus injekcijas tilpums**.

 Kad bolus injekcijas šķidruma ievadīšana ir pabeigta un kopējais caur AFM ievadītais tilpums tuvojas (līdz 500 ml) Maksimālais izmeklējuma tilpums vai pārsniedz to, AFM sesija tiek pārtraukta un tiek parādīts kāds no šiem ziņojumiem:

A. Kopējais trasētais tilpums tuvojas maksimālajam izmeklējuma tilpumam

B. Kopējais trasētais tilpums pārsniedz vai atbilst maksimālajam izmeklējuma tilpumam

Ja kāds no šiem paziņojumiem tiek parādīts, vēlreiz novērtējiet **Maksimālais izmeklējuma tilpums**, lai pārliecinātos, ka tas atbilst pacienta šķidrumu vajadzībām, un nepieciešamības gadījumā beidziet AFM sesiju. Kopējais ievadītais tilpums jebkurā laikā ir pieejams apskatei AFM algoritma informācijas panelī, un **Maksimālais izmeklējuma tilpums** jebkurā laikā var pārskatīt vai mainīt AFM iestatījumos, pieskaroties

iestatījumu ikonai AFM informācijas panelī. Lai iegūtu papildinformāciju, skatiet Darbplūsma, tuvojoties maksimālajam izmeklējuma tilpumam/to pārsniedzot 309. lpp.

Ja nepieciešama papildu AFM algoritma sesija tam pašam pacientam pēc tam, kad iepriekšējā sesija ir beigusies, skatiet AFM programmatūras funkcijas sākšana vai restartēšana 293. lpp. Visi sākotnējie AFM iestatījumi tiks saglabāti, izņemot **Maksimālais izmeklējuma tilpums**. Informāciju par to, kā piekļūt minētajiem iestatījumiem un tos mainīt, skatiet Atbalstītas šķidrumu pārvaldības iestatījumi 295. lpp..

10. Lai apstiprinātu pašreizējo bolus injekciju analīzei, pieskarieties pie Analizēt.

Kamēr algoritms veic bolus analīzi, poga **Lietotāja bolus** nebūs pieejama un lietotājs nesaņems no algoritma nekādus šķidruma ieteikumus.

AFM algoritms analizēs bolus injekcijas šķidrumus tikai tālāk norādītajos diapazonos.

- Bolus tilpums: 100–500 ml
- Bolus ātrums: 1–10 l/stundā

13.4.7.2 Šķidrumu ievadīšanas darbplūsma — manuālais režīms

Piezīme

Ir svarīgi, lai sistēmā būtu ievadīta pareiza informācija par šķidrumu ievadīšanu (tilpums un ilgums).

1. Atskan skaņas signāls, un AFM informācijas panelī tiek parādīts ziņojums "**leteikta bolus injekcija**", ja algoritms iesaka šķidruma bolus injekciju.

Ja AFM algoritms neiesaka šķidrumu pacientam un ir pagājušas 40 sekundes, ziņojums "**leteikta bolus** injekcija" pazūd no informācijas paneļa.

2. Ziņojums par šķidruma ievadīšanu aicina lietotāju pārskatīt pacienta hemodinamikas rādītājus un sākt šķidruma bolus injekciju, ja lietotājs piekrīt ieteikumam.

Ja tiek sākta bolus šķidruma ievadīšana, pieskarieties pie **Sākt bolus**, lai norādītu bolus sākuma laiku.

Piezīme

Var būt gadījumi, kad AFM ieteikums ir jānoraida, ja pēc pacienta hemodinamikas rādītāju pārskatīšanas šķidruma ievadīšana nav nepieciešama, vai ķirurģiskās situācijās, kad šķidruma ievadīšana ir nepiemērota. Ņemiet vērā, ka bieža bolus ieteikumu noraidīšana var ierobežot AFM algoritma lietderīgumu turpmāku šķidruma ieteikumu sniegšanu. Lai noraidītu bolus injekcijas ieteikumu, pieskarieties pogai **Noraidīt**.

Piezīme

AFM programmatūras funkcija var analizēt tikai tās šķidruma bolus injekcijas, kuru tilpums ir no 100 līdz 500 ml un kuru ievadīšanas ātrums ir no 1 līdz 10 l stundā. Ja vēlaties, lai AFM funkcija veiktu šķidruma bolus injekcijas analīzi, pārliecinieties, vai tilpums un ievadīšanas ātrums atbilst nepieciešamajiem diapazoniem.

3. Kad bolus ievadīšana ir sākta, AFM informācijas panelī ir redzams ziņojums "**Tiek veikta manuāla bolus injekcija**" līdz ar šķidruma bolus injekcijas ilgumu.

Kad bolus ievadīšana ir pabeigta, pieskarieties pogai **Apturēt Bolus**, un tiks parādīta papildtastatūra **Bolus injekcijas tilpums**.

Bolus ievadīšanas ātrums ir atkarīgs no bolus apturēšanas, līdzko ir pabeigta šķidruma ievadīšana. Nepareizs bolus ievadīšanas ātrums var ietekmēt novērtējuma precizitāti par hemodinamisko reakciju uz šķiduma bolus injekciju, kā arī turpmāko AFM ieteikumu uzticamību.

UZMANĪBU

Mainīgu faktoru klātbūtne bolus injekcijas ievadīšanas laikā var izraisīt nepareizus AFM programmatūras sniegtos šķidruma ieteikumus. Tāpēc bolus injekcijas, kas ievadītas mainīgu faktoru klātbūtnē, nav jāņem vērā. Iespējamie mainīgie faktori var būt šādi (bet ne tikai):

- Bolus injekcijas ievadīšanas laikā ievadīts vazoaktīvais līdzeklis
- Papildu šķidrums, kas ievadīts pēc primārās bolus injekcijas
- Pacienta pārvietošana
- Ventilatorās izmaiņas
- Ķirurģiska manipulācija
- Arteriālās caurulītes traucējumi
 - * Ārēja kompresija (t.i., spiediens uz A līniju)
 - * ABG parauga ņemšana, ātrā skalošana
 - * Caurulītes pārmērīga slāpēšana
- Asinsvadu saspiešana
- Papildu šķidruma līnija vienlaicīgi atvērta bolus injekcijas ievadīšanas laikā
- Zināma akūta hemorāģija šķidruma ievadīšanas laikā
- Neprecīzi FT-CO mērījumi
- 4. levadiet bolus injekcijas šķidruma tilpumu, izmantojot papildtastatūru **Bolus injekcijas tilpums**. Kad darbs ir pabeigts, pieskarieties ievades taustiņam.

Piesardzības pasākums. Aprēķinot ievadītā šķidruma daudzumu un ievadot informāciju sistēmā analīzes veikšanai, ir svarīgi pārliecināties, ka sistēmā ievadītais bolus injekcijas šķidruma tilpums ir pēc iespējas precīzāks.

- Ja sistēmā norādītais bolus tilpums ir lielāks par faktiski ievadīto, tas var tikt interpretēts kā mazāk efektīvs, kas var izraisīt turpmāko bolus ieteikumu atcelšanu, ja pacients atgriežas līdzīgā hemodinamiskā stāvoklī.
- Ja sistēmā norādītais bolus tilpums ir mazāks par faktiski ievadīto, tas var tikt interpretēts kā vairāk efektīvs, kas var izraisīt turpmāko bolus ieteikumu sniegšanu, ja pacients atgriežas līdzīgā hemodinamiskā stāvoklī.

blakus pogai **Beigu laiks** vai **Bolus injekcijas tilpums**, lai rediģētu

5. Pārbaudiet, vai AFM informācijas panelī redzamā informācija ir pareiza. Ja informācija nav pareiza,

pieskarieties rediģēšanas ikonai datus.

Uzvedne, lai analizētu hemodinamisko reakciju, kad pēc 90 sekundēm iestājas bolus injekcijas šķidruma taimauts. Ja analīze ir pieejama (**Analizēt** ir atlasāms), tā tiek automātiski izvēlēta.

6. Kad bolus injekcijas šķidruma ievadīšana ir pabeigta un kopējais caur AFM ievadītais tilpums tuvojas (līdz 500 ml) Maksimālais izmeklējuma tilpums vai pārsniedz to, AFM sesija tiek pārtraukta un tiek parādīts kāds no šiem ziņojumiem:

A. Kopējais trasētais tilpums tuvojas maksimālajam izmeklējuma tilpumam

B. Kopējais trasētais tilpums pārsniedz vai atbilst maksimālajam izmeklējuma tilpumam

Ja kāds no šiem paziņojumiem tiek parādīts, vēlreiz novērtējiet **Maksimālais izmeklējuma tilpums**, lai pārliecinātos, ka tas atbilst pacienta šķidrumu vajadzībām, un nepieciešamības gadījumā beidziet AFM sesiju. Kopējais ievadītais tilpums jebkurā laikā ir pieejams apskatei AFM informācijas panelī, un **Maksimālais izmeklējuma tilpums** jebkurā laikā var pārskatīt vai mainīt AFM iestatījumos, pieskaroties

iestatījumu ikonai AFM informācijas panelī. Lai iegūtu papildinformāciju, skatiet Darbplūsma, tuvojoties maksimālajam izmeklējuma tilpumam/to pārsniedzot 309. lpp..

Piezīme

Ja nepieciešama papildu AFM sesija tam pašam pacientam pēc tam, kad iepriekšējā sesija ir beigusies, skatiet AFM programmatūras funkcijas sākšana vai restartēšana 293. lpp.. Visi sākotnējie AFM algoritma iestatījumi tiks saglabāti, izņemot **Maksimālais izmeklējuma tilpums**. Informāciju par to, kā piekļūt minētajiem iestatījumiem un tos mainīt, skatiet Atbalstītas šķidrumu pārvaldības iestatījumi 295. lpp..

7. Lai apstiprinātu pašreizējo bolus injekciju analīzei, pieskarieties pie **Analizēt**. Lai neiekļautu pašreizējo bolus injekciju AFM algoritma turpmākajā analīzē, pieskarieties pie **Atmest**.

Ja lietotājs apstiprina pašreizējo bolus injekciju un bolus injekcijas tilpumu un ātrums atbilst AFM algoritma kritērijiem, algoritms veic bolus injekcijas analīzi.

Kamēr algoritms veic bolus analīzi, poga **Lietotāja bolus** nebūs pieejama un lietotājs nesaņems no algoritma nekādus šķidruma ieteikumus.

AFM algoritms analizēs bolus injekcijas šķidrumus tikai tālāk norādītajos diapazonos.

- Bolus tilpums: 100–500 ml
- Bolus ātrums: 1–10 l/stundā

Piezīme

Datu nepietiekamības dēļ analīze nav pieejama, ja uzreiz pirms vai pēc šķidruma bolus ievades radušās ar Acumen IQ sensoru vai AFM programmatūru saistītas tehniskās kļūmes vai arī tās joprojām ir aktīvas.

13.4.7.3 Darbplūsma, tuvojoties maksimālajam izmeklējuma tilpumam/to pārsniedzot

Kad šķidruma bolus injekcijas ievadīšana ir pabeigta un kopējais caur AFM ievadītais tilpums tuvojas (līdz 500 ml) **Maksimālais izmeklējuma tilpums** vai pārsniedz to, AFM sesija tiek pārtraukta. Ja tiek parādīts kāds no tālāk minētajiem paziņojumiem, vēlreiz novērtējiet **Maksimālais izmeklējuma tilpums**, lai pārliecinātos, ka tas atbilst pacienta šķidrumu vajadzībām, un nepieciešamības gadījumā beidziet AFM sesiju. AFM funkcija joprojām būs pauzēta, līdz tiks izvēlēta kāda no divām iespējām. Kopējais ievadītais tilpums jebkurā laikā ir pieejams apskatei AFM informācijas panelī (AFM ieteikumi/statistika, notiekošā bolus injekcija un analīze progresa sānu paneļos), un **Maksimālais izmeklējuma tilpums** jebkurā laikā var pārskatīt vai mainīt AFM

iestatījumos, pieskaroties iestatījumu ikonai AFM informācijas panelī.

A. Kopējais trasētais tilpums tuvojas maksimālajam izmeklējuma tilpumam

Tuvojoties iepriekš iestatītajam tilpumam, pieskarieties pie:

izmaiņas, lai ievadītu jaunu vērtību, izmantojot tastatūru, ja ir mainījušās pacienta šķidrumu vajadzības.
Paziņojums tiek parādīts vēlreiz, ja kopējais caur AFM ievadītais tilpums tuvojas (līdz 500 ml) Maksimālais izmeklējuma tilpums;

vai

 Nē, lai turpinātu AFM sesiju, nemainot Maksimālais izmeklējuma tilpums. Apstiprinājuma gadījumā nākamajā paziņojumā tiek norādīts, ka Maksimālais izmeklējuma tilpums ir pārsniegts.

AFM sesija tiek turpināta pēc atlases. Sesiju var arī izbeigt jebkurā laikā, izmantojot AFM iestatījumu izvēlni, kā aprakstīts sadaļā AFM algoritma sesijas pauzēšana vai izbeigšana 310. lpp.

B. Kopējais trasētais tilpums pārsniedz vai atbilst maksimālajam izmeklējuma tilpumam

Pārsniedzot iepriekš iestatīto tilpumu, pieskarieties pie:

• **izmaiņas**, lai ievadītu jaunu tilpumu, ja tiek pieņemts lēmums apzināti pārsniegt iepriekš iestatīto tilpumu, jo ir mainījušās pacienta šķidrumu vajadzības, un turpinātu AFM sesiju;

vai

• **Beigt sesiju**, lai atmestu bolus vēsturi, ko pacients ir saņēmis ar AFM funkciju, un pārtrauktu AFM sesiju, kā aprakstīts sadaļā AFM algoritma sesijas pauzēšana vai izbeigšana 310. lpp..

13.4.8 Uznirstošais logs ar informāciju par šķidruma bolus injekcijas

Informāciju par iepriekš ievadītajām šķidruma bolus injekcijām un sesijas kopsavilkumu pēc AFM sesijas pabeigšanas var pārskatīt AFM algoritma sānu panelī vai sānu panelī **Notikumi un lejaukšanās**. Lai skatītu informāciju par iepriekš ievadītu bolus injekcijas šķidrumu aktīvas AFM sesijas laikā, skatiet informācijas uznirstošo logu **AFM bolus injekcija** vai **Lietotāja bolus**. Bolus injekcijas šķidruma uznirstošajā logā ir norādīts bolus tilpums, bolus sākuma laiks, bolus ilgums, šķidruma veids (tikai **Šķidruma mērītājs**), SV un SVV izmaiņas no bolus injekcijas sākuma līdz beigām. Lai skatītu šo uznirstošo logu AFM sesijas laikā vai pēc tās beigām, pieskarieties ar zilu krāsu ēnotajam reģionam diagrammā, kurā ievadīts AFM bolus.

💧 AFM bolus injekcija		×
Skaļums	100 ml	Plazmalīts
sv	50 ml līdz 50 ml (0%)	Sākšanas laiks 1/7/2025 12:11
svv	4% līdz 4%	llgums 1min 36sek.

13.4.9 AFM algoritma sesijas pauzēšana vai izbeigšana

Aktīvu AFM sesiju var pauzēt jebkurā laikā, tādējādi AFM algoritms uz laiku pārtrauc sniegt jaunus šķidrumu ieteikumus. Kamēr AFM algoritms ir pauzēts, AFM informācijas panelī tiek parādīts kopējais trasētais tilpums,

maksimālais izmeklējuma tilpums, izmantoto ieteikumu skaits un GDT statistika (SVV parametrs time-in-target) pašreizējai sesijai.

Lai pārtrauktu pašreizējo AFM sesiju, pieskarieties AFM pauzes pogai AFM informācijas panelī

Lai atsāktu AFM sesiju pēc pārtraukšanas, pieskarieties AFM sākšanas poga

Lietotājs var izbeigt katru AFM sesiju. HemoSphere Alta uzlabotā monitoringa platforma izbeidz AFM sesiju, ja tiek atlasīts jauns pacients vai lietotājs pārslēdzas uz citu pārraudzības tehnoloģiju. AFM ir pieejams tikai ar pievienotu spiedienkabeli un Acumen IQ sensoru. Kad AFM sesija beidzas, pārraudzība turpinās bez AFM uzvednēm un attēlošanas funkcijām. Lai izbeigtu pašreizējo AFM sesiju, tālāk norādītās darbības.

- 1. Pieskarieties apturēšanas pogai
- 2. Apstipriniet AFM informācijas panelī, pieskaroties pogai Beigt.

Ja kļūme rodas laikā, kamēr AFM sesija ir aktīva, AFM tiek apturēts līdz brīdim, kad tiek notīrīts kļūmes stāvoklis.

Piezīme

Ja nepieciešama papildu AFM sesija tam pašam pacientam pēc tam, kad iepriekšējā sesija ir beigusies, skatiet AFM programmatūras funkcijas sākšana vai restartēšana 293. lpp.. Tiek saglabāti visi sākotnējie AFM iestatījumi. Informāciju par to, kā piekļūt minētajiem iestatījumiem un tos mainīt, skatiet Atbalstītas šķidrumu pārvaldības iestatījumi 295. lpp..

13.4.10 GDT trasēšana AFM algoritma sesijas laikā

Pieskaroties AFM sākšanas ikonas AFM informācijas panelī, tiek automātiski sākta GDT trasēšanas sesija ar šādiem iestatījumiem:

Parametrs	Mērķis
SVV	≤ 12%

GDT parametru un mērķi AFM sesijas laikā nevar konfigurēt. Kad AFM sesija ir apturēta vai izbeigta, tiek apturēta vai izbeigta arī GDT trasēšanas sesija. Papildinformāciju par GDT trasēšanas funkciju skatiet šeit: Uzlabota parametru trasēšana 327. lpp.

Pašreizējā Mērķa rādītāja atbilstības laika diapazons vērtība parametram SVV ≤ 12% ir parādīta SVV parametra

13.4.11 Klīniskā validācija

Lai novērtētu Acumen atbalstītās šķidrumu pārvaldības (AFM) programmatūras funkciju un tās spēju paredzēt pacienta šķidrumu reakciju, tika veikts prospektīvs daudzcentru klīniskais pētījums ar 330 pacientiem vienā grupā 9 ASV klīniskajos centros.

Šis pētījums tika veikts, izmantojot iepriekšējo grafiskā lietotāja interfeisa programmatūras versiju. Pastāv AFM grafiskā lietotāja interfeisa atšķirības starp iepriekšējiem lietotāja interfeisiem un šeit norādīto HemoSphere Alta uzlabotās monitoringa platformas lietotāja interfeisu. Nepieciešamības gadījumā nozīmīgās atšķirības ir norādītas.

Pētījumā tika iekļauti pacienti ≥ 18 gadu vecumā ar plānotu operāciju, kas nav sirds/krūškurvja operācija (piem., vēdera operācija, kombinēta vēdera/iegurņa operācija, būtiska perifēro asinsvadu operācija), kuras paredzētais ilgums ir > 2 stundas pēc anestēzijas inducēšanas, un Amerikas Anesteziologu biedrības (American Society of Anesthesiologists — ASA) vērtējums ir 3 vai 4. Pacientu demogrāfijas kopsavilkums ir sniegts šeit: 13-57. tabula 312. lpp.

Tips	AFM IDE pētījums
Pacientu skaits	330
Vecums	64,2±12,9
BMI	26,3±4,5
ASA 3	91,8%
ASA 4	8,2%

13-57. tabula. Pacientu demogrāfija

Pētījuma galvenais mērķis bija novērtēt AFM funkcijas spēju paredzēt pacienta šķidrumu reakciju. Galvenais mērķis ir balstīts uz AFM funkcijas veiktspēju un klīnisko lēmumu pieņemšanu klīniskā pētījuma laikā. Šķidrumu reakcijas validitāte tika mērīta, ziņojot par ieteikumu skaitu, kas sekoja pēc bolus ievadīšanas, kur sistoles tilpuma (SV) reakcija atbilda un neatbilda noteiktajai šķidruma plūsmas stratēģijai (piemēram, 15% šķidruma plūsmas stratēģijas gadījumā 500 cm³ šķidruma būtu jāpalielina pacienta sistoles tilpums par 15%, ja pacientam ir atbildes reakcija uz šķidrumu).

Piezīme

AFM algoritma ieteikums šajā pētījumā ir līdzvērtīgs HemoSphere Alta uzlabotās monitoringa platformas šķidruma bolus ieteikumam. AFM algoritma tests/testa bolus ir līdzvērtīgs HemoSphere Alta uzlabotās monitoringa platformas testa bolus ieteikumam.

AFM programmatūras funkcija uzrādīja, ka 66,1% [62,1%, 69,7%] gadījumu bolus tika ievadīts pēc AFM ieteikuma (galvenokārt balstoties uz pacienta iepriekšējo SV reakciju), iestatītajā šķidruma plūsmas stratēģijā bija novērojams sistoles tilpuma pieaugums. Turklāt AFM programmatūra uzrādīja, ka 60,5% [57,8; 63,2] gadījumu bolus tika ievadīts pēc testa bolus ieteikuma (galvenokārt balstoties uz SVV), iestatītajā šķidruma plūsmas stratēģijā bija novērojams sistoles tilpuma pieaugums. (13-58. tabula 312. lpp.).

13-58. tabula. AFM algoritma	reakcijas ātrums	pēc bolus tipa
------------------------------	------------------	----------------

Bolus notikuma tips*	Vidējais reakcijas ātrums (%) [ticamības intervāls]		
AFM algoritma ieteikums	66,1% [62,1; 69,7]		
AFM algoritma tests	60,5% [57,8; 63,2]		
* Piezīme. AFM ieteikums šajā pētījumā ir līdzvērtīgs HemoSphere Alta uzlabotās mo- nitoringa platformas šķidruma bolus ieteikumam. AFM tests ir līdzvērtīgs HemoSphere Alta uzlabotās monitoringa platformas testa bolus ieteikumam.			

Reakcijas ātruma analīze pacienta līmenī norāda, ka vidējais reakcijas ātrums bija 65,62%, un vidējā [starpkvartiļu intervāla] reakcija uz vienu pacientu ir 75% [50%, 100%] ar diapazonu no 0% līdz 100%.

No 330 pacientiem, kas piedalījās pētījumā, 307 pacienti bija galvenajā protokola grupā un tika iekļauti primārā efektivitātes mērķa kritērija izvērtējumā. Galvenajā protokola grupā 94% (289/307) un 54% (165/307) pacientu attiecīgi saņēma AFM testa ieteikumus un AFM sniegtos ieteikumus, savukārt 6% pacientu (18/307) nesaņēma AFM ieteikumus. Tāpēc jāņem vērā, ka primārais efektivitātes mērķa kritērijs ir balstīts uz 54%, kas saņēma AFM ieteiktās bolus injekcijas.

Lietotāja bolus injekcijas pētījuma laikā tika reģistrētas ikreiz, kad AFM funkcijas lietošanas laikā šķidrums tika ievadīts ārpus AFM testa vai ieteikuma. Kad ārsts ievadīja lietotāja bolus, 40,9% [37,4; 44,1] gadījumu bija novērojams sistoles tilpuma pieaugums. Lietotāja bolus netika ievadīts tikai kā daļa no manuāli ievadīta šķidrumu pārvaldības protokola.

Sekundārā analīze nodrošināja AFM algoritma veiktspējas rādījumus, iedalot pēc ievadītā bolus injekcijas tilpuma (skat. 13-59. tabula 313. lpp.). Rezultāti liecina, ka AFM algoritma veiktspēja var būt atkarīga no izmantotā bolus injekcijas tilpuma.

Bolus injekcijas til- pums	Vidējā reakcija (%)	(2,5% LCL, 97,5% UCL) Bolus injekciju skaits		Pacientu skaits
≤ 100	77,26%	(72,60; 81,81)	147	76
> 100-200	59,92%	(54,61; 65,13)	152	76
> 200–250	57,73%	(50,63; 64,94)	79	49
> 250-300	65,27%	(59,18; 69,39)	49	39
Visas bolus injekcijas	66,04%	(61,56; 71,13)	424	207

13-59. tabula. AFM veiktspēja pēc bolus injekcijas tilpuma (ml)

AFM programmatūras precizitāte tika analizēta bolus līmenī, ietverot jutīgumu un specifiskumu, kā arī pozitīvās un negatīvās paredzamās vērtības.

Jutīgums ir patiesu pozitīvo rezultātu skaits attiecībā pret kopējo pacientu skaitu ar atbildes reakciju (pozitīvie rezultāti). Patiess pozitīvais rezultāts ir jebkurš notikums ar sistoles tilpuma pieaugumu iepriekš noteiktajai šķidruma plūsmas stratēģijai, ja bolus tiek ievadīts (līdz 5 minūtēm) pēc AFM ieteikuma. AFM funkcijas jutīgums bija 77,7%.

Specifiskums ir patieso negatīvo rezultātu skaits attiecībā pret kopējo pacientu skaitu bez atbildes reakcijas (negatīvie rezultāti). Klīniskā pētījuma kontekstā patiess negatīvais rezultāts ir jebkura bolus injekcija, kas tika ievadīta ārpus AFM ieteikumiem un uz ko netika saņemta pacienta atbildes reakcija. AFM funkcijas specifiskums bija 40,6%.

Pozitīva paredzamā vērtība (PPV) ir varbūtība, ka pacientam būs atbildes reakcija uz AFM ieteikto bolus injekciju. AFM funkcijas PPV bija 62,7%.

Negatīva paredzamā vērtība (NPV) ir varbūtība, ka pacientam nebūs atbildes reakcijas uz bolus injekciju, kas ievadīta ārpus AFM ieteikumiem. AFM funkcijas NPV bija 58,9%.

Mērījums	Vērtība (%) [95% ticamības intervāls]
PPV	62,7 [59,6; 65,3]
NPV	58,9 [54,4; 63,2]
Specifiskums	40,6 [37,1; 44,3]
Jutīgums	77,7 [74,9; 80,3]

13000, tubulu, Al Minul Alli Minul 2000

13.4.11.1 Bolus injekcijas šķidruma darbība

AFM programmatūras funkcija izmanto pašreizējo hemodinamisko stāvokli un iepriekšējo reakciju uz saņemto šķidrumu līdzīgos stāvokļos, lai noteiktu, vai jāveido šķidruma ieteikums. Tāpēc pastāv iespēja saņemt vairākus AFM ieteikumus vienā stundā. Klīniskās validācijas pētījuma pēcizvērtēšanas analīze atklāja, ka ieteikumu skaits var būt 0–6 AFM ieteikumi stundā, un lielākajā daļā gadījumu AFM ieteikumi netiek sniegti (sk.: 13-61. tabula 314. lpp.). Pastāv iespēja, ka AFM ieteikums nekavējoties seko pēc tam, kad ir pabeigta bolus injekcija bez atbildes reakcijas, ja pašreizējais hemodinamiskais stāvoklis ir mainījies, kopš iepriekšējās bolus injekcijas bez atbildes reakcijas.

AFM algoritma ieteikumi stundā	Rašanās biežums*			
0	73,8% (784/1062)			
1	10,9% (116/1062)			
2	6,7% (71/1062)			
3	5,3% (56/1062)			
4	2,4% (26/1062)			
5	0,6% (6/1062)			
6	0,3% (3/1062)			
* Rašanās biežums ir balstīts uz stundu skaitu un AFM algoritma sniegto ieteikumu skaitu, dalot ar kopējo stundu skaitu.				
** AFM algoritma ieteikumu biežums stundā ir sniegts kā vispārējs norādījums un nav attiecināms uz individuāliem gadījumiem.				

13-61. tabula. AFM algoritmu ieteikumu biežums stundā**

Lietotājs var noraidīt vai atmest AFM algoritma ieteikumus klīnisko lēmumu pieņemšanas procesā. Klīniskās validācijas pētījumā lietotājs noraidīja 47% (1209/2550) no kopējā AFM algoritma ieteikumu skaita, no kuriem 40% (324/803) bija AFM algoritma ieteikumi, bet 51% (885/1747) AFM testa ieteikumi. Turklāt no 1341 AFM algoritma norādes, ko lietotāji pieņēma, 13% (168/1341) tika atmesti, no kuriem 11% (52/479) bija AFM ieteiktas bolus injekcijas un 13% (116/862) bija AFM algoritma testa bolus injekcijas.

Lai gan pēcizvērtēšanas analīze neuzrādīja veiktspējas atšķirības, balstoties uz AFM algoritma ieteikumu ievērošanu, klīniskās validācijas pētījuma ietvaros nebija paredzēts pievērsties šim jautājumam. Tāpēc AFM algoritma veiktspēju var ietekmēt AFM algoritma ieteikumu ievērošana. 13-62. tabula 315. lpp. ietver šķidruma bolus injekciju pilnīgu uzskaiti klīniskās validācijas pētījumā.

Bolus iniciators	Parādīta uz- vedne	leteikums no- raidīts	Pieņemts	Atmests (ana- līze noraidīta)	Pabeigts	Analizēts
AFM algoritms	2550	1209	1341	168	1173	1165
- leteicams	803	324	479	52	427	424
- Tests	1747	885	862	116	746	741
Lietotājs	606	14	592	81	511	508
Kopā	3156	1223	1933	249	1684	1673

13-62. tabula. Šķidruma b	oolus injekciju pilnīga uzsl	kaite
---------------------------	------------------------------	-------

Klīniskās validācijas pētījumā bolus injekcijas tika atmestas 13% gadījumu (analīze noraidīta). Iemesli bolus injekciju atmešanai pētījuma laikā ir norādīti šeit: 13-63. tabula 315. lpp.

13-63. tabula. Iemesli bolus in	iekciiu atmešanai (analīze noraidīta	a) galvenajā protokola grupā
		., gan en aja pre tenena grapa

Šķidruma demogrāfiskie dati Bolus atmešanas iemesli (analīze noraidīta)	% (n/N)			
levadītais vazoaktīvais līdzeklis un šķidrumi	35,0% (89/254)			
Cits	18,1% (46/254)			
ABG parauga ņemšana/ātrā skalošana	11,8% (30/254)			
Pacienta pārvietošana	11,8% (30/254)			
Arteriālās caurulītes traucējumi	10,2% (26/254)			
Ventilatorās izmaiņas	4,7% (12/254)			
Papildu šķidrums, kas ievadīts pēc primārās bolus injekcijas	3,5% (9/254)			
Caurulītes pārmērīga slāpēšana	1,6% (4/254)			
Ķirurģiska manipulācija	0,8% (2/254)			
Nav zināms	0,8% (2/254)			
Papildu šķidruma līnija vienlaicīgi atvērta bolus injekcijas laikā	0,4% (1/254)			
Zināma akūta hemorāģija šķidruma ievadīšanas laikā (asins zudums ≥ 250 cm³ 7 min periodā)	0,4% (1/254)			
Asinsvadu saspiešana	0,4% (1/254)			
Кора	100% (254/254)			
* Piezīme. Varēja norādīt vairāk nekā vienu iemeslu bolus injekcijas atmešanai, tāpēc 249 atmestajām bolus injekcijām tika reģistrēti 254 iemesli.				

Saucēji ir balstīti uz pieejamo kopējo datu apjomu, kas iegūti katram parametram.

Klīniskās validācijas pētījuma laikā AFM algoritma ieteikumi (ierosinājumi un testi) tika noraidīti 47% gadījumu. Pētījuma laikā noteiktie noraidīšanas iemesli ir sniegti šeit: 13-64. tabula 315. lpp.

13-64. tabula. Iemesli ieteikumu noraidīšana	i galvenajā	protokola gru	pā
--	-------------	---------------	----

Šķidruma demogrāfiskie dati Iemesli, kāpēc AFM algoritma uzvedne netika pieņemta	% (n/N)
Pacients ir normotensīvs	42,3% (592/1399)
Pašreizējā procedūrā šķidrums ir kontrindicēts	7,2% (101/1399)
Ārsts šoreiz vēlas izmantot vazoaktīvo līdzekli	7,0% (98/1399)
Ārsts uzskata, ka pacients nereaģēs uz šķidrumu	6,3% (88/1399)
Cits	4,4% (62/1399)

Šķidruma demogrāfiskie dati Iemesli, kāpēc AFM algoritma uzvedne netika pieņemta	% (n/N)
Šis bolus ieteikums pamatojas uz sliktiem jaunākajiem datiem (t. i., artefakts BP signālā)	3,6% (50/1399)
Sākas izmeklējuma slēgšana	3,5% (49/1399)
Aizņemtība ar citiem uzdevumiem	3,5% (49/1399)
ABG/laboratorijas parauga ņemšana	2,7% (38/1399)
Ārsts uzskata, ka hemodinamiskās izmaiņas ir īslaicīgas un to iemesls ir ķirurģiska manipulā- cija	2,6% (36/1399)
Pašlaik hipertensīvs	2,4% (34/1399)
Ārsts ievada šķidrumu (asinis vai citu šķidrumu) ārpus AFM	2,4% (34/1399)
Gaida RBC ievadīšanu	2,1% (29/1399)
Pacienta novietojuma izmaiņas, ārsts vēlas uzgaidīt un novērot situāciju	1,9% (26/1399)
Nesen ievadīts šķidrums, notiek novērošana	1,9% (26/1399)
Pacients nesen saņēma šķidrumu, taču nereaģēja uz to	1,2% (17/1399)
Ārsts izvēlējās noraidīt, lai noņemtu AFM uznirstošo uzvedni un varētu turpināt pārskatīt hemodinamiku pirms lēmuma pieņemšanas par šķidruma ievadīšanu	1,1% (15/1399)
BP pārvaldība	1,1% (15/1399)
Apšaubāma spiediena trasēšana	1,0% (14/1399)
Tika novērots īss aritmijas periods, un ārsts neuzskata, ka pacientam ir nepieciešama bolus injekcija	0,8% (11/1399)
Ārstam ir aizdomas par dilūcijas anēmiju	0,5% (7/1399)
Ārsts kļūdaini noraidīja AFM ieteikumu	0,3% (4/1399)
Notika paredzētas insuflācijas izmaiņas, un ir sagaidāms, ka tās būs īslaicīgas	0,2% (3/1399)
Ārstam ir aizdomas par labā sirds kambara disfunkciju	0,1% (1/1399)
Īslaicīgas ventilācijas stratēģijas izmaiņas (t. i., alveolas atvēršanas manevrs)	0,1% (1/1399)
Кора	100,0% (1399/1399)
* Piezīme Varēja porādīt vairāk pekā vieņu iemeslu AFM algoritma uzvedņes poraidīšanai tāpēc	1223 poraidītajām bolus

* Piezīme. Varēja norādīt vairāk nekā vienu iemeslu AFM algoritma uzvednes noraidīšanai, tāpēc 1223 noraidītajām bolus injekcijām tika reģistrēti 1399 iemesli.

Saucēji ir balstīti uz pieejamo kopējo datu apjomu, kas iegūti katram parametram.

Klīniskās validācijas pētījumā 66% AFM algoritma ieteiktā bolus injekcija izraisīja vēlamās SV izmaiņas atbilstoši šķidruma plūsmas stratēģijai, kā tas ir norādīts 13-58. tabula 312. lpp. Taču pastāvēja pētījuma ierobežojums, proti, šķidrums netika ievadīts, ja lietotājs noraidīja AFM ieteikumu, tādējādi noraidīto AFM algoritma ieteikumu SV reakcijas nav zināmas. Ja katrs noraidītais AFM ieteikums tiek kategorizēts kā negatīva reakcija, reakcijas ātrums var būt pat 37% zems. Noraidīšanas iemesli bija normotensija, procedūras kontrindicēts šķidrums un ārsta izvēle par labu vazopresora izmantošanai. Visi iemesli un to biežums ir norādīti šeit: 13-64. tabula 315. lpp.

13.4.12 Tikai šķidruma mērītāja režīms

Acumen IQ šķidruma mērītāju var pievienot (skat. 13-14. att. 299. lpp.), lai trasētu šķidrumu, neinicializējot AFM algoritmu. Parametra "**Tikai šķidruma mērītāja režīms**" iespējošana ir papildu iestatīšanas funkcija. Lai iegūtu papildinformāciju, sazinieties ar Edwards pārstāvi.

- 1. Pieskarieties iestatījumu ikonai → pogai **Papildu iestatījumi** un ievadiet **Drošs lietotājs** paroli. Visas paroles tiek iestatītas sistēmas inicializācijas laikā. Sazinieties ar slimnīcas administratoru vai IT nodaļu, lai uzzinātu paroli.
- 2. Pieskarieties **AFM** programmatūras pogai.
- 3. Pārslēdziet slēdzi "Tikai šķidruma mērītāja režīms" ieslēgtā statusā.

7.

Pārejot režīmā Tikai šķidruma mērītāja režīms, aktīvās AFM algoritma sesijas tiek izbeigtas. Tiek turpināta kopējā akumulētā šķidruma tilpuma, kas ievadīts visās iepriekšējās AFM algoritma sesijās, trasēšana no pašreizējās pacienta sesijas.

- 4. Pievienojiet šķidruma mērītāju, veicot pievienošanas darbības, kas norādītas šeit: Šķidrumu ievadīšanas darbplūsma Acumen IQ šķidruma mērītājs 299. lpp..
- 5. Pieskarieties ikonai **Klīniskie rīki** → **Atbalstīta šķidrumu pārvaldība** programmatūras pogai. Ja ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet programmatūru **Atbalstīta šķidrumu pārvaldība**.
- 6. lestatiet vēlamos šķidruma mērītāja iestatījumus Šķidruma veids un Maksimālais izmeklējuma tilpums.

- 8. levadiet mērķa bolus tilpumu (pēc izvēles).
- 9. Lai sāktu bolus ievadīšanu, atveriet šķidruma līniju.
- 10. Tiek reģistrēts kopētais trasētais tilpums, kas tiek parādīts Atbalstīta šķidrumu pārvaldība programmatūras sānu panelī.

13.5 Labā sirds kambara izsviedes algoritms

Labā sirds kambara sirds izsviedes algoritms (RVCO algoritms) aprēķina labā sirds kambara sirds izsviedi (CO_{RV}) un sistoles tilpumu (SV_{RV}), izmantojot labā sirds kambara spiediena (RVP) līkni, kuras pārraudzību nodrošina spiedienkabelis un Swan-Ganz IQ katetrs. RVCO algoritms var izmantot no iCO termodilūcijas kopas iegūtās iCO vērtības kā pēc izvēles izmantojamu ievadi RVCO parametru aprēķināšanai. Darbības skat. Intermitējoša sirds izsviede 154. lpp.. Kad ir veikts un pieņemts iCO mērījums, RVCO parametra elementos tiek parādīts teksts "**CAL**", norādot, ka tie ir kalibrēti.

UZMANĪBU

Neprecīzu RVCO vērtību iespējamie cēloņi:

- Neprecīzs vai trokšņains labā sirds kambara spiediens
- Nepareizs katetra novietojums vai pozīcija
- Pārmērīgas pacienta kustības
- Neprecīzas intermitējošās sirds izsviedes (iCO) vērtības

13.5.1 Lietošanas indikācijas

Izmantojot kopā ar HemoSphere spiedienkabeli, kas pievienots saderīgam Swan-Ganz katetram, labā sirds kambara sirds izsviedes (RVCO) funkcija nodrošina ārstam fizioloģiskus datus par sirds labā kambara hemodinamisko statusu. RVCO algoritmu ir paredzēts izmantot ķirurģiskiem vai neķirurģiskiem pacientiem, kuru vecums ir vairāk nekā 18 gadi un kuriem nepieciešama uzlabota hemodinamiskā stāvokļa pārraudzība. Labā sirds kambara izsviede nodrošina nepārtrauktus sirds izsviedes un atvasinātos parametrus.

13.5.2 Pacienta kabeļu pievienošana

- 1. Savienojiet HemoSphere Alta Swan-Ganz pacienta kabeli ar monitoru, kā iepriekš aprakstīts šeit: HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana 148. lpp..
- 2. Pievienojiet katetra EEPROM savienotāju HemoSphere Alta Swan-Ganz pacienta kabeļa termiskā kvēldiega savienojumam (apzīmēts ar (3) sadaļā 13-15. att. 319. lpp.).
- Pievienojiet Swan-Ganz IQ katetra RV pieslēgvietu pie TruWave devēja un spiedienkabeļa (apzīmēts ar (4) sadaļā 13-15. att. 319. lpp.). Skat. Spiedienkabeļa monitorings, izmantojot TruWave spiediena devēju 171. lpp.
- 4. (Pēc izvēles iCO termodilūcijas gadījumā): pievienojiet pacienta kabeļa katetra galu Swan-Ganz IQ katetra termistora savienotājam, kā norādīts ar atzīmi (2) šeit: 13-15. att. 319. lpp..
- (Pēc izvēles iCO termodilūcijas gadījumā): pievienojiet injektāta temperatūras zondi (sistēmai pieslēgto vai vannas zondi) pacienta CCO kabeļa injektāta temperatūras zondes savienotājam, kā norādīts ar atzīmi (5) sadaļā 13-15. att. 319. lpp..
- 6. Pārliecinieties, ka katetrs ir pareizi ievietots pacienta ķermenī. Detalizētu informāciju skatiet katetra lietošanas instrukcijā.

- 1. Swan-Ganz IQ katetrs
- 2. Termistora savienojums*
- **3.** EEPROM savienojums ar HemoSphere Alta Swan-Ganz pacienta kabeli
- 4. Katetra RV pieslēgvieta pie TruWave devēja/spiedienkabeļa
- 5. Injektāta temperatūras zondes savienojums*
- 6. HemoSphere Alta Swan-Ganz pacienta kabelis
- 7. Spiedienkabelis
- 8. HemoSphere Alta uzlabotais monitors

* Pēc izvēles.

13-15. attēls. Swan-Ganz IQ katetra savienojuma pārskats

13.5.3 RVCO kalibrācija (pēc izvēles)

Ja tas ir pieejams, RVCO algoritms var izmantot no iCO termodilūcijas kopas iegūtās iCO vērtības kā papildu ievadi RVCO algoritma parametru aprēķināšanai. Šī papildu ievade ir pieejama pēc izvēles. Skat. Intermitējoša sirds izsviede 154. lpp. Kamēr notiek RVCO algoritma parametru pārraudzība ar Swan-Ganz IQ katetra un iCO termodilūcijas kopas starpniecību, tiek parādīts apstiprinājuma uznirstošais logs, apstiprinot Swan-Ganz IQ katetra parametru kalibrēšanu. Lai apstiprinātu kalibrēšanu, pieskarieties pogai **Turpināt**.Uz jebkura no parametriem tiks parādīts teksts "CAL", norādot uz kalibrāciju. Skat. 13-16. att. 319. lpp.

13-16. attēls. RVCO kalibrēto galveno parametru elements

13.5.4 RVCO klīniskā validācija

Kopā tika izmantotas 9 retrospektīvas datu kopas, lai apstiprinātu algoritmu un novērtētu RVCO parametra veiktspēju. Šajos centros apkopoti gan ķirurģiski, gan neķirurģiski dati, tostarp par sirds operācijām, aknu transplantēšanas operācijām, hronisku trombembolisku plaušu hipertensiju (CTEPH) un pacientiem, kuriem tiek veikta invazīva sirds un plaušu darbības testēšana sirds katetrizācijas laboratorijā (Cath Lab). 13-65. tabula 320. lpp.: šeit pieejami katras datu kopas pacientu numuri.

Datu kopa	Pacienti (skaits)	iCO mērījumi (skaits)	Ķirurģiski (skaits)	Neķirurģiski (skaits)
Datu kopa 1 (N=92)	92	353	92	0
Datu kopa 2 (N=19)	19	68	19	0
Datu kopa 3 (N=100)	100	145	0	100
Datu kopa 4 (N=24)	24	185	24	24
Datu kopa 5 (N=13)	13	63	13	0
Datu kopa 6 (N=23)	23	146	23	23
Datu kopa 7 (N=23)	23	103	23	0
Datu kopa 8 (N=59)	59	381	59	0
Datu kopa 9 (N=17)	17	114	17	0
KOPĀ = 370	370	1558	270	147

13-65. tabula. Pacientu numuri RVCO algoritma klīniskās apstiprināšanas datu kopās

13-66. tabula 320. lpp. norāda validācijas datu kopā izmantoto kritiski slimo pacientu veidus.

13-66. tabula. Pacientu parametri	i (validācijas datu kopa, N=370)
-----------------------------------	----------------------------------

Pacienta parametrs	# pacientu* skaits (% no kopējā)			
Aortas vārstuļa aizvietošana/rekonstrukcija	33 (8,9%)			
Mitrālā vārstuļa aizvietošana/rekonstrukcija	41 (11,1%)			
Trīsviru vārstuļa aizvietošana/rekonstrukcija	4 (1,1%)			
Koronārā revaskularizācija	71 (19,2%)			
Aortas operācija	20 (5,4%)			
CTEPH vai PTE	66 (17,8%)			
Plaušu transplantācija	1 (0,3%)			
LVAD	17 (4,6%)			
Sirds labās puses katetrizācija	100 (27%)			
Aknu transplantācija	43 (11,6%)			
*Piezīme. Dažiem pacientiem var būt veiktas dažādas procedūras, tāpēc to kopējais skaits pārsniedz pacientu kopējo skaitu.				

13.5.5 RVCO klīniskās validācijas pētījuma rezultāti

Labā sirds kambara sirds izsviedes (RVCO) algoritms aprēķina nepārtrauktu sirds izsviedi, izmantojot labā sirds kambara spiediena (RVP) līkni. Lai mērītu RVP spiediena līkni, tiek izmantots esošs Edwards FloTrac (Acumen IQ) sensors vai Edwards vienreizlietojamā spiediena devēja sensors, kas ar šķidrumu pildītas katetra-caurulīšu sistēmas starpniecību pievienots esoša saderīga Swan-Ganz katetra labā sirds kambara lūmenam/pieslēgvietai. Intermitējošais sirds izsviedes (iCO) mērījums, izmantojot bolus termodilūcijas metodi, ir *pēc izvēles izmantojama* *ievade* RVCO algoritmam, kas nav obligāta, lai RVCO algoritms nodrošinātu sirds izsviedes parametru; ja tas ir pieejams, RVCO algoritms to izmanto kā kalibrācijas punktu.

Lai pārbaudītu un novērtētu RVCO algoritma veiktspēju, tika veikta algoritma izvērtēšana, lai pārliecinātos, ka tas atbilst iepriekš norādītiem veiktspējas pieņemšanas kritērijiem gan nekalibrētā (bez iCO, 13-67. tabula 321. lpp.), gan kalibrētā (ar iCO, 13-68. tabula 321. lpp.) stāvoklī.

Raksturlielumi	Rezultāti	[95% TI]	Pieņemšanas kritēriji		
Izlases apjoms (iCO skaits)	1158	-	-		
Pacienti	370	-	-		
Nobīde (l/m)	0,18	[0,12; 0,25]	–0,6 < nobīde < 0,6		
Precizitāte (%)	21,6%	[20,7%, 22,6%]	< 25%		
*Dati pieejami Edwards Lifesciences					

13-67.	tabula.	Klīniskās	validācijas	pētījuma	rezultāti (nekalibrēts	stāvoklis)*
13-07.	tabula.	KIIIIISKas	vanidacijas	penjuma	rezultati	ile calibiets	stavokiis)

Raksturlielumi	Rezultāti	[95% TI]	Pieņemšanas kritēriji		
Izlases apjoms (iCO skaits)	1443	-	-		
Pacienti	265	-	-		
Nobīde (l/m)	0,23	[0,16; 0,30]	–0,6 < nobīde < 0,6		
Precizitāte (%)	18,7%	[17,8%, 19,7%]	< 25%		
* Dati nieeiami Edwards Lifesciences					

13.6 Transpulmonālas termodilūcijas algoritms

HemoSphere Alta uzlabotā monitoringa platforma kopā ar Acumen IQ sensoru, kas pievienots Edwards Lifesciences augšstilba artērijas katetram, un spiediena devēju, kas pievienots centrālajam venozajam katetram, nepārtraukti rāda kalibrētu sirds izsviedi (CO), sistoles tilpumu (SV), sirds indeksu (CI) un sistoles tilpuma indeksu (SVI), kad ir veikta starpposma transpulmonālā termodilūcija (TPTD). Turklāt intermitējošais TPTD ļauj aprēķināt šādus intermitējošos parametrus: EVLW, ELWI, PVPI, GEDV, GEDI, GEF, iCI, iCO, iSVI, iSV, CFI, ITBI, ITBV, iSVR un iSVRI.

Transpulmonālās termodilūcijas (TPTD) parametrus mēra, kad centrālajā venozajā asinsritē ievadīts indikatora šķīdums ar zināmu temperatūru un tilpumu. Tas tiek izvadīts caur labās sirds puses plaušu asinsvadu sistēmu, sirds kreiso pusi līdz arteriālajai sistēmai. Termālā izskalošanas līkne tiek mērīta, izmantojot termistoru un Edwards Lifesciences augšstilba arterijas katetru.

Kad TPTD algoritms izmanto citu datu ievadi no nepārtrauktiem augšstilba artērijas spiediena mērījumiem un sirds izsviedes aprēķiniem, ko mēra Acumen IQ sensors, ir pieejami papildu nepārtrauktie parametri (CO, SV, CI un SVI).

TPTD algoritms mēra tilpuma parametrus, kam nepieciešams CVC (centrālais venozais katetrs) un augšstilba artērijas katetrs. Algoritma trīs galvenās tehnoloģiju savienojumu ievades:

- 1. Spiedienkabelis ar pievienotu Acumen IQ sensoru, kas pārrauga augšstilba arterijas spiedienu (Edwards Lifesciences femorālais katetrs).
- 2. Spiedienkabelis ar pievienotu TruWave vienreizlietojamo spiediena devēju pārrauga centrālo venozo spiedienu (centrālais venozais katetrs).
- 3. HemoSphere Alta Swan-Ganz pacienta kabelis ar termistora savienojumu pie augšstilba artērijas (izskalošanas līkne) un injektāta (bolus) savienojumu pie CVC.

UZMANĪBU

Neprecīzus TPTD vai TPTD algoritma CO mērījumus var izraisīt šādi faktori:

- Nepareizi nullēts un/vai līmeņots sensors/devējs
- Pārmērīga vai nepietiekama spiediena izlīdzināšana spiediena caurulītēs
- Jebkādas klīniskās situācijas, kad arteriālais spiediens tiek uzskatīts par neprecīzu vai neatbilstošu arteriālajam spiedienam
- Pārmērīgas pacienta kustības
- Elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi
- Edwards Lifesciences augšstilba artērijas katetra nepareizs novietojums vai pozīcija
- Asins temperatūras mērījumu pārmērīgas variācijas vai traucējumi. Temperatūras variācijas izraisa tālāk minētie un citi apstākļi:
 - * statuss pēc kardiopulmonālās šuntēšanas operācijas;
 - * centralizēti ievadīti asins produktu dzesēti vai sildīti šķīdumi;
 - * trombu veidošanās uz termistora;
 - * ārējie siltuma avoti (dzesējošas vai sildošas segas), kas novietoti uz Edwards Lifesciences femorālo arteriālo katetru termistora savienojuma;
 - * elektrokauterizācijas vai elektroķirurģijas ierīču traucējumi;
 - * straujas sirds izsviedes izmaiņas.
- Intraaortālie balonsūkņi
- Anatomiskas novirzes (piemēram, sirds šunts)

TPTD un TPTD algoritma CO mērījumu efektivitāte pediatrijas pacientiem nav novērtēta.

Piezīme

HemoSphere Alta Swan-Ganz pacienta kabeļa savienojumu vienlaikus var izmantot tikai vienai sirds izsviedes tehnoloģijai. Izmantojot TPTD algoritma savienojumus, Swan-Ganz katetra CCO vai Swan-Ganz katetra iCO termodilūcijas mērījumi nav pieejami.

Kamēr TPTD algoritms ir aktīvs, parametra HPI iestatījumu Hipotensijas robežvērtība nevar mainīt, un tā noklusējuma vērtība ir 65 mmHg. Skat. Hipotensijas robežvērtības iestatījums 247. lpp.

13.6.1 Savienojuma pārskats

Skatiet Pārskats par spiedienkabeli 165. lpp. un HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana 148. lpp., lai uzzinātu detalizētu informāciju par spiedienkabeļiem (HEMPSC100 vai HEMAPSC200) un HemoSphere Alta Swan-Ganz pacienta kabeli. Šajā sadaļā sniegts pārskats par transpulmonālās termodilūcijas algoritmam nepieciešamajiem pacienta kabeļa savienojumiem. Skat. 13-17. att. 323. lpp.

- 1. Edwards Lifesciences augšstilba artērijas katetrs
- **2.** Termistora savienojums
- 3. Acumen IQ sensors
- 4. Centrālais venozais katetrs
- 5. TPTD termistora kolektors

- 6. TruWave spiediena devējs
- 7. Sistēmai pieslēgtas injektāta temperatūras zondes savienojums
- 8. HemoSphere Alta Swan-Ganz pacienta kabelis
- 9. Spiedienkabeļi (divi)
- 10. HemoSphere Alta uzlabotais monitors

13-17. attēls. Transpulmonālās termodilūcijas (TPTD) algoritma pacienta kabeļa savienojumu pārskats

- 1. Savienojiet HemoSphere Alta Swan-Ganz pacienta kabeli ar monitoru, kā iepriekš aprakstīts šeit: HemoSphere Alta Swan-Ganz pacienta kabeļa pievienošana 148. lpp..
- Pārliecinieties, ka femorālais katetrs ((1) sadaļā 13-17. att. 323. lpp.) un centrālais venozais katetrs ((4) sadaļā 13-17. att. 323. lpp.) ir pareizi ievietots pacienta ķermenī. Detalizētu informāciju skatiet katetra lietošanas instrukcijā.
- 3. Pievienojiet HemoSphere Alta Swan-Ganz pacienta kabeļa termistora galu Edwards Lifesciencesaugšstilba artērijas katetra termistora savienotājam, kā norādīts ar atzīmi (2) šeit: 13-17. att. 323. lpp.
- 4. Pievienojiet spiedienkabeļus, kā iepriekš aprakstīts sadaļā Pārskats par spiedienkabeli 165. lpp..
- levērojiet detalizētus norādījumus sadaļā FloTrac, FloTrac Jr vai Acumen IQ sensora pievienošana 169. lpp. par Acumen IQ sensora uzpildi un pievienošanu augšstilba katetram, kas apzīmēts ar (3) sadaļā 13-17. att. 323. lpp..
- 6. Pievienojiet injektāta temperatūras zondi (sistēmai pieslēgto) injektāta temperatūras zondes savienotājam uz TPTD termistora kolektora, kā norādīts ar atzīmi (7) sadaļā 13-17. att. 323. lpp..

- levērojiet detalizētus norādījumus sadaļā TruWave vienreizlietojamā spiediena devēja pievienošana 172. lpp. par TruWave sensora uzpildi un pievienošanu TPTD termistora kolektoram un centrālajam venozajam katetram (skat. atzīmi (5) un (6) sadaļā 13-17. att. 323. lpp.).
- 8. Turpiniet tālāk, lai uzzinātu par pārraudzības uzvednēm ekrānā.

13.6.2 TPTD procedūra

Pievienojiet atdzesētu pilnšļirci ar normālu fizioloģisko šķīdumu pie TPTD termistora kolektora vārstuļa/ pieslēgvietas savienojuma. Skat. (5) šeit: 13-17. att. 323. lpp..

- 1. Pieskarieties ikonai **Klīniskie rīki** → pogai **TPTD**. Ja ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet **TPTD**.
- Parametram Injicējamās vielas tilpums atlasiet vērtību 10 ml, 15 ml vai 20 ml, ar bultiņām pārslēdzoties starp izvēlnes opcijām. Tiek parādīts ieteikums atbilstoši pacienta ķermeņa svaram, kā norādīts tālāk sadaļā 13-69. tabula 324. lpp..

13-69. tabula. leteicamie injektāta tilpumi

Ķermeņa svars (kg)	Ķermeņa svars (mārciņas)	leteicamais minimālais bolus injek- cijas apjoms — atdzesēts (ml)
< 50	< 100	10
No 50 līdz 100	No 100 līdz 220	15
> 100	> 220	20

3. Ja pacienta anamnēze ir atbilstoša, ar bultiņām pārejiet uz sadaļu Plaušas rezekcija un atlasiet izņemtās plaušu daļas aprakstošo parametru (piemēram, RUL — augšējās labās puses daivas izņemšana).

- 4. Pārslēdziet izvēlnes opciju Indeksēts ieslēgtā vai izslēgtā stāvoklī, lai panāktu vēlamos parametra rezultātus.
- 5. Pieskarieties pogai Sākt iestatīšanu. Skatiet apzīmējumu (1) šeit: 13-18. att. 325. lpp.

Piezīme

Poga Sākt iestatīšanu ir atspējota šādos gadījumos:

- augšstilba artērijas sensors nav Acumen IQ sensors.
- Injektāta apjoms nav derīgs vai nav atlasīts.
- CVP nav savienots.
- CVP nav nullēts.
- Acumen IQ sensors nav nullēts.
- Nav pievienota injektāta temperatūra (Ti).
- Nav pievienota asiņu temperatūra (Tb).
- CVP rādītājs ir ārpus diapazona.
- Ir aktīva TPTD kļūme.
- Ir pievienots Swan-Ganz IQ katetrs.
- Ir aktīvs bezpulsāciju režīms.

13-18. attēls. TPTD procedūra

- 6. Sānu paneļa augšpusē tiek parādīts teksts**Uzgaidiet** līdz ar tekstu "**Sākumstāvokļa noskaidrošana**". Skatiet apzīmējumu (2) šeit: 13-18. att. 325. lpp.
- 7. Kad ir noteikta termālā bāzlīnija, tiek parādīts ekrāns "**Injicēt**". Skatiet apzīmējumu (3) šeit: 13-18. att. 325. lpp.
- 8. Kad ekrānā parādās vienums **Injicēt**, izmantojiet ātru, vienmērīgu un nepārtrauktu metodi, lai injicētu auksto šķīdumu ar iepriekš atlasīto tilpumu.
- 9. Ja nepieciešami arī citi mērījumi, nomaiņai izmantojiet citu iepriekš atdzesētu pilnšļirci.
- 10. Novērojiet termālo izskalošanas līkni. Tiek parādīts teksts "**Aprēķināšana**", norādot, ka tiek aprēķināti parametri, izmantojot izskalošanas līkni. Skatiet apzīmējumu (4) šeit: 13-18. att. 325. lpp.
- 11. Kad termālā izskalošanas līkne ir pabeigta un sasniegta stabila termālā bāzlīnija, tiek parādīts ekrāns Injicēt. Atkārtojiet 6.–10. darbību līdz sešām reizēm.

13-19. attēls. Pārskatiet TPTD kopu un skatiet rezultātus

12. Pieskarieties pogai **Pārskats**, lai pārskatītu izskalošanas līkņu kopu. Ja spiediena līkne ir neregulāra vai

neskaidra, blakus spiediena līknes datu kopai redzams simbols 🌄

13. Pieskarieties atkritnes ikonai **de la servici**, lai noņemtu no kopas neregulāru vai neskaidru bolus injekciju.

Ŵ	5.9	739	1.0	14.43	 > {	16	5.9	7 8 9	1.6	14.

14. Pēc pārskatīšanas pieskarieties pogai **Apstiprināt**, lai izmantotu vidējo vērtību kā TPTD algoritma CO kalibrāciju un skatītu TPTD vērtības. Skat. 13-19. att. 326. lpp.

Kad ir apstiprinātas TPTD kopas vērtības, CO un SV parametra elementā tiek parādīts teksts "CAL", norādot uz TPTD algoritma kalibrēšanu.

13.6.3 TPTD kopsavilkuma ekrāns

Kad TPTD kopa ir pieņemta, sānu panelī Notikumi un lejaukšanās notikuma veidā ar laikspiedolu tiek parādīts kopsavilkums par kopu. Šim kopsavilkuma ekrānam jebkurā laikā var piekļūt, pieskaroties ikonai **Klīniskie rīki**

+

→ pogai **Notikumi un lejaukšanās**. Ritiniet notikumu sarakstu un atlasiet vēlamo termodilūcijas kopu, lai skatītu kopsavilkumu.

Jebkurā brīdī varat pāriet tieši uz kopsavilkuma ekrānu, pieskaroties iejaukšanās marķierim **dava** grafiskās tendences ekrānā.

Intermitējošie parametri, kas parādīti kopsavilkuma ekrānā, ir uzskaitīti un definēti tālāk sadaļā 13-70. tabula 327. lpp..

Parametrs	Definīcija			
Sirds funkcijas indekss (CFI)	Sirds funkcijas indeksu nodrošina transpulmonālā termodilūcija, un tas ir kreisā sirds kambara sistoliskās funkcijas indikators			
Sirds izsviede (iCO)	Intermitējošs sirds izsūknēto asiņu apjoma novērtējums, izmantojot termodilūcijas metodi; to mēra litros minūtē			
Sirds indekss (iCl)	Intermitējošs sirds izsviedes novērtējums, izmantojot termodilūcijas metodi un salīdzinot ar ķermeņa virsmas laukumu			
Šķidruma uzkrāšanās ārpus plaušu asinsvadiem (EVLW)	Šķidruma saturs plaušu audos ārpus plaušu asinsvadiem			
Šķidruma uzkrāšanās ārpus plaušu asinsvadiem indekss (ELWI)	Šķidruma saturs plaušu audos ārpus plaušu asinsvadiem, salīdzinot ar prognozē- to ķermeņa svaru (PBW)			
Vispārējā izsviedes frakcija (GEF)	Aprēķinātā izsviedes frakcija, izmantojot GEDV			
Vispārējais diastoliskais beigu tilpums (GEDV)	Aprēķinātais kombinētais RAEDV, RVEDV, LAEDV un LVEDV tilpums			
Vispārējā diastoliskā beigu tilpuma in- dekss (GEDI)	Aprēķinātais kombinētais RAEDV, RVEDV, LAEDV un LVEDV tilpums pret ķermeņa virsmas laukumu			
Intratorakālais asins tilpums (ITBV)	Aprēķinātais kombinētais sirds un plaušu asiņu tilpums (PBV)			
Intratorakālā asins tilpuma indekss (IT- BI)	Aprēķinātais kombinētais sirds un plaušu asiņu tilpums (PBV) pret ķermeņa vir- smas laukumu			
Plaušu asinsvadu caurlaidības indekss (PVPI)	Ārpus plaušām esošā šķidruma un aprēķinātā plaušu asiņu tilpuma attiecība			
Sistoles tilpums (iSV)	Intermitējošs sirds izsūknēto asiņu apjoma katrā sirdspukstā novērtējums, izman- tojot termodilūcijas metodi			
Sistoles tilpuma indekss (iSVI)	Intermitējošs sistoles tilpuma novērtējums, izmantojot termodilūcijas metodi u salīdzinot ar ķermeņa virsmas laukumu			
Sistēmiskā asinsvadu pretestība (iSVR)	Intermitējošs vērtējums, ņemot vērā plūsmas pretestības termodilūciju, kas jāpār- var, lai virzītu asinis caur asinsrites sistēmu			
Sistēmiskās asinsvadu pretestības in- dekss (iSVRI)	Intermitējošs novērtējums, izmantojot termodilūcijas metodi un salīdzinot SVR ar ķermeņa virsmas laukumu			

13-70. tabula. Transpulmonālās termodilūcijas intermitējošie parametri

13.7 Uzlabota parametru trasēšana

HemoSphere Alta uzlabotā monitoringa platforma nodrošina rīkus, ar ko veikt **mērķtiecīga terapija** (**GDT**), radot lietotājam iespēju optimālā diapazonā izsekot un pārvaldīt galvenos parametrus. Ar uzlaboto parametru izsekošanu medicīnas speciālisti var izveidot un uzraudzīt pielāgotos protokolus.

13.7.1 GDT trasēšana

13.7.1.1 Galvenā parametra un mērķa atlase

1. Pieskarieties ikonai **Klīniskie rīki** → pogai **mērķtiecīga terapija**. Ja ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet **mērķtiecīga terapija**.

13-20. attēls. GDT izvēlnes ekrāns — parametru atlase

2. Parādītie parametri atbilst galvenajiem parametriem, kas atlasīti tendenču pārraudzības ekrānā. Skat.

Parametru maiņa 91. lpp., lai mainītu galvenos parametrus. Pieskarieties rediģēšanas ikonai **bara**, lai mainītu parādīto mērķu diapazonu. Noklusējuma vērtības ir šim parametram iestatītie mērķa diapazoni. Skat. Mērķu un trauksmju konfigurēšana vienam parametram 138. lpp.

3. Izmantojot bulttaustiņus, mainiet mērķu diapazonus vai pieskarieties vērtības lodziņam un izmantojiet papildtastatūru, lai mainītu mērķa diapazona vērtības. Neveicot rediģēšanu, parametru vērtības tiek trasētas noklusējuma diapazonā.

Mērķa rādītāja atbilstības laika diapazons					
CI L/min/m ²					
- 4.0	•				
- 2.0	•				

13-21. attēls. GDT izvēlnes ekrāns — mērķa atlase

4. Pieskarieties lodziņiem blakus parametriem, lai atlasītu šos parametrus un piešķirtu tiem trasēšanu

5. Lai sāktu GDT trasēšanu, pieskarieties pie atskaņošanas ikonas

13-22. attēls. GDT — aktīvās trasēšanas sākšana

13.7.1.2 Aktīvā GDT trasēšana

Aktīvās GDT trasēšanas laikā parametra tendenču grafika apgabals, kas atrodas mērķa diapazonā, parādās ieēnots zilā krāsā. Skat. 13-23. att. 329. lpp.

13-23. attēls. GDT — aktīvā trasēšana

Parametra elementa mērķa indikatoru krāsas. 13-71. tabula 330. lpp. nosaka klīniskā mērķa indikatoru krāsas GDT trasēšanas laikā.

Krāsa	Nozīme
Zila	Trasētais parametrs šobrīd ir konfigurētajā mērķa diapazonā.
Melna	Trasētais parametrs šobrīd ir ārpus konfigurētā mērķa diapazona.
Sarkana	Trasētais parametrs šobrīd ir zem apakšējās trauksmes robežvērtī- bas vai virs augšējās trauksmes robežvērtības.
Pelēks	Trasētais parametrs nav pieejams vai ir kļūdainā stāvoklī, GDT trasēšana ir pauzēta, vai mērķis nav atlasīts.

13-71. tabula. GDT mērķa statusa indikatoru krāsas

Piezīme

Skatot aktīvo GDT trasēšanu grafisko tendenču ekrānā, parametru atlases izvēlnes ir atspējotas.

13.7.1.3 Vēstures GDT

Pieskarieties ikonai Klīniskie rīki → Notikumi un lejaukšanās , lai skatītu iepriekšējās GDT trasēšanas
sesijas. Ritiniet notikumu sarakstu, lai atrastu un atlasītu vēlamo trasēšanas sesiju. Šīs trasēšanas sesijas
kopsavilkums parādīts sānu panelī.

13.7.2 SV optimizācija

SV optimizēšanaoptimizācijas režīma laikā GDT trasēšanas SV/SVI mērķa diapazons ir atlasīts, ņemot vērā pēdējās SV tendences. Šādi lietotājs var noteikt optimālo SV vērtību šķidrumu pārvaldības aktīvā monitoringa laikā.

- 1. Kā galveno rādītāju atlasiet SV vai SVI.
- 2. Izmantojiet rediģēšanas taustiņu, lai skatītu parametru SV/SVI mērķa vērtības. Pārslēdziet parametru **SV** optimizēšana uz leslēgts.
- 3. Atlasiet pārslēgu 10% optimizācijai

- 4. Lai sāktu GDT trasēšanu, pieskarieties pie atskaņošanas ikonas
- 5. Novērojiet SV tendenci, kamēr ievadāt nepieciešamo šķidrumu, lai sasniegtu optimālo vērtību. Tendenču līnija ir zilā krāsā. Time-in-Target vērtības vietā SV/SVI parametra elementā un GDT sānu panelī tiek parādīta

 Pieskarieties diagrammas zonā, līdz tiek parādīta mērķa pievienošanas ikona diagrammā kopā ar optimizētām mērķa vērtībām.

Pieskarieties mērķa ikonai

SV/SVI vērtības.

lai turpinātu pārraudzīt

8. Kad parādītais mērķa diapazons ir pieņemts, tiek aktivizēta GDT trasēšana un diagrammas zona kļūst zila. Vērtības ir konfigurētas SV/SVI parametriem GDT sānu paneļa parametru iestatījumos, un tās var pielāgot,

izmantojot rediģēšanas ikonu

9. GDT sānu panelim var piekļūt jebkurā laikā, kamēr ir aktīvs GDT režīms, un pabeigt GDT trasēšanas sesiju,

pieskaroties apturēšanas ikonai

13.7.3 GDT pārskata lejupielāde

Ekrānā Eksportēt datus lietotājs GDT pārskatus var eksportēt USB ierīcē. Skat. GDT pārskats 143. lpp.

13.8 Šķidruma reakcijas tests

7.

Izmantojot opciju **Šķidruma reakcijas tests** (**FRT**), ārstiem ir iespēja izvērtēt pirmsslodzes reakciju. Pirmsslodzes reakcija tiek izvērtēta, izsekojot izmaiņas **SV**, **SVI**, **CO** vai **CI** kā reakciju uz šķidruma pārbaudi (**Pasīva kājas pacelšana** vai **Bolus injekcijas šķidrums**).

Lai sāktu testu, veiciet turpmāk minētās darbības.

1. Pieskarieties ikonai **Klīniskie rīki** → pogai **Šķidruma reakcijas tests**. Ja ir aktīvs cits klīniskais rīks, nolaižamajā izvēlnē atlasiet **Šķidruma reakcijas tests**.

2. Izmantojot bultiņas (

ritiniet un atlasiet izvēlnes Šķidruma reakcijas tests opcijas.

13-24. attēls. Sānu panelis Šķidruma reakcijas tests — galvenās izvēlnes ekrāns

3. Atlasiet parametra Šķidruma pārbaude veidu kā: Pasīva kājas pacelšana vai Bolus injekcijas šķidrums.

Lai saņemtu papildu norādes par atlasīto Šķidruma pārbaude veidu, izpildiet tālāk minētās darbības.

Piezīme

Parametra Šķidruma reakcijas tests (FRT) interpretācija ir tieši saistīta ar pārraudzītā parametra reakcijas laiku. Pārraudzīto parametru reakcijas laiki var atšķirties atkarībā no monitoringa režīma, un tos nosaka pievienotā tehnoloģija. Parametra Šķidruma reakcijas tests atlasīto parametru atjaunināšanas biežumu minimāli invazīvā režīmā nosaka CO vidējais laiks (skat. 5-4. tabula 131. lpp.).

13.8.1 Pasīvas kājas pacelšanas tests

Tests **Pasīva kājas pacelšana** ir jutīga metode pacienta šķidrumu reakcijas novērtēšanai. Šī testa laikā venozās asinis, kas tiek novadītas no ķermeņa apakšdaļas līdz sirdij, simulē šķidruma pārbaudi. Izmantojot bultiņas

), ritiniet un atlasiet izvēlnes opcijas.

- 1. Atlasiet parametra Šķidruma pārbaude veidu kā: Pasīva kājas pacelšana.
- 2. Atlasiet parametra **Tehnoloģija** veidu. Tas nosaka, kura pievienotā tehnoloģija un kuri pārraudzītā parametra dati tiks izmantoti analīzei.
- 3. Atlasiet analizējamo elementu Parametrs:
 - SV, SVI, CO vai CI (FloTrac un ClearSight tehnoloģiju veidi)
 - SV_{20s}, SVI_{20s}, CO_{20s}, vai Cl_{20s} (Swan-Ganz tehnoloģijas veids ar PAP signālu; skat. 20 sekunžu plūsmas parametri 153. lpp.).
- 4. Atlasiet opciju **Ilgums: 1 min, 1 min 30 sek.** vai **2 min (FloTrac** un **ClearSight** tehnoloģijas veidi) vai **3 min** (**Swan-Ganz** tehnoloģijas veids).

- 5. Kad izvēlnē ir atlasīti visi iestatījumi, pieskarieties pogai Nākamais.
- 6. Novietojiet pacientu daļēji guļošā pozīcijā. Pieskarieties pogai **Sākt bāzlīniju**, lai sāktu bāzlīnijas mērījumu.

Piezīme

Bāzlīnijas vērtība ir vidējā vērtība no vairākiem mērījumiem. Nodrošiniet, ka pacients ir nekustīgs un atrodas vienā pozīcijā šī mērījumu perioda laikā. Bāzlīnijas mērīšanas laiks ir 1 minūte. Kad ir veikts bāzlīnijas mērījums, sānu panelis tiek bloķēts, līdz ir pabeigta pasīvas kājas celšanas pārbaude vai process tiek atcelts un lietotājs atgriežas FRT izvēlnes ekrānā.

7. Sānu panelī FRT tiek parādīts atlasītā parametra tendences grafiks un atskaites taimeri, rādot bāzlīnijas mērījuma atlikušo laiku.

Piezīme

Lai pārtrauktu bāzlīnijas mērījumu, pieskarieties pogai Atcelt un atgriezieties izvēlnes ekrānā FRT.

- 8. Bāzlīnijas mērījuma beigās zem tendences grafika būs redzama bāzlīnijas vērtība. Pieskarieties pie Nākamais, lai pārietu uz pasīvas kājas pacelšanas pārbaudi. Lai atkārtoti mērītu bāzlīnijas vērtību, pieskarieties pie Atcelt un atgriezieties FRT izvēlnes ekrānā, lai atsāktu bāzlīnijas mērīšanas procesu. Noteiktos gadījumos sistēma konstatē nestabilu bāzlīniju. Lai atkārtoti mērītu bāzlīnijas vērtību, pieskarieties pie Pārstartēt.
- 9. Lai pārietu pie darbības **Pasīva kājas pacelšana**, novietojiet pacientu guļus uz muguras un pieskarieties pogai **Sākt**. Piecu sekunžu laikā pasīvi paceliet pacienta kājas 45 grādu leņķī. Parādās piecu sekunžu laika atskaites pulkstenis, lai norādītu atlikušo laiku līdz pārbaudes mērījuma sākumam.
- 10. Parādīsies jauns atskaites taimeris ar atlasīto pārbaudes ilguma sākuma laiku. Nodrošiniet, ka pacients ir nekustīgs mērījuma perioda laikā.

Piezīme

Pirms iegūts pietiekams mērījumu skaits, var pieskarties pogai **Atcelt**, lai pārtrauktu testu. Parādās apstiprinājuma uznirstošais logs. Pieskarieties pie **Jā**, lai atgrieztos izvēlnes FRT ekrānā.

Kad iegūts pietiekams mērījumu skaits, poga **Atcelt** vairs nav pieejama. Lai apturētu testu un analizētu izmērītos datus, pirms pagājis pilns testa laiks, pieskarieties pogai **Beigt Tagad**.

11. Testa beigās tiek parādītas atlasītās vērtības **Parametrs** izmaiņas, reaģējot uz šķidruma pārbaudi. Skat. 13-25. att. 335. lpp. Pieskarieties pogai **Atgriezties galvenajā ekrānā**, lai veiktu citu pārbaudi, vai paslēpiet

+

sānu paneli, pieskaroties ikonai **Klīniskie rīki**

navigācijas joslā un atjaunojot galvenā pārraudzības

13-25. attēls. Šķidruma reakcijas tests — ekrāns Rezultāti

13.8.2 Šķidruma bolus tests

Tests **Bolus injekcijas šķidrums** ir jutīga metode pacienta šķidrumu reakcijas novērtēšanai. Šī testa laikā šķidruma bolus tiek ievadīts pacientam, un iespējams izvērtēt pirmsslodzes reakciju, trasējot SV, SVI, CO vai CI

), ritiniet un atlasiet izvēlnes opcijas.

- 1. Atlasiet parametra Šķidruma pārbaude veidu kā: Bolus injekcijas šķidrums.
- 2. Atlasiet parametra **Tehnoloģija** veidu. Tas nosaka, kura pievienotā tehnoloģija un kuri pārraudzītā parametra dati tiks izmantoti analīzei.
- 3. Atlasiet analizējamo vienumu Parametrs:
 - SV, SVI, CO vai CI (FloTrac un ClearSight tehnoloģiju veidi)
 - SV_{20s}, SVI_{20s}, CO_{20s}, vai Cl_{20s} (Swan-Ganz tehnoloģijas veids ar PAP signālu; skat. 20 sekunžu plūsmas parametri 153. lpp.).
- 4. Atlasiet parametru llgums: 5 min, 10 min vai 15 min.
- 5. Kad izvēlnē ir atlasīti visi iestatījumi, pieskarieties pogai Nākamais.
- 6. Pieskarieties pogai Sākt bāzlīniju, lai sāktu bāzlīnijas mērījumus.

Piezīme

Bāzlīnijas vērtība ir vidējā vērtība no vairākiem mērījumiem. Nodrošiniet, ka pacients ir nekustīgs un atrodas vienā pozīcijā šī mērījumu perioda laikā. Bāzlīnijas mērīšanas laiks ir 1 minūte. Kad ir veikts bāzlīnijas mērījums, sānu panelis tiek bloķēts, līdz ir pabeigta bolus šķidruma pārbaude vai process tiek atcelts un lietotājs atgriežas FRT izvēlnes ekrānā.

7. Sānu panelī FRT tiek parādīts atlasītā parametra tendences grafiks un atskaites taimeri, rādot bāzlīnijas mērījuma atlikušo laiku.

Piezīme

Lai pārtrauktu bāzlīnijas mērījumu, pieskarieties pogai Atcelt un atgriezieties izvēlnes ekrānā FRT.

8. Bāzlīnijas mērījuma beigās zem tendences grafika būs redzama bāzlīnijas vērtība. Pieskarieties pie Nākamais, lai pārietu uz šķidruma bolus pārbaudi.

Lai atkārtoti mērītu bāzlīnijas vērtību, pieskarieties pie **Atcelt** un atgriezieties FRT izvēlnes ekrānā, lai atsāktu bāzlīnijas mērīšanas procesu. Noteiktos gadījumos sistēma konstatē nestabilu bāzlīniju. Lai atkārtoti veiktu bāzlīnijas mērījumus, pieskarieties pie **Pārstartēt**.

- 9. levadiet bolus injekcijas šķidrumu un pieskarieties pogai Sākt, kad sākas bolus.
- 10. Parādīsies jauns atskaites taimeris ar atlasītās pārbaudes parametru **ligums**. Nodrošiniet, ka pacients ir nekustīgs mērījuma perioda laikā.

Piezīme

Pirms iegūts pietiekams mērījumu skaits, var pieskarties pogai **Atcelt**, lai pārtrauktu testu. Parādās apstiprinājuma uznirstošais logs. Pieskarieties pie **Jā**, lai atgrieztos izvēlnes FRT sānu panelī.

Kad iegūts pietiekams mērījumu skaits, poga **Atcelt** vairs nav pieejama. Lai apturētu testu un analizētu izmērītos datus, pirms pagājis pilns testa laiks, pieskarieties pogai **Beigt Tagad**. Pieskarieties pie **Atgriezties galvenajā ekrānā**, lai atgrieztos izvēlnes FRT sānu panelī.

11. Testa beigās tiek parādītas atlasītās vērtības **Parametrs** izmaiņas, reaģējot uz šķidruma pārbaudi. Skat. 13-25. att. 335. lpp. Pieskarieties atgriešanās ikonai, lai veiktu vēl vienu testu, vai pieskarieties sākuma ikonai, lai atgrieztos galvenajā monitoringa ekrānā.

13.8.3 Vēsturiskie testa rezultāti

Lietotājs var skatīt iepriekšējos testu rezultātus sānu panelī Notikumi un lejaukšanās. Pieskarieties ikonai

Klīniskie rīki → Notikumi un lejaukšanās, lai skatītu iepriekšējās FRT sesijas. Notikumu sarakstā ir saraksts ar visiem pašreizējam pacientam veiktajiem šķidruma reakcijas testiem. Izmantojot ritināšanas pogas, izceliet noteiktu testu un atlasiet vēlamo FRT sesiju. Šīs sesijas kopsavilkums parādīts sānu panelī.

Problēmu novēršana

Saturs

Ekrānā redzamā palīdzība	338
Monitora statusa indikatori	338
Spiedienkabeļa rādījumi	
ForeSight oksimetra kabeļa sensoru gaismas indikatori	
Spiediena kontrollera sakari	
HemoSphere Alta uzlabotās monitoringa platformas kļūdu ziņojumi	
HemoSphere Alta Swan-Ganz pacienta kabeļa kļūdu ziņojumi	
Spiedienkabeļa kļūdu ziņojumi	357
ClearSight pārraudzības kļūdu ziņojumi	
Venozās oksimetrijas kļūdu ziņojumi	
Audu oksimetrijas kļūdu ziņojumi	

14.1 Ekrānā redzamā palīdzība

Šajā nodaļā aprakstītās un monitora palīdzības ekrānos parādītās palīdzības tēmas ir saistītas ar izplatītiem kļūdu apstākļiem. Papildus šiem kļūdu apstākļiem vietnē eifu.edwards.com ir pieejams saraksts ar neatrisinātām anomālijām un problēmu novēršanas darbībām. Šis saraksts ir saistīts ar HemoSphere Alta uzlabotā monitora modeļa numuriem (sākas ar "ALTA") un programmatūras versiju, kas norādīta sākumlapā (skat. Palaišanas procedūra 81. lpp.). Šie jautājumi tiek pastāvīgi atjaunināti un apkopoti izstrādājuma kārtējo uzlabojumu rezultātā.

Galvenais palīdzības ekrāns ļauj lietotājam saņemt konkrētu palīdzību saistībā ar HemoSphere Alta uzlabotās monitoringa platformas problēmām. Kļūmes, trauksmes un brīdinājumi lietotājam paziņo par kļūdas apstākļiem, kas ietekmē rādītāju mērījumus. Kļūmes ir tehniskās trauksmes stāvokļi, kas aiztur rādītāju mērījumus. Kategoriju palīdzības ekrāns sniedz konkrētu palīdzību saistībā ar kļūmēm, brīdinājumiem, trauksmēm un problēmu novēršanu.

1. Navigācijas joslā pieskarieties palīdzības ikonai

- 2. Pieskarieties pogai **Versija**, lai parādītu monitora un pievienotā(-o) kabeļa(-u) programmatūras versijas un sērijas numurus.
- 3. Pieskarieties pogai **Ceļvedis**, lai skatītu sarakstu, kurā parādīti šādi elementi: **Kļūmes**, **Trauksmes**, **Brīdinājumi** vai **Problēmu novēršana**, un tie ir kategorizēti atbilstoši pārraudzības tehnoloģijai.
- 4. Pieskarieties pluszīmes ikonai, lai skatītu izvērstu logu, kurā detalizēti aprakstīti **Iespējamie iemesli** un **Ieteicamās darbības**, kas saistītas ar atlasīto paziņojuma ziņojumu.

14.2 Monitora statusa indikatori

HemoSphere Alta uzlabotajai monitoringa platformai ir vizuāls trauksmes indikators lietotāja brīdināšanai trauksmes stāvokļa gadījumā. Papildinformāciju par vidējas un augstas prioritātes fizioloģiskās trauksmes stāvokļiem skatiet sadaļā Trauksmju prioritātes līmeņi 407. lpp.. Monitora ieslēgšanas pogai ir integrēts LED indikators, kas nepārtraukti parāda barošanas stāvokli.

1. Vizuālais trauksmes indikators

2. Monitora barošanas stāvoklis

14-1. attēls. HemoSphere Alta uzlabotā monitoringa platforma LED indikatori

Trauksmes stāvoklis	Krāsa	Gaismas veids	leteicamā darbība
Augstas prioritātes fiziolo- ģiskā trauksme	Sarkana	Mirgo (IEDEGAS/NO- DZIEST)	Šim fizioloģiskās trauksmes stāvoklim jāpie- vērš tūlītēja uzmanība
			Lai skatītu konkrēto trauksmes stāvokli, ska- tiet statusa joslu
Augstas prioritātes tehnis- kās kļūmes un trauksmes	Sarkana	Mirgo (IEDEGAS/NO- DZIEST)	Šim trauksmes stāvoklim jāpievērš tūlītēja uz- manība; tas saglabāsies aktīvs trauksmes pau- zes laikā
			Ja noteiktais tehniskās trauksmes stāvoklis nav atkopjams, restartējiet sistēmu
			Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Vidējas prioritātes tehnis- kās kļūmes un trauksmes	Dzeltena	Mirgo (IEDEGAS/NO- DZIEST)	Šim trauksmes stāvoklim jāpievērš tūlītēja uz- manība
			Lai skatītu konkrēto trauksmes stāvokli, ska- tiet statusa joslu
Vidējas prioritātes fiziolo- ģiskā trauksme	Dzeltena	Mirgo (IEDEGAS/NO- DZIEST)	Šim trauksmes stāvoklim jāpievērš tūlītēja uz- manība
			Lai skatītu konkrēto trauksmes stāvokli, ska- tiet statusa joslu
Zemas prioritātes tehniskā trauksme	Dzeltena	DEG nepārtraukti	Šim trauksmes stāvoklim nav jāpievērš tūlītēja uzmanība
			Lai skatītu konkrēto trauksmes stāvokli, ska- tiet statusa joslu

14-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas vizuālais trauksmes indikators

Monitora statuss	Krāsa	Gaismas veids	leteicamā darbība
Monitora barošana IE- SLĒGTA	Zaļa	DEG nepārtraukti	Nav
Monitora barošana IZ- SLĒGTA Monitors ir savienots ar maiņstrāvu Notiek akumulatora uzlā-	Dzeltena	Mirgo (IEDEGAS/NO- DZIEST)	Uzgaidiet, līdz akumulators ir uzlādēts, pirms atvienojat no maiņstrāvas tīkla
de			
Monitora barošana IZ- SLĒGTA	Dzeltena	DEG nepārtraukti	Nav
maiņstrāvu			
Akumulatora uzlāde neno- tiek			
Monitora barošana IZ- SLĒGTA	Nedeg	NEDEG nemaz	Nav

14-2. tabula. HemoSphere Alta uzlabotās monitoringa platformas barošanas indikators

14.3 Spiedienkabeļa rādījumi

Spiedienkabeļa LED indikators norāda spiediena sensora vai devēja statusu. LED funkcionalitāte attiecas tikai uz HEMPSC100 modeļa spiedienkabeli.

1. Spiediena sensora statuss

14-2. attēls. Spiedienkabeļa LED indikators (tikai HEMPSC100)

Stāvoklis	Krāsa	Gaismas veids	leteicamā darbība
Nav pievienots spiediena devējs.	Nedeg	NEDEG nemaz	Nav
Ir pievienots spiediena sensors/devējs, taču tas vēl nav nullēts.	Zaļa	Mirgo (IEDEGAS/NO- DZIEST)	Lai sāktu monitoringu, nullējiet spiediena sen- soru.

Stāvoklis	Krāsa	Gaismas veids	leteicamā darbība
Spiediena sensors/devējs ir nullēts.	Nedeg	NEDEG nemaz	Nav. Pievienotais spiediena sensors var no- drošināt aktīvu spiediena signāla pārraudzību.
lr aktivizēta vidēji augstas prioritātes spiediena sen- sora/devēja trauksme.	Dzeltena	Mirgo (IEDEGAS/NO- DZIEST)	Skatiet ekrānā redzamo informāciju, lai uzzi- nātu, kāda veida tehniskā kļūme ir radusies. Lai izvēlētos piemērotu ieteicamo darbību, skatiet palīdzības izvēlni vai tālāk esošās tabu- las.

14.4 ForeSight oksimetra kabeļa sensoru gaismas indikatori

ForeSight oksimetra kabeļa LED indikatori norāda audu oksimetrijas sensoru kanālu statusu.

1. 1. kanāla statusa LED indikators

- 2. Moduļa statusa LED indikators
- 3. 2. kanāla statusa LED indikators
- 14-3. attēls. ForeSight oksimetra kabeļa LED indikatori

LED indikators	Krāsa	Nozīme		
1. kanāla statuss	Balta	Sensors nav pievienots		
	Zaļa	Sensors ir pievienots		
2. kanāla statuss	Balta	Sensors nav pievienots		
	Zaļa	Sensors ir pievienots		
Moduļa statuss	Zaļa	Kanāli ir saistīti ar HemoSphere Alta monitora A pieslēgvietu		
	Zila	Kanāli ir saistīti ar HemoSphere Alta monitora B pieslēgvietu		

UZMANĪBU

Ja kāds no ForeSight oksimetra kabeļa LED indikatoriem neieslēdzas, kabeli nedrīkst izmantot, kamēr tas nav salabots vai nomainīts. Sazinieties ar Edwards tehniskā atbalsta dienestu. Pastāv risks, ka bojātas detaļas var samazināt kabeļa veiktspēju.

14.5 Spiediena kontrollera sakari

Spiediena kontrollera indikatori parāda pirkstu manšetes un sirds kontrolsensora statusu.

1. Pirksta manšetes(-šu) statuss

2. Sirds kontrolsensora statuss

14-4. attēls. Spiediena kontrollera LED indikatori

Stāvoklis	Krāsa	Gaismas veids	leteicamā darbība	
MANŠETES STATUSA INDIKATORS				
Pirksta manšetes nav pievienotas	Nedeg	NEDEG nemaz	Nav	
Pirksta manšete pievienota	Zaļa	DEG nepārtraukti	Nav. Pievienotā manšete ir noteikta, autentificē- ta, un tās termiņš nav beidzies.	
Aktīvs monitorings	Zaļa	Mirgo (IEDEGAS/NO- DZIEST)	Nav. Pievienotā pirksta manšete veic aktīvu mo- nitoringu.	
Defektīva pirksta manšete pievie- nota	Dzintar- krāsa	Mirgo (IEDEGAS/NO- DZIEST)	Pārliecinieties, ka tiek izmantota saderīga Edwards pirksta manšete.	
Pirksta manšete ar beigušos termi- ņu pievienota			Atvienojiet un atkal pievienojiet pirksta manše- ti.	
Nesaderīga Edwards pirksta manše- te pievienota			Aizstājiet pirksta manšeti ar saderīgu Edwards pirksta manšeti.	
			Atsāciet mērījumu.	
			Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu.	
SIRDS KONTROLSENSORA STATUSA IN	DIKATORS			
Nav pievienots sirds kontrolsensors	Nedeg	NEDEG nemaz	Nav	
Sirds kontrolsensors pievienots	Zaļa	DEG nepārtraukti	Nav. Sistēma ir gatava sākt mērījumu.	
Defektīvs sirds kontrolsensors pie- vienots	Dzintar- krāsa	Mirgo (IEDEGAS/NO- DZIEST)	Pārliecinieties, ka tiek izmantots Edwards sirds kontrolsensors.	
Atklāts sirds kontrolsensors, kas nav Edwards sirds kontrolsensors			Atvienojiet un atkal pievienojiet sirds kontrol- sensoru.	
			Aizstājiet sirds kontrolsensoru ar oriģinālo sirds kontrolsensoru.	
			Atsāciet mērījumu.	
			Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu.	
* Pirksta manšetes kļūdu var parādīt arī programmatūra. Skat. 14-26. tabula 366. lpp				

14-5. tabula. Spiediena kontrollera sakaru indikatori*

14.6 HemoSphere Alta uzlabotās monitoringa platformas kļūdu ziņojumi

14.6.1 Sistēmas/pārraudzības kļūmes/trauksmes

14-6	. tabula.	Pārraudz	zības kļ	ūmes/	trauksme	s

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: kabeļa pieslēgvietas {0} kļū- da — pārbaudiet, vai kabeļa savie- nojumu punkti nav bojāti*	Kabelis nav pareizi pievienots Kabeļa vai pieslēgvietas savienoju- mi ir bojāti	Atkārtoti pievienojiet kabeli Pārbaudiet, vai tapas nav saliektas vai nolūzušas Mēģiniet izmantot citu kabeļa pieslēgvietu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: kabeļa pieslēgvietas {0} pro- grammatūras kļūda — nomainiet kabeli vai piezvaniet tehniskajam atbalstam*	Radās ar kabeļa X. pieslēgvietai pievienotā kabeļa programmatūras darbību saistīta kļūda	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Kļūme: iekšēja sistēmas kļūda	lekšējie sistēmas darbības traucēju- mi	Palaidiet sistēmas ieslēgšanas ciklu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: notiek sistēmas atkopšana, lūdzu, gaidiet	Radies neparedzēts gadījums. No- tiek diagnosticēšana	Gaidiet 60 sekundes, kamēr sistēma diagnosticē problēmu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: akumulators izlādējies	Akumulators ir izlādējies, un sistē- ma tiks izslēgta pēc 1 minūtes, ja tā netiks pievienota strāvas padevei	Lai izvairītos no strāvas zuduma un atsāktu pār- raudzību, pievienojiet HemoSphere Alta uzlabo- to monitoru citam strāvas avotam
Kļūme: pārmērīgi augsta sistēmas temperatūra — izslēgšanās ir neno- vēršama	Kritiski augsta monitora iekšējā temperatūra Monitora ventilācijas atveres ir no- sprostotas	Novietojiet monitoru atstatus no jebkāda siltu- ma avota Pārliecinieties, vai monitora ventilācijas atveres nav aizsegtas un noputējušas Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: monitors — nesaderīga programmatūras versija — nepie- ciešama programmatūras atjauni- nāšana	Noteikta neveiksmīga programma- tūras jaunināšana vai nesaderīga programmatūras versija	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Kļūme: Wi-Fi savienojums zaudēts	Wi-Fi aparatūra nedarbojas pareizi, var nebūt pieejama vai nav iestatīta	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Trauksme: bezvadu sertifikāta derī- guma termiņš ir < 4 nedēļas	Bezvadu sertifikāta derīguma ter- miņš ir mazāk nekā 4 nedēļas	Izvēlnē Papildu iestatīšana pārejiet uz bezvadu savienojamības iestatījumiem un augšupielādē- jiet derīgu sertifikātu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: bezvadu sertifikāta derī- guma termiņš ir < 2 nedēļas	Bezvadu sertifikāta derīguma ter- miņš ir mazāk nekā 2 nedēļas	Izvēlnē Papildu iestatīšana pārejiet uz bezvadu savienojamības iestatījumiem un augšupielādē- jiet derīgu sertifikātu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: bezvadu sertifikāta derī- guma termiņš beidzies	Bezvadu sertifikāta derīguma ter- miņš ir beidzies	Izvēlnē Papildu iestatīšana pārejiet uz bezvadu savienojamības iestatījumiem un augšupielādē- jiet derīgu sertifikātu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: zems akumulatora uzlā- des līmenis	Akumulatora uzlādes līmenis ir ze- māks par 20 %, vai akumulators iz- lādēsies pēc 8 minūtēm.	Lai izvairītos no strāvas zuduma un turpinātu pārraudzību, pievienojiet HemoSphere Alta uz- laboto monitoru citam strāvas avotam
Trauksme: akumulators atvienots	Neizdevās atrast iepriekš pievieno- to akumulatoru Vājš akumulatora savienojums	Pārbaudiet, vai akumulators pareizi ievietots tam paredzētajā nodalījumā Izņemiet akumulatoru un pēc tam atkārtoti to ievietojiet Nomainiet akumulatoru Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: akumulatora kļūda — nepieciešama apkope	Radās iekšēja akumulatora kļūme Pilnībā uzlādēts akumulators vairs nespēj pienācīgi uzturēt sistēmas darbību	Palaidiet sistēmas ieslēgšanas ciklu Ja problēma turpinās, nomainiet akumulatoru komplektu
Trauksme: Akumulatoram nepiecie- šama kondicionēšana	Gāzes mērinstruments nav sinhro- nizēts ar patieso akumulatora ietil- pības statusu	Lai nodrošinātu nepārtrauktu parametru mērī- šanu, gādājiet, ka HemoSphere Alta uzlabotais monitors tiek pievienots strāvas rozetei Veiciet akumulatora kondicionēšanu (mērīšanas režīms nedrīkst būt aktivizēts) pievienojiet monitoru strāvas rozetei un pilnībā uzlādējiet akumulatoru; Kad akumulators ir pilnībā uzlādēts, vismaz di- vas stundas nelietojiet to; Atvienojiet ierīci no strāvas rozetes un turpiniet sistēmas lietošanu, izmantojot akumulatora jau- du; Kad akumulators izlādēsies pilnībā tukšs, HemoSphere Alta uzlabotais monitors automā- tiski izslēgsies; Kad akumulators ir pilnībā tukšs, vismaz piecas stundas nelietojiet to; Pievienojiet monitoru strāvas rozetei un pilnībā uzlādējiet akumulatoru; Ja ziņojums par akumulatora kondicionēšanu joprojām tiek rādīts, nomainiet akumulatoru
Trauksme: sistēmas temperatūra pārāk augsta	Tiek sasniegta kritiski augsta moni- tora iekšējā temperatūra Monitora ventilācijas atveres ir no- sprostotas	Novietojiet monitoru atstatus no jebkāda siltu- ma avota Pārliecinieties, vai monitora ventilācijas atveres nav aizsegtas un noputējušas Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: sistēmas LED indikatori nedarbojas	Vizuālā trauksmes indikatora apara- tūras vai sakaru kļūda Vizuālā trauksmes indikatora darbī- bas traucējumi	Palaidiet sistēmas ieslēgšanas ciklu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības	
Trauksme: sistēmas speciālais ska- ņas signāls nedarbojas	Skaļruņa aparatūras vai program- matūras sakaru kļūda Mātes plates skaļruņa darbības traucējumi	Palaidiet sistēmas ieslēgšanas ciklu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu	
Trauksme: balss — iekšējā kļūda — nepieciešama apkope	lekšējie sistēmas darbības traucēju- mi	Palaidiet sistēmas ieslēgšanas ciklu. Veikt programmatūras atjaunināšanu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu	
Trauksme: žesti — iekšējā kļūda — nepieciešama apkope	lekšējie sistēmas darbības traucēju- mi	Palaidiet sistēmas ieslēgšanas ciklu. Veikt programmatūras atjaunināšanu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu	
* Piezīme. {0} ir pieslēgvietas numurs: 1, 2, 3, 4 vai 5.			

14.6.2 Pārraudzības problēmu novēršana — ciparu papildtastatūras kļūdas

Ziņojums	lespējamie cēloņi	leteicamās darbības
Vērtība ārpus diapazona (xx-yy)	levadītā vērtība ir augstāka vai ze- māka par atļauto diapazonu	Tiek rādīts, kad lietotājs ievada vērtību, kas neie- tilpst diapazonā. Diapazons ir attēlots xx un yy vietā kā paziņojuma daļa.
Vērtībai jābūt ≤ xx	levadītā vērtība ietilpst diapazonā, bet ir augstāka nekā augstākās vēr- tības iestatījums, piemēram, aug- stākais mēroga iestatījums. xx ir saistītā vērtība.	levadiet zemāku vērtību
Vērtībai jābūt ≥ xx	levadītā vērtība ietilpst diapazonā, bet ir zemāka nekā zemākās vēr- tības iestatījums, piemēram, zemā- kais mēroga iestatījums. xx ir saistī- tā vērtība.	levadiet augstāku vērtību
levadīta nepareiza parole.	levadītā parole nav pareiza.	levadiet pareizu paroli
Lūdzu, ievadiet derīgu laiku.	levadītais laiks nav derīgs, piemē- ram, 25:70.	levadiet pareizu laiku 12 vai 24 stundu formātā
Lūdzu, ievadiet derīgu datumu	levadītais datums nav derīgs, pie- mēram, 33.13.009	levadiet pareizu datumu

14-7. tabula. Ciparu papildtastatūras kļūdas

14.6.3 HemoSphere Remote lietotnes savienojamības kļūdas

Ziņojums	lespējamie cēloņi	leteicamās darbības
HemoSphere Remote lietotne — HemoSphere Remote lietotne	HemoSphere Remote lietotnes pro- blēma Neatbilstošs HemoSphere Remote lietotnes resursdatora nosaukums vai pieslēgvieta	Pārbaudiet tīkla savienojumu Pārbaudiet HemoSphere Remote lietotnes ser- veri Pārbaudiet un atkārtoti ievadiet HemoSphere Remote lietotnes resursdatora nosaukumu un pieslēgvietu Sazinieties ar vietējo IT nodaļu Ja problēma atkārtojas, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: HemoSphere Remote lietotne — HemoSphere Remote lietotne nav sasniedzama	HemoSphere Remote lietotnes pro- blēma Neatbilstošs HemoSphere Remote lietotnes resursdatora nosaukums vai pieslēgvieta	Pārbaudiet tīkla savienojumu Pārbaudiet HemoSphere Remote lietotnes ser- veri Pārbaudiet un atkārtoti ievadiet HemoSphere Remote lietotnes resursdatora nosaukumu un pieslēgvietu Sazinieties ar vietējo IT nodaļu Ja problēma atkārtojas, sazinieties ar Edwards tehniskā atbalsta dienestu
HemoSphere Remote lietotnes sa- vienojamība — sistēmas kļūda	Klienta sertifikāts nav derīgs vai nav pieejams	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Trauksme: HemoSphere Remote lietotnes sertifikāta derīguma ter- miņš ir < 4 nedēļas	HemoSphere Remote lietotnes ser- tifikāta derīguma termiņš ir mazāk nekā 4 nedēļas	Papildu iestatījumu izvēlnē pārejiet uz HemoSphere Remote lietotnes savienojamības iestatījumiem un augšupielādējiet derīgu sertifi- kātu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: HemoSphere Remote lietotnes sertifikāta derīguma ter- miņš ir < 2 nedēļas	HemoSphere Remote lietotnes ser- tifikāta derīguma termiņš ir mazāk nekā 2 nedēļas	Papildu iestatījumu izvēlnē pārejiet uz HemoSphere Remote lietotnes savienojamības iestatījumiem un augšupielādējiet derīgu sertifi- kātu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: HemoSphere Remote lietotnes sertifikāta derīguma ter- miņš beidzies	HemoSphere Remote lietotnes ser- tifikāta derīguma termiņš beidzies	Papildu iestatījumu izvēlnē pārejiet uz HemoSphere Remote lietotnes savienojamības iestatījumiem un augšupielādējiet derīgu sertifi- kātu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

14-8. tabula.	HemoSpher	e Remote lie	etotnes sav	vienoiamības	s klūdas
	i i cili o o pii ci i			icitoja iliou.	, niaaas

14.7 HemoSphere Alta Swan-Ganz pacienta kabeļa kļūdu ziņojumi

14.7.1 CO kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: Swan-Ganz sistēma — Asins Temperatūra Ārpus Diapazona*	Kontrolētā asins temperatūra ir < 31 °C vai > 41 °C	Pārbaudiet, vai katetrs ir pareizi ievietots pul- monālajā artērijā: apstipriniet ķīļa spiediena balona uzpildes tilpu- mu no 1,25–1,50 ml pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Turpiniet CO uzraudzību, kad asins temperatūra ir diapazona robežās
Kļūme: Swan-Ganz sistēma — Sirds izsviede < 1,0 l/min*	lzmērītais CO < 1,0 l/min	Sekot slimnīcas protokolam, lai samazinātu CO Atsākt CO uzraudzību
Kļūme: Swan-Ganz sistēma — ter- miskā kvēldiega novietojuma kļū- da*	Plūsma ap termisko kvēldiegu var tikt samazināta Termiskais kvēldiegs var būt novie- tots pret asinsvada sieniņu Katetrs nav ievietots pacientā	Skalojiet katetra lūmenus Pārbaudiet, vai katetrs ir pareizi ievietots pul- monālajā artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Atsākt CO uzraudzību
Kļūme: Swan-Ganz sistēma — CO – Termiskā Signāla Zudums*	Monitora uztvertais termiskais sig- nāls ir pārāk mazs, lai apstrādātu Secīgi kompresijas ierīces traucēju- mi	Pārbaudiet, vai katetrs ir pareizi ievietots pul- monālajā artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Slimnīcas procedūras laikā īslaicīgi izslēdziet se- cīgās kompresijas ierīci Atsākt CO uzraudzību
Kļūme: Swan-Ganz sistēma — ne- saderīga programmatūra — nepie- ciešama programmatūras atjauni- nāšana	Noteikta neveiksmīga programma- tūras jaunināšana vai nesaderīga programmatūras versija	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Kļūme: GHI kļūda — vēlreiz sāciet CO pārraudzību	GHI algoritms vai tā ievades ir kļu- vušas nederīgas	Pārliecinieties, vai SvO2 un sCO vērtības ir nor- mālas Mēģiniet restartēt GHI algoritmu, restartējot ne- pārtrauktās sirds izsviedes pārraudzības sistēmu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

14-9. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa CO kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: Swan-Ganz sistēma — Datu apstrādes kļūda*	Datu apstrādes kļūda	Atsākt CO uzraudzību Lai atjaunotu sistēmas darbību, izslēdziet un ie- slēdziet monitoru Lietojiet Bolus CO režīmu
Kļūme: Swan-Ganz sistēma — ka- tetra kļūda*	Vājš katetra termiskā kvēldiega sa- vienojums Katetra CO kļūda Pacienta CCO kabeļa darbības trau- cējumi Katetra CO kļūda Automātiskās kvalitātes pārbaudes kļūme Pievienotais katetrs nav Edwards CCO katetrs	Nomainiet pacienta CCO kabeli Lietojiet Bolus CO režīmu Pārbaudiet, vai katetrs ir Edwards CCO katetrs
Kļūme: Swan-Ganz sistēma — nav atklāts termiskā kvēldiega vai ter- mistora savienojums	Nav noteikts katetra termiskā kvēl- diega savienojums Pacienta CCO kabeļa darbības trau- cējumi Pievienotais katetrs nav Edwards CCO katetrs Nav noteikts katetra termistora sa- vienojums Kontrolētā asins temperatūra ir < 15 °C vai > 45 °C	Pārbaudiet pacienta CCO kabeli un katetra sa- vienojumus Atvienojiet termistora un termiskā kvēldiega sa- vienojumus un pārbaudiet, vai nav saliekti kon- takti / vai to netrūkst Nomainiet pacienta CCO kabeli Pārbaudiet, vai katetra termiskais kvēldiegs ir droši savienots ar pacienta CCO kabeli Pārbaudiet, vai katetrs ir Edwards CCO katetrs Lietojiet Bolus CO režīmu Pārbaudiet, vai asins temperatūra ir robežās no 15 °C līdz 45 °C.
Kļūme: Swan-Ganz sistēma — apakšsistēmas darbības traucēju- mi — nepieciešama apkope*	Monitora uztvertais termiskais sig- nāls ir pārāk mazs, lai apstrādātu Secīgi kompresijas ierīces traucēju- mi	Elektrokauterizācijas izmantošanas laikā atvie- nojiet pacienta CCO kabeli Lai atjaunotu platformas darbību, izslēdziet un ieslēdziet monitoru Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: Swan-Ganz sistēma — no- tiek atkopšana — lūdzu, gaidiet	Radies neparedzēts gadījums Notiek diagnosticēšana	Gaidiet 60 sekundes, kamēr sistēma diagnosticē problēmu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: Swan-Ganz sistēma — katetra kļūda	Vājš katetra termiskā kvēldiega sa- vienojums Katetra CO kļūda Pacienta CCO kabeļa darbības trau- cējumi Katetra CO kļūda Automātiskās kvalitātes pārbaudes kļūme Pievienotais katetrs nav Edwards CCO katetrs	Pārbaudiet, vai termiskā kvēldiega savienojums ir drošs Pārbaudiet, vai katetra / pacienta CCO kabeļa termiskā kvēldiega savienojumiem nav saliekti kontakti / vai to netrūkst Nomainiet pacienta CCO kabeli Nomainiet katetru CO mērījumiem Lietojiet Bolus CO režīmu Nomainiet pacienta CCO kabeli Lietojiet Bolus CO režīmu Pārbaudiet, vai katetrs ir Edwards CCO katetrs

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: Swan-Ganz sistēma — nav atklāts termiskā kvēldiega vai termistora savienojums	Nav noteikts katetra termiskā kvēl- diega savienojums Pacienta CCO kabeļa darbības trau- cējumi Pievienotais katetrs nav Edwards CCO katetrs Nav noteikts katetra termistora sa- vienojums Kontrolētā asins temperatūra ir < 15 °C vai > 45 °C	Pārbaudiet, vai katetra termiskais kvēldiegs ir droši savienots ar pacienta CCO kabeli Atvienojiet termisko kvēldiegu un pārbaudiet, vai nav saliekti kontakti / vai to netrūkst Nomainiet pacienta CCO kabeli Pārbaudiet, vai katetrs ir Edwards CCO katetrs Lietojiet Bolus CO režīmu Pārbaudiet, vai katetra termistors ir droši savie- nots ar ierīces CCO kabeli Pārbaudiet, vai asins temperatūra ir robežās no 15 °C līdz 45 °C Atvienojiet termistora savienojumu un pārbau- diet, vai nav saliekti kontakti / vai to netrūkst
Trauksme: Swan-Ganz sistēma — mērījuma izgūšana	Noteiktas ievērojams asins tempe- ratūras svārstības pulmonālajā artē- rijā	Uzgaidiet, kamēr monitors izmēra un attēlo CO Pārbaudiet, vai katetrs ir pareizi ievietots plaušu artērijā Apstipriniet ķīļa spiediena balona uzpildes til- pumu 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un ievie- tošanas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Gaidiet, kamēr tiek atjaunināts CO mērījums Temperatūras svārstības var mazināties, maksi- māli samazinot pacienta diskomfortu Slimnīcas procedūras laikā īslaicīgi izslēdziet se- cīgās kompresijas ierīci

* Šīs ir fiksācijas kļūmes. Lai apklusinātu, pieskarieties apklusināšanas ikonai. Lai notīrītu, restartējiet uzraudzību.

Piezīme. Kamēr kā galvenais parametrs ir atlasīts GHI, ar Swan-Ganz tehnoloģiju CO saistītās kļūmes/trauksmes tiek parādītas vienmēr neatkarīgi no tā, vai CO ir atlasīts kā galvenais parametrs.

14.7.2 EDV un SV kļūmes/brīdinājumi

14-10. tabula. HemoSphere Alta Swan-G	Ganz pacienta kabeļa EDV	' un SV kļūmes/trauksmes
---------------------------------------	--------------------------	--------------------------

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: Swan-Ganz sistēma — EDV — mērījuma izgūšana	Pacienta elpošanas veids var būt mainījies Secīgi kompresijas ierīces traucēju- mi Katetra termiskais kvēldiegs nav pareizi novietots	Uzgaidiet, kamēr monitors izmēra un attēlo EDV Slimnīcas procedūras laikā īslaicīgi izslēdziet se- cīgās kompresijas ierīci Pārbaudiet, vai katetrs ir pareizi ievietots pul- monālajā artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: Swan-Ganz sistēma — EDV — sirdsdarbības frekvences signāls ārpus diapazona	Pacienta vidējā sirdsdarbības frek- vence ir ārpus diapazona (HRavg < 30 vai > 200 bpm) Nav noteikta sirdsdarbības frekven- ce Nav noteikts EKG interfeisa kabeļa savienojums	Uzgaidiet, līdz vidējā sirdsdarbības frekvence ir diapazona robežās Lai maksimāli palielinātu sirdsdarbības frekven- ces sinhronizāciju, izvēlieties atbilstošu novadī- juma konfigurāciju Pārbaudiet, vai kabeļa savienojums starp HemoSphere Alta uzlaboto monitoru un gultas monitoru ir drošs Nomainiet EKG interfeisa kabeli

14.7.3 iCO kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: Swan-Ganz sistēma — iCO – Injicējamās Vielas Temperatūra Ār- pus Diapazona	Injicējamās vielas temperatūra < 0 °C, > 30 °C vai > BT Injicējamās vielas temperatūras zondes darbības traucējumi Pacienta CCO kabeļa darbības trau- cējumi	Pārbaudiet injicējamā šķidruma temperatūru Pārbaudiet, vai injicējamās vielas zondes savie- nojumiem nav saliekti kontakti / vai to netrūkst Nomainiet injicējamās vielas temperatūras zon- di Nomainiet pacienta CCO kabeli
Kļūme: Swan-Ganz sistēma — in- jektāta zondes savienojuma kļūda	Nav noteikta injicējamās vielas temperatūras zonde Injicējamās vielas temperatūras zondes darbības traucējumi Pacienta CCO kabeļa darbības trau- cējumi	Lai atjaunotu platformas darbību, izslēdziet un ieslēdziet monitoru Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Kļūme: Swan-Ganz sistēma — nav atklāts termiskā kvēldiega vai ter- mistora savienojums	Nav noteikts katetra termiskā kvēl- diega savienojums Pacienta CCO kabeļa darbības trau- cējumi Pievienotais katetrs nav Edwards CCO katetrs Nav noteikts katetra termistora sa- vienojums Kontrolētā asins temperatūra ir < 15 °C vai > 45 °C	Pārbaudiet pacienta CCO kabeli un katetra sa- vienojumus Atvienojiet termistora un termiskā kvēldiega sa- vienojumus un pārbaudiet, vai nav saliekti kon- takti / vai to netrūkst Nomainiet pacienta CCO kabeli Pārbaudiet, vai katetra termiskais kvēldiegs ir droši savienots ar pacienta CCO kabeli Pārbaudiet, vai katetrs ir Edwards CCO katetrs Lietojiet Bolus CO režīmu Pārbaudiet, vai asins temperatūra ir robežās no 15 °C līdz 45 °C.
Kļūme: Swan-Ganz sistēma — iCO – Asins Temperatūra Ārpus Diapazo- na	Kontrolētā asins temperatūra ir < 31 °C vai > 45 °C	Pārbaudiet, vai katetrs ir pareizi ievietots pul- monālajā artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Turpiniet bolusa injekcijas, kad asins temperatū- ras vērtība būs diapazona robežās

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: Swan-Ganz sistēma — iCO — injektāta tilpums nederīgs	Zondē iekļautās injicējamās vielas tilpumam jābūt 5 ml vai 10 ml	Mainīt injicējamās vielas tilpumu uz 5 ml vai 10 ml 3 ml injicējamās vielas tilpumam izmantojiet vannas tipa zondi
Trauksme: Swan-Ganz sistēma — iCO – Nestabila bāzlīnija	Noteiktas ievērojams asins tempe- ratūras svārstības pulmonālajā artē- rijā	Uzgaidiet, līdz asiņu temperatūras pamatrādītāji stabilizējas Izmantojiet manuālo režīmu
Trauksme: Swan-Ganz sistēma — iCO – Nav Noteikta Līkne	Bolus injekcijas netiek noteikta > 4 minūtes (Automātiskais režīms) vai 30 sekundes (Manuālais režīms)	Pārstartējiet Bolus CO uzraudzību un turpiniet ievadīt injekcijas
Trauksme: Swan-Ganz sistēma — iCO – Paplašinātā līkne	Termodilūcijas līkne palēninās, lai atgrieztos bāzlīnijā Injicējamās vielas pieslēgvieta ieva- dītāja apvalkā Iespējama sirds šuntēšana	Pārbaudiet, vai tiek izmantota pareizā injicēša- nas metode Pārbaudiet, vai katetrs ir pareizi ievietots pul- monālajā artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Nodrošiniet, ka injicējamās vielas pieslēgvietas atrašanās vieta ir ārpus ievadītāja apvalka Lai ģenerētu spēcīgāku termisko signālu, iz- mantojiet atdzesētu injicējamo vielu un/vai inji- cējamās vielas tilpumu 10 ml
Trauksme: Swan-Ganz sistēma — iCO – Neregulāra līkne	Termodilūcijas līknei ir vairākas maksimālās vērtības	Pārbaudiet, vai tiek izmantota pareizā injicēša- nas metode Pārbaudiet, vai katetrs ir pareizi ievietots pul- monālajā artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Lai ģenerētu spēcīgāku termisko signālu, iz- mantojiet atdzesētu injicējamo vielu un/vai inji- cējamās vielas tilpumu 10 ml
Trauksme: Swan-Ganz sistēma — iCO – Silta injicējamā viela	Injicējamās vielas temperatūra ie- kļaujas 8 °C attiecībā pret asins temperatūru Injicējamās vielas temperatūras zondes darbības traucējumi Pacienta CCO kabeļa darbības trau- cējumi	Lietojiet zemākas temperatūras injicējamo šķidrumu Nomainiet injicējamās vielas temperatūras zon- di Nomainiet pacienta CCO kabeli

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: Swan-Ganz sistēma — nav atklāts termiskā kvēldiega vai termistora savienojums	Nav noteikts katetra termiskā kvēl- diega savienojums Pacienta CCO kabeļa darbības trau- cējumi Pievienotais katetrs nav Edwards CCO katetrs Nav noteikts katetra termistora sa- vienojums Kontrolētā asins temperatūra ir < 15 °C vai > 45 °C	Pārbaudiet, vai katetra termiskais kvēldiegs ir droši savienots ar pacienta CCO kabeli Atvienojiet termisko kvēldiegu un pārbaudiet, vai nav saliekti kontakti / vai to netrūkst Nomainiet pacienta CCO kabeli Pārbaudiet, vai katetrs ir Edwards CCO katetrs Lietojiet Bolus CO režīmu Pārbaudiet, vai katetra termistors ir droši savie- nots ar ierīces CCO kabeli Pārbaudiet, vai asins temperatūra ir robežās no 15 °C līdz 45 °C Atvienojiet termistora savienojumu un pārbau- diet, vai nav saliekti kontakti / vai to netrūkst

14.7.4 20 sekunžu parametru kļūdas/brīdinājumi

14-12. tabula. HemoSphere	Alta Swan-Ganz pacienta	a kabela 20 s parame	tru kļūdas/brīdinājumi
		, .	, , ,

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: Swan-Ganz sistēma — 20 s rādītāji — PA spiediens traucēts	Plaušu artērijas spiediena līkne nav atbilstoša precīzu 20 s parametru mērījumu veikšanai Spiediena devējs nav salāgots ar pacienta flebostatisko asi Spiediena kontroles līnijas integri- tāte ir apdraudēta	Pārbaudiet, vai katetrs ir pareizi ievietots plaušu artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un ievadī- šanas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Pārliecinieties, ka plaušu artērijas spiediena cau- rulīte nav samezglojusies Pārliecinieties, ka nav vaļīgu savienojumu Lai novērtētu sistēmas frekvences atbildes reak- ciju, veiciet taisnstūrviļņu testu Atkārtoti nullējiet plaušu artērijas spiediena de- vēju
Trauksme: Swan-Ganz sistēma — 20 s rādītāji — PA spiediens trau- cēts	Plaušu artērijas spiediena līkne nav atbilstoša precīzu 20 s parametru mērījumu veikšanai Spiediena devējs nav salāgots ar pacienta flebostatisko asi Spiediena kontroles līnijas integri- tāte ir apdraudēta	Pārbaudiet, vai katetrs ir pareizi ievietots plaušu artērijā: Apstipriniet ķīļa spiediena balona uzpildes til- pumu 1,25–1,50 ml Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un ievadī- šanas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Pārliecinieties, ka plaušu artērijas spiediena cau- rulīte nav samezglojusies Pārliecinieties, ka nav vaļīgu savienojumu Lai novērtētu sistēmas frekvences atbildes reak- ciju, veiciet taisnstūrviļņu testu Atkārtoti nullējiet plaušu artērijas spiediena de- vēju

14.7.5 Vispārīgo problēmu novēršana

14-13. tabula. HemoSphere Alta Swan-	-Ganz pacienta kabeļa	a vispārīgo problēmu	u novēršana
--------------------------------------	-----------------------	----------------------	-------------

Ziņojums	lespējamie cēloņi	leteicamās darbības
Swan-Ganz sistēma — Pievienojiet pacienta CCO kabeli, lai veiktu CO kontroli	Nav atklāts savienojums starp mo- nitoru un pacienta CCO kabeli	Pārbaudiet savienojumu starp pacienta CCO ka- beli un monitoru Atvienojiet pacienta CCO kabeli un pārbaudiet, vai nav saliektu/trūkstošu kontaktu Nomainiet pacienta CCO kabeli
Swan-Ganz sistēma — Pievienojiet termistoru, lai veiktu CO kontroli	Nav noteikts savienojums starp pa- cienta CCO kabeli un katetra ter- mistoru Pacienta CCO kabeļa darbības trau- cējumi	Pārbaudiet, vai katetra termistors ir droši savie- nots ar pacienta CCO kabeli Atvienojiet termistora savienojumu un pārbau- diet, vai nav saliekti kontakti vai to netrūkst Nomainiet pacienta CCO kabeli
Swan-Ganz sistēma — Pievieno- jiet termisko kvēldiegu, lai veiktu CO kontroli	Nav noteikts savienojums starp pa- cienta CCO kabeli un katetra ter- misko kvēldiegu Pacienta CCO kabeļa darbības trau- cējumi Pievienotais katetrs nav Edwards CCO katetrs	Pārbaudiet, vai katetra termiskais kvēldiegs ir droši savienots ar pacienta CCO kabeli Atvienojiet termisko kvēldiegu un pārbaudiet, vai nav saliekti kontakti vai to netrūkst Nomainiet pacienta CCO kabeli Pārbaudiet, vai katetrs ir Edwards CCO katetrs
Swan-Ganz sistēma — Pievienojiet plaušu artērijas spiediena sensoru, lai veiktu 20 s parametru pārraudzī- bu	CO _{20s} , Cl _{20s} , SV _{20s} vai SVl _{20s} ir konfi- gurēts kā galvenais rādītājs Nav noteikts savienojums starp spiedienkabeli un plaušu artērijas spiediena sensoru	Pārbaudiet savienojumu starp spiedienkabeli un monitoru Atvienojiet spiedienkabeli un pārbaudiet, vai nav saliekti kontakti vai to netrūkst Nomainiet spiedienkabeli
Swan-Ganz sistēma — lestatīt plau- šu artērijas spiediena nulles vērtī- bu, lai veiktu 20 s parametru pār- raudzību	Pirms pārraudzības plaušu artērijas spiediena signāls nav nullēts	Navigācijas joslā pieskarieties ikonai "Nulle"
Swan-Ganz sistēma — pievienojiet injektāta zondi, lai pārraudzītu iCO	Nav atklāts savienojums starp pa- cienta CCO kabeli un injektāta temperatūras zondi Injektāta temperatūras zondes dar- bības traucējumi Pacienta CCO kabeļa darbības trau- cējumi	Pārbaudiet savienojumu starp pacienta CCO ka- beli un injicējamās vielas temperatūras zondi Nomainiet injicējamās vielas temperatūras zon- di Nomainiet pacienta CCO kabeli
Swan-Ganz sistēma — Pievienojiet spiedienkabeli, lai veiktu 20 s para- metru pārraudzību	Nav noteikts savienojums starp monitoru un spiedienkabeli	Pārbaudiet savienojumu starp spiedienkabeli un monitoru Atvienojiet spiedienkabeli un pārbaudiet, vai nav saliekti kontakti vai to netrūkst Nomainiet spiedienkabeli
Swan-Ganz sistēma — Pievienojiet CCOmbo V Swan-Ganz katetru 20 sekunžu parametru uzraudzībai	Swan-Ganz katetrs nav saderīgs ar CO _{20s} , CI _{20s} , SV _{20s} vai SVI _{20s}	Nomainiet Swan-Ganz katetru pret tādu, kura atsauces numurs sākas ar 774 vai 777
Swan-Ganz sistēma — Pievienojiet EKG ievadi, lai veiktu EDV vai SV kontroli	Nav noteikts EKG interfeisa kabeļa savienojums	Pārbaudiet, vai kabeļa savienojums starp paneli un pacienta galda monitoru ir drošs Nomainiet EKG interfeisa kabeli
CI > CO	Nepareizi pacienta KVL rādītāji KVL < 1	Pārbaudiet pacienta auguma un svara mērīju- mu rādītājus un vienības

Ziņojums	lespējamie cēloņi	leteicamās darbības
CO≠iCO	Nepareizi konfigurēta informācija par bolus Bojāts termistors vai injicējamās vielas zonde Nestabila bāzlīnjias temperatūra, kas ietekmē bolus CO mērījumus	Pārbaudiet, vai aprēķina konstantes, injicējamās vielas tilpums un katetra izmērs ir izvēlēts parei- zi Lai ģenerētu spēcīgāku termisko signālu, iz- mantojiet atdzesētu injicējamo vielu un/vai inji- cējamās vielas tilpumu 10 ml Pārbaudiet, vai tiek izmantota pareizā injicēša- nas metode Nomainiet injicējamās vielas temperatūras zon- di
SVR > SVRI	Nepareizi pacienta KVL rādītāji KVL < 1	Pārbaudiet pacienta auguma un svara mērīju- mu rādītājus un vienības
HemoSphere Alta uzlabotais moni- tors HRavg ≠ ārējais monitors HR	Ārējais monitors nav optimāli kon- figurēts EKG signāla izvadei Ārējie monitora darbības traucēju- mi EKG interfeisa kabeļa darbības trau- cējumi Palielināts pacienta sirdsdarbības ātrums HemoSphere Alta uzlabotais mo- nitors izmanto aptuveni 3 minū- šu sirdsdarbības ātruma datus, lai aprēķinātu HRavg vērtību	Pārtrauciet CO pārraudzīšanu un pārbaudiet, vai HemoSphere Alta uzlabotajā monitorā tiek rādīts tāds pats sirdsdarbības ātrums kā ārējā monitorā Atlasiet atbilstošu pievadu konfigurāciju, lai maksimāli palielinātu sirdsdarbības frekvences sinhronizāciju un samazinātu priekškambaru impulsu noteikšanu Pārbaudiet signāla izvadi no ārējās uzraudzības ierīces Uzgaidiet, līdz stabilizējas pacienta sirdsdarbī- bas ātrums Nomainiet EKG interfeisa kabeli

14.7.6 Viedā ķīļa algoritma kļūmes/trauksmes

14-14. tabula.	Viedā k	cīla klūme	s/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: viedais ķīlis — konsta- tēts artefakts — pārbaudiet cauru- lītes	Neparasti augsts sistoles PAP spiediens (sistoles PAP spiediens > 100 mmHg) Neparasti zems diastoles PAP spie- diens (diastoles PAP spiediens < – 20 mmHg) Spiediena līkne nav pietiekama, lai precīzi mērītu PAOP Neatbilstošas kvalitātes spiediena līkne ilgstošā laika posmā Bojāta spiediena pārraudzības cau- rulīte Pacienta kustība PAP caurulītes skalošana	Novērtējiet spiediena pārraudzības sistēmu, sā- kot no pacienta līdz spiediena maisam Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, nopietnu hipertensiju un kustību artefaktus Pārbaudiet, vai arteriālais katetrs nav savijies vai aizsērējis Pārbaudiet, vai visās arteriālā spiediena cauru- lītēs ir atbilstoša caurlaidība un noslēgkrāni ir pareizā pozīcijā Pārliecinieties, ka spiediena sensors ir salāgots ar pacienta flebostatisko asi Hemodinamiskajā pacienta monitorā nullējiet spiediena devēju līdz nulles devējam un pār- baudiet spiedienkabeļa savienojumu Pārliecinieties, ka spiediena maiss ir uzpildīts un skalošanas maiss ir uzpildīts vismaz līdz ¼ atzī- mei Manuāli veiciet PAOP spiediena mērījumu

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: viedais ķīlis — ķīlis nav konstatēts	Ķīlis nav konstatēts > 30 sekundes Spiediena līkne nav pietiekama, lai precīzi mērītu PAOP Neatbilstošas kvalitātes spiediena līkne ilgstošā laika posmā Bojāta spiediena pārraudzības cau- rulīte Pārāk augsts sistoliskais spiediens vai pārāk zems diastoliskais spie- diens	Novērtējiet spiediena pārraudzības sistēmu, sā- kot no pacienta līdz spiediena maisam Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, nopietnu hipertensiju un kustību artefaktus Pārbaudiet, vai arteriālais katetrs nav savijies vai aizsērējis Pārbaudiet, vai visās arteriālā spiediena cauru- lītēs ir atbilstoša caurlaidība un noslēgkrāni ir pareizā pozīcijā Pārliecinieties, ka spiediena sensors ir salāgots ar pacienta flebostatisko asi Hemodinamiskajā pacienta monitorā nullējiet spiediena devēju līdz nulles devējam un pār- baudiet spiedienkabeļa savienojumu Pārliecinieties, ka spiediena maiss ir uzpildīts un skalošanas maiss ir uzpildīts vismaz līdz ¼ atzī- mei Manuāli veiciet PAOP spiediena mērījumu
Trauksme: viedais ķīlis — pārāk garš ķīlis	Viedā ķīļa algoritms izmantots ilg- stošā periodā (> 60 sekundes)	lztukšojiet balonkatetru Pārliecinieties par pareizu ķīļa veidošanas meto- di
Trauksme: viedais ķīlis— viedais ķīlis netiek atbalstīts pediatrijas pacientiem	Viedā ķīļa tehnoloģija nav apstipri- nāta pacientiem, kas jaunāki par 18 gadiem	leteicams veikt mērījumu ar citu tehnoloģiju

14.7.7 Labā sirds kambara izvades (RVCO) algoritma kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: RVCO — nesekmīga palai- šana — neatbilstoša RVP kvalitāte, pārbaudiet katetru	Labā kambara spiediena līkne nav pietiekami precīza CO vērtēšanai Pārāk daudz trokšņu pacienta kustī- bu vai devēja iestatījumu dēļ Spiediena līkne ir pārvietojusies vai mēra negatīvus signālus, jo notiku- šas flebostatiskās ass izmaiņas vai citas saistītas kustības, kas ietekmē spiediena signālu	Pārbaudiet, vai katetrs ir novietots pareizi labajā kambarī. Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un ievie- tošanas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Pārliecinieties, vai labā kambara spiediena cau- rulīte nav samezglota Pārliecinieties, vai nav vaļīgu savienojumu Veiciet taisnstūrviļņu testu, lai novērtētu sistē- mas frekvences reakciju Atkārtoti nullējiet labā kambara spiediena devē- ju sirds augstumā Izskalojiet labā kambara spiediena devēju Nomainiet labā kambara spiediena devēju

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: RVCO — nesekmīga palai- šana, pārbaudiet RVP	Neatbilstoša labā kambara spiedie- na līknes forma Pulsa noteikšana no spiediena līk- nes nav pietiekami precīza, lai to apstrādātu Iekšēja apstrādes kļūda	Pārbaudiet, vai katetrs ir novietots pareizi labajā kambarī. Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un ievie- tošanas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Pārliecinieties, vai labā kambara spiediena cau- rulīte nav samezglota Pārliecinieties, vai nav vaļīgu savienojumu Veiciet taisnstūrviļņu testu, lai novērtētu sistē- mas frekvences reakciju Atkārtoti nullējiet labā kambara spiediena devē- ju sirds augstumā Izskalojiet labā kambara spiediena devēju Nomainiet labā kambara spiediena devēju
Trauksme: RVCO — nepietiekama RVP kvalitāte	Labā kambara spiediena līkne nav pietiekami precīza, lai pareizi mērī- tu 20 s parametrus Ilgākā laika posmā neatbilstoša spiediena līkne Spiediena pārraudzības caurulīte ir bojāta Spiediena līkne ir mainījusies vai mēra negatīvus signālus, jo ir radu- šās izmaiņas flebostatiskajā asī vai cita saistīta kustība, kas ietekmē spiediena signālu	Pārbaudiet, vai katetrs ir novietots pareizi labajā kambarī. Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un ievie- tošanas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Pārliecinieties, vai labā kambara spiediena cau- rulīte nav samezglota Pārliecinieties, vai nav vaļīgu savienojumu Veiciet taisnstūrviļņu testu, lai novērtētu sistē- mas frekvences reakciju Atkārtoti nullējiet labā kambara spiediena devē- ju sirds augstumā Izskalojiet labā kambara spiediena devēju Nomainiet labā kambara spiediena devēju
Trauksme: RVCO — nesekmīga kali- brēšana	Neatbilstošs iCO bolus Pārāk ilgs laiks kopš pēdējā iCO līdz pirmajam derīgajam RVCO	Veiciet iCO atkārtoti

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: RVCO — PA sistoliskais augstāks par RA sistolisko	Plaušu artērijas spiediena sistoliskā mērījuma maksimums ir augstāks par labā priekškambara sistolisko maksimumu	Pārbaudiet, vai katetrs ir novietots pareizi gan plaušu artērijā, gan labajā kambarī. Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un ievie- tošanas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Pārliecinieties, vai labā kambara spiediena cau- rulīte nav samezglota Pārliecinieties, vai nav vaļīgu savienojumu Veiciet taisnstūrviļņu testu, lai novērtētu sistē- mas frekvences reakciju Atkārtoti nullējiet labā kambara spiediena devē- ju sirds augstumā Atkārtoti nullējiet plaušu artērijas spiediena de- vēju sirds augstumā Izskalojiet labā kambara spiediena devēju Izskalojiet plaušu artērijas spiediena devēju Nomainiet labā kambara spiediena devēju

14-16. tabula. RVCO brīdinājums

Ziņojums	lespējamie cēloņi	leteicamās darbības
Lai izmantotu RVCO, nepieciešama jauna pacienta sesija	Aktīvās pacienta sesijas laikā ir pie- vienots Swan IQ katetrs un noticis TPTD kopas mēģinājums.	Ja ir jāiegūst TPTD, sāciet jaunu pacienta sesiju Ja nav jāiegūst TPTD, aizveriet TPTD rīku

14.8 Spiedienkabeļa kļūdu ziņojumi

14.8.1 Vispārīgās spiediena kabeļa kļūmes/trauksmes

14-17. tabula. Vispārīgās spiedienkabeļa k	ļūmes/trauksmes
--	-----------------

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: Pieslēgvieta {0} — Spiedien- kabelis – Nesaderīga Programma- tūras Versija*	Programmatūras versija šajā kabelī nav saderīga ar šo monitoru	Pārliecinieties, ka poga tiek pienācīgi atlaista Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Kļūme: spiediens — pieslēgvieta {0} — notiek spiedienkabeļa atkop- šana — lūdzu, gaidiet*	Radies neparedzēts gadījums Notiek diagnosticēšana	Gaidiet 60 sekundes, kamēr sistēma diagnosticē problēmu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: pieslēgvieta {0} — spiedien- kabeļa darbības traucējumi — ne- pieciešama apkope*	lespējami elektrokauterizācijas traucējumi lekšējās sistēmas darbības traucēju- mi	Atvienojiet un atkārtoti pievienojiet spiedienka- beli Novietojiet kabeli atstatus no jebkādiem siltu- ma avotiem vai izolētām virsmām Ja kabeļa korpuss ir jūtami silts, pirms lietošanas ļaujiet tam atdzist Lai atjaunotu platformas darbību, izslēdziet un ieslēdziet monitoru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu Nepieciešama apkope — izmantojiet citu moni- toru
Kļūme: Pieslēgvieta {0} — Atvienots spiedienkabelis*	Spiedienkabelis atvienots pārrau- dzības laikā Nav konstatēts spiedienkabelis Spiedienkabeļa savienotāja tapas ir saliektas vai to trūkst	Pārliecinieties, vai spiedienkabelis ir pievienots Pārbaudiet, vai savienojums starp spiedienka- beli un sensoru/devēju ir drošs Pārbaudiet, vai spiedienkabeļa savienotājā nav saliekti kontakti vai to netrūkst Atvienojiet un atkārtoti pievienojiet spiedienka- beli Mēģiniet izmantot citu kabeļa pieslēgvietu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: Spiediens – Pieslēgvie- ta {0} — Atvienots spiediena sen- sors*	Spiediena sensors atvienots pārrau- dzības laikā Nav noteikti kabeļa savienojumi Edwards spiedienkabeļa vai senso- ra darbības traucējumi Iekšējie sistēmas darbības traucēju- mi	Pārbaudiet katetra savienojumu Pārbaudiet spiedienkabeli un sensoru un pār- baudiet, vai netrūkst kontaktu Pārbaudiet, vai savienojums starp spiedienka- beli un sensoru/devēju ir drošs Nomainiet Edwards spiedienkabeli Nomainiet Edwards CO/spiediena sensoru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: spiediens — pieslēgvieta {0} — spiediena sensora kļūda*	lr noteikts cita ražotāja nevis Edwards sensors Kabeļa vai sensora darbības trau- cējumi lekšējās sistēmas darbības traucējumi	Pārliecinieties, ka tiek izmantots Edwards spie- diena sensors Atvienojiet sensoru un pārbaudiet, vai nav sa- liekti/trūkstoši kontakti Nomainiet spiediena sensoru Nomainiet spiedienkabeli Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: Spiediens – Pieslēgvie- ta {0} — Nesaderīgs Spiediena Sen- sors*	Ir noteikts cita ražotāja nevis Edwards sensors Kabeļa vai sensora darbības trau- cējumi Iekšējās sistēmas darbības traucējumi	Swan-Ganz sistēma — Pievienojiet CCOmbo V Swan-Ganz katetru 20 sekunžu parametru uz- raudzībai
Trauksme: spiediens — pieslēgvie- ta {0} — spiediena sensora kļūda*	lr noteikts cita ražotāja nevis Edwards sensors Kabeļa vai sensora darbības trau- cējumi lekšējās sistēmas darbības traucējumi	Pārliecinieties, ka tiek izmantots Edwards spie- diena sensors Atvienojiet sensoru un pārbaudiet, vai nav sa- liekti/trūkstoši kontakti Nomainiet spiediena sensoru Nomainiet spiedienkabeli Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: pieslēgvieta {0} — at- klāts viens spiedienkabelis par daudz, lūdzu, atvienojiet*	Pievienoti vairāk nekā 4 spiedien- kabeļi	Atvienojiet liekos spiedienkabeļus Pārliecinieties, ka pievienoto spiedienkabeļu skaits nepārsniedz 4
Trauksme: Spiediens – Pieslēgvie- ta {0} — Atlaidiet Spiedienkabeļa Pogu Zero (Nulle)*	Spiedienkabeļa poga Zero (Nulle) ir nospiesta ilgāk nekā 10 sekundes Spiedienkabeļa darbības traucēju- mi	Atlaidiet spiedienkabeļa pogu Zero (Nulle) Pārliecinieties, ka poga tiek pienācīgi atlaista Nomainiet spiedienkabeli
* Piezīme. {0} ir pieslēgvietas numurs: 1, 2, 3, 4 vai 5.		

14.8.2 Arteriālā un sirds labā kambara spiediena kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: Spiediens – Pieslēgvie- ta {0} — Apdraudēta arteriālā spie- diena līkne	Edwards spiedienkabeļa vai senso- ra darbības traucējumi lekšējie sistēmas darbības traucēju- mi Arteriālā spiediena līkne nav atbil- stoša precīzu asinsspiediena mērī- jumu veikšanai Ilgākā laika posmā neatbilstoša spiediena līkne Spiediena kontroles līnijas integri- tāte ir apdraudēta Sistoliskais spiediens ir pārāk augsts vai diastoliskais spiediens pārāk zems Zems pulsa spiediens pacienta ve- selības stāvokļa dēļ Notiek šķidrumu sistēmas skaloša- na	Novērtējiet Edwards spiediena pārraudzības sis- tēmu, sākot no pacienta, līdz spiediena maisam Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, hipertensiju un kustī- bu artefaktus Pārbaudiet, vai arteriālais katetrs nav savijies vai aizsērējis Pārbaudiet, vai visās arteriālā spiediena cauru- lītēs ir atbilstoša caurlaidība un noslēgkrāni ir pareizā pozīcijā Pārliecinieties, ka Edwards spiediena sen- sors/devējs ir salāgots ar pacienta flebostatisko asi Monitorā iestatiet Edwards spiediena senso- ru/devēju nulles devēja stāvoklī un pārbaudiet spiedienkabeļa savienojumu Pārliecinieties, ka spiediena maiss ir uzpildīts un skalošanas maiss ir uzpildīts vismaz līdz ¼ atzī- mei Lai novērtētu Edwards spiediena pārraudzības sistēmas frekvences atbildes reakciju, veiciet taisnstūrviļņu testu Nomainiet Edwards CO/spiediena sensoru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: Spiediens – Pieslēgvie- ta {0} — Atvienots arteriālais spie- diens	Arteriālais spiediens ir zems un bez pulsācijām Atvienots arteriālais katetrs Nav noteikti kabeļa savienojumi Edwards spiedienkabeļa vai senso- ra darbības traucējumi Iekšējie sistēmas darbības traucēju- mi	Pārbaudiet arteriālā katetra savienojumu Pārbaudiet Edwards spiedienkabeli un sensoru un pārbaudiet, vai netrūkst kontakttapu Nomainiet Edwards spiedienkabeli Nomainiet Edwards spiediena sensoru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

14-18. tabula. HemoSphere spiedienkabeļa ART un RVP kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: spiediens — pieslēgvie- ta {0} — labā kambara spiediena līkne apdraudēta	Edwards spiedienkabeļa vai senso- ra darbības kļūme Iekšējās sistēmas darbības kļūme Labā kambara spiediena līkne nav pietiekami precīza, lai pareizi mērī- tu asinsspiedienu Ilgākā laika posmā neatbilstoša spiediena līkne Spiediena pārraudzības caurulīte ir bojāta Pārāk augsts sistoliskais spiediens vai pārāk zems diastoliskais spie- diens Pacienta saslimšana izraisa zemu pulsa spiedienu Notiek šķidruma caurulītes skaloša- na	Novērtējiet Edwards nepārtrauktās spiediena pārraudzības sistēmu, sākot no pacienta līdz spiediena maisam Pārbaudiet, vai labā kambara spiediena līkne neuzrāda kustību artefaktus Pārbaudiet, vai katetrs nav savijies vai aizsērējis Pārbaudiet, vai visās labā kambara spiediena caurulītēs ir atbilstoša caurlaidība un noslēgkrā- ni ir pareizā pozīcijā Pārliecinieties, vai Edwards spiediena sen- sors/devējs ir salāgots ar pacienta flebostatisko asi Monitorā nullējiet Edwards spiediena senso- ru/devēju uz nulles devēju un pārbaudiet spie- dienkabeļa savienojumu Pārliecinieties, vai spiediena maiss ir uzpildīts un skalošanas maiss ir uzpildīts vismaz līdz ¼ atzīmei Lai novērtētu Edwards spiediena pārraudzības sistēmas frekvences atbildes reakciju, veiciet taisnstūrviļņu testu Nomainiet Edwards spiediena sensoru Ja problēma atkārtojas, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: Spiediens – Pieslēgvie- ta {0} — Apdraudēta arteriālā spie- diena līkne	Edwards spiedienkabeļa vai senso- ra darbības traucējumi lekšējie sistēmas darbības traucēju- mi Arteriālā spiediena līkne nav atbil- stoša precīzu asinsspiediena mērī- jumu veikšanai Ilgākā laika posmā neatbilstoša spiediena līkne Spiediena kontroles līnijas integri- tāte ir apdraudēta Sistoliskais spiediens ir pārāk augsts vai diastoliskais spiediens pārāk zems Zems pulsa spiediens pacienta ve- selības stāvokļa dēļ Notiek šķidrumu sistēmas skaloša- na	Novērtējiet Edwards spiediena pārraudzības sis- tēmu, sākot no pacienta, līdz spiediena maisam Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, hipertensiju un kustī- bu artefaktus Pārbaudiet, vai arteriālais katetrs nav savijies vai aizsērējis Pārbaudiet, vai visās arteriālā spiediena cauru- lītēs ir atbilstoša caurlaidība un noslēgkrāni ir pareizā pozīcijā Pārliecinieties, ka Edwards spiediena sen- sors/devējs ir salāgots ar pacienta flebostatisko asi Monitorā iestatiet Edwards spiediena senso- ru/devēju nulles devēja stāvoklī un pārbaudiet spiedienkabeļa savienojumu Pārliecinieties, ka spiediena maiss ir uzpildīts un skalošanas maiss ir uzpildīts vismaz līdz ¼ atzī- mei Lai novērtētu Edwards spiediena pārraudzības sistēmas frekvences atbildes reakciju, veiciet taisnstūrviļņu testu Nomainiet Edwards Spiediena sensoru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: spiediens — pieslēgvie- ta {0} — SVV aprēķini traucēti	Augsts sirdsdarbības ātruma mainī- gums varētu ietekmēt SVV vērtību	Novērtējiet Edwards spiediena pārraudzības sis- tēmu, sākot no pacienta, līdz spiediena maisam Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, hipertensiju un kustī- bu artefaktus
14.8.3 Transpulmonālā termodilūcijas algoritma (TPTD) kļūmes/trauksmes signāli un brīdinājumi

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: TPTD — pārbaudiet injektā- ta temperatūras zondes savienoju- mu	Nav noteikta injicējamās vielas temperatūras zonde. Injicējamās vielas temperatūras zondes darbības traucējumi.	Pārbaudiet, vai katetra termistora savienojums ir droši pievienots HemoSphere Alta Swan-Ganz pacienta kabelim Atvienojiet injektāta termistora savienojumu un pārbaudiet, vai nav saliektu/trūkstošu kontaktu
Kļūme: TPTD – Pārbaudīt katetra temperatūras zondes savienojumu	Nav noteikts katetra termistora sa- vienojums. Kontrolētā asiņu temperatūra ir < 15 °C vai > 45 °C. Augšstilba temperatūras zondes darbības traucējumi.	Pārbaudiet, vai katetra termistora savienojums ar HemoSphere Alta Swan-Ganz pacienta kabeli ir drošs. Pārbaudiet, vai asins temperatūra ir robežās no 15 °C līdz 45 °C. Atvienojiet termistora savienojumu un pārbau- diet, vai nav saliektu/trūkstošu kontaktu.
Kļūme: TPTD – CVP rādītājs ārpus diapazona	Centrālā venozā spiediena rādītājs ārpus plānotā diapazona. CVP < -25 mmHg vai CVP > 50 mmHg. Savienojums izveidots ar citu fizio- loģisko avotu, nevis CVP avotu.	Pārbaudiet centrālo venozo spiedienu. Pārliecinieties, ka visas centrālā venozā spiedie- na caurulītes ir atvērtas un noslēdzošie krāni ir pareizā pozīcijā. Pārbaudiet, vai sensora vai katetra darbību ne- apgrūtina ārējā spiediena avots (piemēram, aiz- vērti noslēdzošie krāni/ārējs spiediena maiss). Pārbaudiet fizioloģisko avotu.
Kļūme: TPTD – Injicējamās Vielas Temperatūra Ārpus Diapazona, Pār- baudiet Zondi	Injicējamās vielas temperatūra < 0 °C, > 30 °C vai > BT. Injicējamās vielas temperatūras zondes darbības traucējumi.	Pārbaudiet injicējamā šķidruma temperatūru. Pārbaudiet, vai injicējamās vielas zondes savie- nojumiem nav saliekti/trūkstoši kontakti. Nomainiet injicējamās vielas temperatūras zon- di. Pārbaudiet, vai termistora kabelis nesaskaras ar ārēja siltuma/dzesēšanas avotu (piemēram, se- gu sildītāju/dzesētāju).
Kļūme: TPTD – asiņu temperatūra ārpus diapazona, pārbaudīt katetru	Asiņu temperatūra < 15 °C, > 45 °C. Katetra temperatūras zondes darbī- bas traucējumi.	Pārbaudiet asiņu temperatūru. Pārbaudiet, vai katetra savienojumiem nav sa- liekti/trūkstoši kontakti. Pārbaudiet, vai katetra termistora kabelis nesa- skaras ar ārēja siltuma/dzesēšanas avotu (pie- mēram, segu sildītāju/dzesētāju). Nomainiet katetru.
Trauksme: TPTD – Neregulāra injek- cija	Termodilūcijas līknes pamatā var būt neregulāra injekcija. Injekcija nav vienmērīga. Arteriālā katetra termistors ir bo- jāts. Nav noteikts temperatūras kabelis. Temperatūras kabeļa darbības trau- cējumi.	Pārbaudiet, vai bolus injekcijas ievadīšanai tiek piemērota atbilstoša tehnika (vienmērīgi un ne- pārtraukti). Novērtējot spiediena līknes rādītājus, pārlieci- nieties, ka arteriālais katetrs ir intravaskulārā po- zīcijā. Lai novērtētu atbilstošu centrālā venozā katetra novietojumu, apsveriet rentgenizmeklējuma iz- mantošanu. Lai ģenerētu spēcīgu termisko signālu, izman- tojiet atdzesētu injicējamo vielu un/vai injicēja- mās vielas tilpumu 20 ml. Pārbaudiet kabeļa savienojumu. Veiciet jaunus termodilūcijas mērījumus.

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: TPTD – Nestabils bāzlīni- jas rādītājs	Nestabili arteriālo asiņu temperatū- ras mērījumu rādītāji. Arteriālā katetra termistors ir bo- jāts. Temperatūras kabeļa darbības trau- cējumi.	Uzgaidiet, līdz asiņu temperatūras pamatrādītāji stabilizējas. Nomainiet arteriālo katetru. Pārbaudiet kabeļa savienojumu. Pārbaudiet, vai termistora kabelis nesaskaras ar ārēja siltuma/dzesēšanas avotu (piemēram, se- gu sildītāju/dzesētāju).
Trauksme: TPTD – Bolus izmaiņas asiņu temperatūrā < 0,15 °C (< 0,27 °F)	Nelielas izmaiņas asiņu temperatū- rā.	Lietojiet zemākas temperatūras injicējamo šķidrumu. Lietojiet lielāku tilpumu injicējamā šķidruma.
Trauksme: TPTD – Injicējamā šķi- druma temperatūra > 15 °C (>59 °F)	Silta injicējamā šķidruma tempera- tūra un nelielas izmaiņas asiņu temperatūrā. Injekcijas temperatūras zondes dar- bības traucējumi.	Lietojiet zemākas temperatūras injicējamo šķidrumu. Lietojiet lielāku injicējamās vielas tilpumu. Nomainiet injicējamās vielas temperatūras zon- di. Pārbaudiet, vai termistora kabelis nesaskaras ar ārēju siltuma avotu (piemēram, segu sildītāju).
Trauksme: TPTD – Bolus Injekcija Ārpus Diapazona	Termodilūcijas parametru rādītāji ir ārpus diapazona.	Veiciet jaunus termodilūcijas mērījumus. Uzgai- diet, līdz asiņu temperatūras pamatrādītāji sta- bilizējas. Pārbaudiet, vai bolus injekcijas ievadīšanai tiek piemērota atbilstoša tehnika (vienmērīgi un ne- pārtraukti). Lai ģenerētu spēcīgu termisko signālu, izman- tojiet atdzesētu injicējamo vielu un/vai injicēja- mās vielas tilpumu 20 ml. Pārliecinieties, ka daļējas un pilnīgas atbildes reakcijas rādītāji ir līdzīgi.

Ziņojums	lespējamie cēloņi	leteicamās darbības
Lai izmantotu TPTD, nepieciešama jauna pacienta sesija	Aktīvās pacienta sesijas laikā ir veik- ta vēsturiska TPTD kopa un konsta- tēts Swan IQ katetrs.	Ja ir jāiegūst CO_RV, sāciet jaunu pacienta sesiju. Ja nav jāiegūst CO_RV, atvienojiet Swan IQ ka- tetru.

14.8.4 Atbalstītas šķidrumu pārvaldības kļūmes/trauksmes

14-21. tabula. HemoSphere spiedienkabeļa AFM kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: AFM kļūda — lūdzu, vēlreiz sāciet sesiju	Inicializējot atbalstītas šķidruma pārvaldības algoritmu, radās datu apstrādes kļūda Iekšējisistēmasdarbībastraucējumi Ir negatīvi ietekmēts spiediena pār- raudzības līnijas veselums	Novērtējiet arteriālā spiediena līkni un nepār- trauktu CO sistēmu Restartējiet AFM sesiju Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: pieslēgvieta {0} — Acumen AFM kabeļa kļūda — notiek atkop- šana — lūdzu, gaidiet	Sistēma tiek restartēta kļūdas dēļ	Ļaujiet sistēmai automātiski atrisināt problēmu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: Acumen AFM kabeļa dar- bības traucējumi — nepieciešama apkope	lekšējie sistēmas darbības traucēju- mi	Atvienojiet un pievienojiet Acumen AFM kabeli Nomainiet Acumen AFM kabeli Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: Pieslēgvieta {0} — AFM ka- belis — Nesaderīga Programmatū- ras Versija	Noteikta neveiksmīga programma- tūras jaunināšana vai nesaderīga programmatūras versija	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Kļūme: pieslēgvieta {0} — Acumen AFM kabelis ir atvienots	Acumen AFM kabelis tika atvienots	Pievienojiet Acumen AFM kabeli pie HemoSphere Alta monitora Turpiniet AFM algoritmu manuālajā šķidruma izsekošanas režīmā
Kļūme: Acumen IQ šķidruma mērī- tājs ir atvienots	Acumen IQ šķidruma mērītājs tika atvienots	Acumen IQ šķidruma mērītāju pievienot Acumen AFM kabelim AFM turpināt manuālās šķidruma izsekošanas režīmā
Kļūme: Acumen IQ šķidruma mērī- tāja kļūda	Bojāts vai defektīvs Acumen IQ šķidruma mērītājs	Atvienojiet Acumen IQ šķidruma mērītāju un pārbaudiet, vai nav salocītu/trūkstošu kontaktu Nomainiet Acumen IQ šķidruma mērītāju Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: pieslēgvieta {0} — atklā- ti vairāki Acumen AFM kabeļi — at- vienojiet kabeli	Konstatēti vairāki Acumen AFM ka- beļa savienojumi	Atvienojiet vienu no Acumen AFM kabeļiem
Trauksme: Acumen IQ šķidruma mērītāja kļūda	Bojāts vai defektīvs Acumen IQ šķidruma mērītājs Tiek izmantots šķidruma mērītājs, kas nav Edwards šķidruma mērītājs	Atvienojiet Acumen IQ šķīduma mērītāju un pārbaudiet, vai nav saliekušos/trūkstošu kon- taktu Nomainiet Acumen IQ šķidruma mērītāju Pārbaudiet, vai tiek izmantots Edwards šķidru- ma mērītājs Atvienojiet un atkal pievienojiet Acumen IQ šķidruma mērītāju Nomainiet šķidruma mērītāju pret Edwards Acumen IQ šķidruma mērītāju Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: AFM — ir pārsniegts maksimālais izmeklējuma tilpums	Izsekotais apjoms pārsniedza kon- figurēto maksimālā iepakojuma til- pumu	lestatīt jaunu maksimālā iepakojuma tilpuma robežu Beigt AFM sesiju
Trauksme: AFM — noteiktais plūs- mas ātrums ir pārāk liels	Izsekotais bolus plūsmas ātrums, iz-mantojot šķidruma mērītāju, pār- sniedza 8,0 l/h	Samazināt bolus plūsmas ātrumu zem 8,0 l/h Turpināt AFM sesiju manuālās šķidruma izseko- šanas režīmā
Trauksme: AFM — konstatēta bolus injekcija inicializēšanas laikā	AFM sesijas inicializēšanas laikā konstatēts šķidruma bolus	Aizvērt bolus līniju un mēģināt atkārtoti veikt AFM inicializēšanu
Trauksme: atklāts Acumen IQ šķidruma mērītājs	AFM ir manuālās šķidruma izse- košanas režīmā, bet ir pievienots Acumen IQ šķidruma mērītājs	Atvienot Acumen IQ šķidruma mērītāju Atlasīt, lai AFM turpinātu šķidruma mērītāja režī- mā
Trauksme: AFM — AFM analīzes lai- kā atklāts bolus	Esošās AFM bolus analīzes laikā konstatēts papildu šķidruma bolus	Ja iespējams, ievadiet šķidrumus pēc bolus ana- līzes pabeigšanas
* Piezīme. {0} ir pieslēgvietas numurs: 1, 2, 3, 4 vai 5.		

Ziņojums	lespējamie cēloņi	leteicamās darbības
pieslēgvieta {0} — Acumen Afm Ka- belis Ir Atvienots	Acumen AFM kabelis tika atvienots	Pievienojiet Acumen AFM kabeli pie HemoSphere Alta monitora Turpiniet AFM algoritmu manuālajā šķidruma izsekošanas režīmā
Acumen IQ šķidruma mērītājs ir at- vienots	Acumen IQ šķidruma mērītājs tika atvienots	Acumen IQ šķidruma mērītāju pievienot Acumen AFM kabelim AFM turpināt manuālās šķidruma izsekošanas režīmā
AFM sesija pārtraukta	AFM sesija ir pārtraukta	Atsāciet AFM sesiju sānu panelī
AFM ieteikumi apturēti (bolus in- jekcija noraidīta)	lepriekšējais AFM ieteikums ir no- raidīts	Atveriet bolus injekcijas līniju un sāciet bolus injekciju, kad nepieciešams. leteikumi tiks turpināti pēc <#> taimera.

14-22. tabula. HemoSphere spiedienkabeļa AFM brīdinājumi

14.8.5 Smadzeņu automātiskās regulācijas indeksa (CAI) algoritma kļūmes/ trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: CAI — iekšēja kļūda	CAI aprēķinā ir notikusi apstrādes kļūme	Atvienojiet un vēlreiz pievienojiet ForeSight ok- simetra kabeli Atvienojiet un pievienojiet spiedienkabeli Nomainiet ForeSight oksimetra kabeli Nomainiet spiedienkabeli Ja problēma atkārtojas, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: CAI – Slikta signāla kvalitāte	Notiek CAI pārraudzība, un audu oksimetrijas sensors vai MAP mērī- jums vairs nav derīgs	Pārbaudiet, vai StO ₂ sensors ir novietots pareizi Pārbaudiet, vai StO ₂ sensoram ir tieša saskare ar ādu un caurspīdīgā caurulīte ir noņemta Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, nopietnu hipertensiju un kustību artefaktus Pārbaudiet, vai arteriālais katetrs nav savijies vai aizsērējis Pārbaudiet, vai visās arteriālā spiediena cauru- lītēs ir atbilstoša caurlaidība un noslēgkrāni ir pareizā pozīcijā
Kļūme: CAI — MAP nav derīgs dar- bam ar CAI	CAI ir aktīvs, un MAP avots nav HemoSphere spiedienkabelis CAI ir aktīvs, un MAP signāla kvali- tāte ir nepietiekama	Pārbaudiet, vai MAP ievadi nodrošina TruWave/ FloTrac/Acumen IQ sensors Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, nopietnu hipertensiju un kustību artefaktus Pārbaudiet, vai arteriālais katetrs nav savijies vai aizsērējis Pārbaudiet, vai visās arteriālā spiediena cauru- lītēs ir atbilstoša caurlaidība un noslēgkrāni ir pareizā pozīcijā
Kļūme: CAI — StO₂ nav derīgs dar- bam ar CAI	CAI ir aktīvs, un StO ₂ signāla kvalitā- te ir nepietiekama	Pārbaudiet, vai StO ₂ sensors ir novietots pareizi

14-23. tabula. HemoSphere spiediena kabeļa CAI kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: CAI — nevar iniciali- zēt — vairāki sensori konfigurēti smadzeņu atrašanās vietā pa kreisi	CAI veic pārraudzību un vairāki StO ₂ sensori ir konfigurēti smadze- ņu atrašanās vietā pa kreisi	Apstipriniet, ka katrai atrašanās vietai smadze- nēs piestiprināts tikai viens ForeSight sensors. Pārslēdziet vienu no ForeSight sensoriem uz smadzeņu atrašanās vietu pa labi.
Trauksme: CAI — nevar iniciali- zēt — vairāki sensori konfigurēti smadzeņu atrašanās vietā pa labi	CAI veic pārraudzību un vairāki StO2 sensori ir konfigurēti smadze- ņu atrašanās vietā pa labi	Apstipriniet, ka katrai atrašanās vietai smadze- nēs piestiprināts tikai viens ForeSight sensors. Pārslēdziet vienu no ForeSight sensoriem uz smadzeņu atrašanās vietu pa kreisi.

Ziņojums	lespējamie cēloņi	leteicamās darbības
CAI — nepieciešams arteriālais spiediens CAI pārraudzībai	Notiek CAI pārraudzība, un para- metrs MAP nav derīgs	Pārbaudiet savienojumu starp spiediena senso- ru un spiedienkabeli Navigācijas joslā pieskarieties ikonai "Nulle", lai pārliecinātos, ka spiediena veids ir ART, un nul- lētu spiedienu Atvienojiet spiedienkabeli un pārbaudiet, vai netrūkst kontakttapu un tās nav saliektas Nomainiet Edwards spiediena sensoru Nomainiet spiedienkabeli
CAI — pievienojiet ForeSight IQ sensoru atrašanās vietai smadze- nēs, lai veiktu CAI pārraudzību	Notiek CAI pārraudzība, un para- metrs StO₂ nav derīgs	Pārliecinieties, ka ir pievienots ForeSight IQ sen- sors un tas atrodas smadzenēs Pievienojiet ForeSight oksimetra kabeli tam pa- redzētajā monitora pieslēgvietā Vēlreiz pievienojiet ForeSight oksimetra kabeli
CAI — pārraudzība netiek atbalstīta pediatrijas režīmā	Pirms algoritma aprēķina sākšanas ir ieslēgts pediatrijas režīms Pāreja uz pediatrijas režīmu notiek pēc CAI pārraudzības sākšanas	Pārslēdzieties uz pieaugušo režīmu, lai mērītu audu oksimetriju Palieciet pieaugušo režīmā, lai mērītu audu ok- simetriju
CAI — notiek aprēķināšana — lū- dzu, gaidiet	Ir pievienoti derīgi MAP un krei- sās/labās puses smadzeņu StO ₂ sensori, un ir sākta algoritma aprē- ķināšana, bet līdz pirmās CAI vēr- tības parādīšanai nepieciešamais laiks var sasniegt 5 minūtes	Gaidiet 5 minūtes

14-24. tabula. HemoSphere spiedienkabeļa CAI brīdinājumi

14.8.6 Vispārīgo problēmu novēršana

Ziņojums	lespējamie cēloņi	leteicamās darbības
Spiediens — pievienojiet spiedien- kabeli	Ir konfigurēts no spiediena atkarīgs galvenais rādītājs Nav noteikts savienojums starp monitoru un spiedienkabeli	Pārbaudiet savienojumu starp spiedienkabeli un monitoru Atvienojiet spiedienkabeli un pārbaudiet, vai nav saliekti kontakti vai to netrūkst Nomainiet spiedienkabeli
Spiediens — pievienojiet Acumen IQ sensoru	Ir konfigurēts no Acumen IQ atka- rīgs galvenais rādītājs Nav atklāts savienojums starp spie- dienkabeli un Acumen IQ spiediena sensoru Ir pievienots neatbilstoša veida spiediena sensors	Pārbaudiet savienojumu starp spiedienkabeli un katetru Pārbaudiet, vai pievienotais spiedienkabelis ir paredzēts Acumen IQ pārraudzībai Atvienojiet spiedienkabeli un pārbaudiet, vai netrūkst kontaktu Nomainiet Edwards Acumen IQ sensoru Nomainiet spiedienkabeli

14-25. tabula. HemoSphere spiedienkabeļa vispārīgo problēmu novēršana

Ziņojums	lespējamie cēloņi	leteicamās darbības
Spiediens — pieslēgvieta {0} — pievienojiet spiediena sensoru	Ir konfigurēts no spiediena atkarīgs galvenais rādītājs Nav noteikts savienojums starp monitoru un spiedienkabeli	Pārbaudiet savienojumu starp spiedienkabeli un katetru Pārbaudiet, vai spiediena sensors ir pievienots Atvienojiet spiedienkabeli un pārbaudiet, vai netrūkst kontaktu Nomainiet Edwards spiediena sensoru Nomainiet spiedienkabeli
Spiediens — pieslēgvieta {0} — nullējiet sensoru, lai pārraudzītu spiedienu	Pirms spiediena pārraudzības spie- diena signāls nav nullēts	Navigācijas joslā pieskarieties ikonai "Nulle", lai nullētu spiedienu
Cl > CO	Nepareizi pacienta KVL rādītāji KVL < 1	Pārbaudiet pacienta auguma un svara mērīju- mu rādītājus un vienības
SVR > SVRI	Nepareizi pacienta KVL rādītāji KVL < 1	Pārbaudiet pacienta auguma un svara mērīju- mu rādītājus un vienības

14.9 ClearSight pārraudzības kļūdu ziņojumi

14.9.1 Kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: ClearSight sistēma — {0}. pirksta manšete — asinsspie- diena mērījuma kļūda*	Asinsspiediena mērījums neizdevās kustību vai neatbilstošu mērīšanas apstākļu dēļ.	Ļaujiet sistēmai automātiski novērst šo problē- mu Uzlieciet pirksta manšeti uz cita pirksta Mainiet pirksta manšetes izmēru un nomainiet pret cita izmēra pirksta manšeti [†]
Kļūme: ClearSight sistēma — {0}. Pirksta Manšete — slikta sig- nāla kvalitāte*	Gaismas signāls ir pārāk spēcīgs	Sasildiet roku Uzlieciet pirksta manšeti uz cita pirksta Mainiet pirksta manšetes izmēru un nomainiet pret cita izmēra pirksta manšeti Restartējiet mērīšanu [†]
Kļūme: ClearSight sistēma — {0}. Pirksta Manšete — nav no- teikts signāls — vāja perfūzija*	Sākšanas laikā nav noteikta izmērā- ma pletismogramma. Iespējams, sašaurinātas artērijas.	Ļaujiet sistēmai automātiski novērst šo problē- mu. Sasildiet roku. Uzlieciet pirksta manšeti uz cita pirksta.
Kļūme: ClearSight sistēma — {0}. Pirksta Manšete — nav no- teiktas spiediena līknes*	Sistēmai neizdevās noteikt spiedie- na līknes. Spiediena pulsācijas pirkstā sama- zinās, jo augšdelms, elkonis vai plaukstas locītava tika pakļauta spiedienam.	Ļaujiet sistēmai automātiski novērst šo problē- mu Pārbaudiet, vai nav traucēta asins plūsma pa- cienta rokā Pārbaudiet asinsspiediena līknes Uzlieciet pirksta manšeti
Kļūme: ClearSight sistēma — {0}. pirksta manšete — pārbaudiet manšetes kabeļa gaisa padevi*	Pirksta manšetes caurulīte ir samez- glojusies Pirksta manšetē ir noplūde Kabelis starp HemoSphere Alta mo- nitoru un spiediena kontrolleru ir samezglojies, vai tajā ir noplūde Bojāts spiediena kontrollers Bojāta ClearSight apakšsistēma	Pārbaudiet pirksta manšeti.

17-20. labula. Cical Sigili parlauuzibas kiumes/liauksines
--

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: ClearSight sistēma – pirksta manšete atvienota	Nav noteiktas iepriekš pievienotas pirksta manšetes	Atvienojiet un vēlreiz pievienojiet vienu vai vai- rākas Edwards pirksta manšetes Nomainiet vienu vai vairākas pirksta manšetes Restartējiet mērīšanu
Kļūme: ClearSight sistēma – Veiktā Vienas Manšetes Pārraudzība Sas- niedza Ilguma Ierobežojumu	Kopējais mērīšanas laiks uz viena un tā paša pirksta pārsniedz maksi- mālo ilgumu — 8 stundas	Novietojiet pirksta manšeti uz cita pirksta un atkal sāciet pārraudzību
Trauksme: ClearSight sistēma — 2. Pirksta manšetes 1 darbības laiks beidzies – Nomainiet manšeti. Trauksme: ClearSight sistēma — 2. Pirksta manšetes 2 darbības laiks beidzies – Nomainiet manšeti.	Pirksta manšetes <#> darbība pār- sniegusi maksimālo izmantošanas laiku*	Nomainiet pirksta manšeti <#> Restartējiet mērīšanu*
Trauksme: ClearSight sistēma — 2. Pirksta manšetes 1 vai pirksta manšetes savienotāja kļūda Trauksme: ClearSight sistēma — 2. Pirksta manšetes 2 vai pirksta manšetes savienotāja kļūda	Pirksta manšete <#> ir bojāta. Manšetes savienotājs uz spiediena kontrollera ir bojāts*	Atvienojiet un vēlreiz pievienojiet Edwards pirk- sta manšeti <#>. Nomainiet pirksta manšeti <#>. Nomainiet spiediena kontrolleru. Restartējiet mērīšanu. *
Kļūme: ClearSight sistēma — 2. Pirksta Manšetes {0} Vai Pirksta Manšetes Savienotāja Kļūda	Pirksta manšete <#> ir bojāta. Manšetes savienotājs uz spiediena kontrollera ir bojāts*	Atvienojiet un vēlreiz pievienojiet Edwards pirk- sta manšeti <#> Nomainiet pirksta manšeti <#> Nomainiet spiediena kontrolleru Restartējiet mērīšanu *
Kļūme: ClearSight sistēma – HRS vērtība ārpus fizioloģiskā diapazo- na	HRS sirds gals ir vaļīgs un, iespē- jams, vairs nav sirds līmenī HRS atvienots no pirksta manšetes HRS nepareizi kalibrēts Bojāts HRS	Pārbaudiet HRS novietojumu, Pirksta galam jā- būt piestiprinātam pie pirksta manšetes, bet sirds galam jāatrodas uz flebostatiskās ass
Kļūme: ClearSight sistēma – HRS at- vienots	Sirds kontrolsensors (HRS) atvie- nots pārraudzības laikā Nav noteikts HRS savienojums	Pārbaudiet HRS novietojumu, Pirksta galam jā- būt piestiprinātam pie pirksta manšetes, bet sirds galam jāatrodas uz flebostatiskās ass
Kļūme: ClearSight sistēma – no- teikts HRS	lr atlasīta mērīšana bez HRS, taču HRS ir pievienots	Atlasiet, lai mērītu ar HRS Atvienojiet HRS
Trauksme: ClearSight sistēma – HRS vai HRS savienotāja kļūda	Bojāts HRS HRS savienotājs uz spiediena kon- trollera ir bojāts Ir noteikts cita ražotāja (nevis Edwards) HRS	Atvienojiet un vēlreiz pievienojiet Edwards HRS Nomainiet HRS Nomainiet spiediena kontrolleru Restartējiet mērīšanu Pārliecinieties, ka tiek izmantots Edwards HRS Nomainiet HRS pret Edwards HRS Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: ClearSight sistēma – HRS vai HRS savienotāja kļūda	Bojāts HRS HRS savienotājs uz spiediena kon- trollera ir bojāts	Atvienojiet un vēlreiz pievienojiet Edwards HRS Nomainiet HRS Nomainiet spiediena kontrolleru Restartējiet mērīšanu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: ClearSight sistēma — 2. HRS darbības laiks beidzies – No- mainiet HRS.	HRS darbības laiks beidzies, jo bei- dzies tā lietderīgās lietošanas laiks	Atvienojiet un vēlreiz pievienojiet Edwards HRS Nomainiet HRS Restartējiet mērīšanu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: ClearSight sistēma – spie- diena kontrollers atvienots	Nav noteikts spiediena kontrollera savienojums	Atvienojiet un atkal pievienojiet Edwards spie- diena kontrolleru Nomainiet spiediena kontrolleru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: ClearSight sistēma – Spiediena kontrollera kļūda	Spiediena kontrollera reakcijas nav Vājš savienojums starp spiediena kontrolleru un HemoSphere Alta monitoru Spiediena kontrollera autentificēša- nas atteice Bojāts spiediena kontrollers Bojāta ClearSight apakšsistēma Pievienotais spiediena kontrollers ir bojāts Vājš savienojums starp spiediena kontrolleru un HemoSphere Alta monitoru Atklāts nesaderīgs spiediena kon- trollers Atklāts spiediena kontrollers, ko neražo Edwards Nesaderīga spiediena kontrollera programmatūra	Atvienojiet un atkal pievienojiet Edwards spie- diena kontrolleru Nomainiet spiediena kontrolleru Pārliecinieties, ka tiek izmantots Edwards spie- diena kontrollers Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: ClearSight sistēma — spie- diena kontrollera kļūda	Spiediena kontrollers nereaģē Vājš savienojums starp spiediena kontrolleru un HemoSphere Alta monitoru Spiediena kontrollera autentifikāci- jas kļūme Bojāts spiediena kontrollers Bojāta ClearSight apakšsistēma	Atvienojiet un atkal pievienojiet Edwards spie- diena kontrolleru Nomainiet spiediena kontrolleru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: ClearSight sistēma — spie- diena kontrollera kļūda	Pirksta manšetes caurulīte ir samez- glojusies Pirksta manšetē ir noplūde Kabelis starp HemoSphere Alta mo- nitoru un spiediena kontrolleru ir samezglojies, vai tajā ir noplūde Bojāts spiediena kontrollers Bojāta ClearSight apakšsistēma	Atvienojiet un atkal pievienojiet Edwards spie- diena kontrolleru Nomainiet spiediena kontrolleru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: ClearSight sistēma — spie- diena kontrollera barošanas maz- spēja — nepieciešama apkope	Bojāta ClearSight apakšsistēma Bojāts spiediena kontrollers	Atvienojiet un atkal pievienojiet Edwards spie- diena kontrolleru Nomainiet spiediena kontrolleru Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: ClearSight sistēma — spie- diena kontrollers — nesaderīga programmatūras versija	Programmatūras versija kabelī nav saderīga ar šo monitoru	Jauniniet kabeļa programmatūru
Kļūme: ClearSight sistēma – ne- pārtraukta uzraudzība sasniegusi 72 stundu ierobežojumu	Nepārtrauktais mērījums uz vienas rokas pārsniedz maksimālo ilgu- mu — 72 stundas	Novietojiet manšetes uz pretējās rokas pirk- stiem un atsāciet uzraudzību
Kļūme: ClearSight sistēma — gaisa padeves kļūda, nepietiekams spie- diena kāpinājums	Samezglojies vai bojāts spiediena kontrollera kabelis Bojāta pirksta manšete Sistēmas darbības traucējumi Bojāta ClearSight apakšsistēma Spiediena kontrollers ir bojāts Pirksta manšetes caurulīte ir samez- glojusies Pirksta manšetē ir noplūde Kabelis starp HemoSphere Alta mo- nitoru un spiediena kontrolleru ir samezglojies, vai tajā ir noplūde Bojāta ClearSight apakšsistēma	Pārbaudiet, vai savienojums starp spiediena kontrolleru un HemoSphere Alta moduli nav sa- mezglojies vai bojāts Pārbaudiet pirksta manšeti
Trauksme: ClearSight sistēma – Ap-draudēta arteriālā spiediena līkne	Ilgākā laika posmā neatbilstoša spiediena līkne Pacienta veselības stāvokļa rādītāji ir zema pulsa spiediena diapazonā Arteriālā spiediena līkne nav pie- mērota precīzu SVV mērījumu veik- šanai Biežas Physiocals spiediena līknē Sistoliskais spiediens ir pārāk augsts, vai diastoliskais spiediens ir pārāk zems	Novērtējiet neinvazīvo sistēmu no pacienta līdz pirksta manšetei un HemoSphere Alta monito- ram Pārbaudiet, vai arteriālā spiediena līkne neuzrā- da nopietnu hipotensiju, hipertensiju un kustī- bu artefaktus Pārliecinieties, ka Edwards HRS sirds gals ir salā- gots ar pacienta flebostatisko asi Pārbaudiet kabeļu elektriskos savienojumus Uzlieciet pirksta manšeti uz cita pirksta Mainiet pirksta manšetes izmēru un nomainiet pret cita izmēra pirksta manšeti [†]
Kļūme: ClearSight sistēma – vienas manšetes pārraudzības laikā pievie- nota otra manšete	Ir noteikts otras pirksta manšetes savienojums	Atvienojiet vienu no pirksta manšetēm un re- startējiet mērīšanu Restartējiet mērīšanu dubultās manšetes pār- raudzības režīmā
Trauksme: ClearSight sistēma – manšetes spiediena atbrīvošanas režīms — Pārraudzība Aizturēta	Pirksta manšetes spiediens ir mazi- nāts	Pārraudzība tiks automātiski atsākta, kad statu- sa joslā iestatītais atpakaļskaitīšanas pulkstenis sasniegs 00:00 Lai atsāktu pārraudzību, pieskarieties atpaka- ļskaitīšanas pulkstenim un atlasiet "Postpone Release"
Trauksme: ClearSight sistēma — 1. pirksta manšete — asinsspiedie- na mērījuma kļūda Trauksme: ClearSight sistēma — 2. pirksta manšete — asinsspiedie- na mērījuma kļūda	Asinsspiediena mērījums neizdevās kustību vai neatbilstošu mērīšanas apstākļu dēļ.	Ļaujiet sistēmai automātiski novērst šo problē- mu Uzlieciet pirksta manšeti uz cita pirksta Mainiet pirksta manšetes izmēru un nomainiet pret cita izmēra pirksta manšeti [†]

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: ClearSight sistēma — 2. Pirksta Manšete 1 — Nav Noteik- tas Spiediena Līknes Trauksme: ClearSight sistēma — 2. Pirksta Manšete 2 — nav noteik- tas spiediena līknes	Sistēmai neizdevās noteikt spiedie- na līknes. Spiediena pulsācijas pirkstā sama- zinās, jo augšdelms, elkonis vai plaukstas locītava tika pakļauta spiedienam.	Ļaujiet sistēmai automātiski novērst šo problē- mu Pārbaudiet, vai nav traucēta asins plūsma pa- cienta rokā Pārbaudiet asinsspiediena līknes Uzlieciet pirksta manšeti
Trauksme: ClearSight sistēma – HRS vērtība ārpus fizioloģiskā diapazo- na	HRS sirds gals ir vaļīgs un, iespē- jams, vairs nav sirds līmenī HRS atvienots no pirksta manšetes HRS nepareizi kalibrēts Bojāts HRS	Pārbaudiet HRS novietojumu, Pirksta galam jā- būt piestiprinātam pie pirksta manšetes, bet sirds galam jāatrodas uz flebostatiskās ass
Trauksme: ClearSight sistēma – HRS nav pievienots — pārbaudiet pa- cienta novietojumu Trauksme: ClearSight sistēma — pašreizējā nobīde: {0}**	Pacientam ir veikta anestēzija, viņš ir nekustīgs, un HRS nav pievienots	Pārbaudiet, vai parādītā nobīde joprojām ir pre- cīza Ja pacienta novietojums ir mainīts, atjauniniet nobīdes vērtību nullēšanas ekrānā
Trauksme: ClearSight sistēma — ie- teicama apkope	ClearSight apakšsistēmas sūkņa kalpošanas laiks beidzies — parā- diet ziņojumu par katru mērījumu, kad sūkņa kalpošanas laiks pārs- niedz 100%	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
Trauksme: ClearSight sistēma – ie- spējams, jāatjaunina BP kalibrēšana	Hemodinamiskā stāvokļa izmaiņu dēļ var būt nepieciešama kalibrēša- nas atjaunināšana	Veikt jaunu kalibrēšanu Paturēt kalibrēšanu Dzēst BP kalibrēšanu

** Piezīme. {0} ir lietotāja ievadītā vertikālā nobīde no pirksta līdz sirds līmenim.

[†]Manšetes izmēra noteikšana var neattiekties uz visām manšetēm.

14-27.	tabula.	ClearSight	pārraudzības	brīdinājumi
--------	---------	------------	--------------	-------------

Ziņojums	lespējamie cēloņi	leteicamās darbības
HRS ir ārpus diapazona.	Kalibrēšanas procesa laikā HRS spiediena nobīde pārsniedza robe- žu Bojāts HRS	Vertikāli salāgojiet abus sirds kontrolsensora ga- lus un kalibrējiet.
HRS kalibrēšana neizdevās!	Pirms kalibrēšanas nav noteikta HRS kustība Bojāts HRS Spiediena kontrollers ir bojāts	HRS sirds galu pārvietojiet augšup un lejup. Pēc tam abus galus turiet vienā līmenī, nogaidiet 1-2 sekundes un tad abus galus neizkustinot, kalibrējiet.
HRS kalibrēšana neizdevās!	Kalibrēšanas laikā noteikta HRS ku- stība Spiediena kontrollers ir bojāts	HRS sirds galu pārvietojiet augšup un lejup. Pēc tam abus galus turiet vienā līmenī, nogaidiet 1-2 sekundes un tad abus galus neizkustinot, kalibrējiet.
ClearSight sistēma — Smaga vazo- konstrikcija	lr noteiktas ļoti mazas arteriālā til- puma pulsācijas; iespējams, sašau- rinātas artērijas.	Ļaujiet sistēmai automātiski novērst šo problē- mu Sasildiet roku Uzlieciet pirksta manšeti uz cita pirksta Mainiet pirksta manšetes izmēru un nomainiet pret cita izmēra pirksta manšeti [†]

Ziņojums	lespējamie cēloņi	leteicamās darbības
ClearSight sistēma — Vidēji smaga vazokonstrikcija	lr noteiktas ļoti mazas arteriālā til- puma pulsācijas; iespējams, sašau- rinātas artērijas.	Ļaujiet sistēmai automātiski novērst šo problē- mu Sasildiet roku Uzlieciet pirksta manšeti uz cita pirksta Mainiet pirksta manšetes izmēru un nomainiet pret cita izmēra pirksta manšeti [†]
ClearSight sistēma — 1. pirksta manšete — asinsspiediena mērīju- ma kļūda ClearSight sistēma — 2. pirksta manšete — asinsspiediena mērīju- ma kļūda	Asinsspiediena mērījums neizde- vās kustību vai neatbilstošu mērī- šanas apstākļu dēļ.	Ļaujiet sistēmai automātiski novērst šo problē- mu Uzlieciet pirksta manšeti uz cita pirksta Mainiet pirksta manšetes izmēru un nomainiet pret cita izmēra pirksta manšeti [†]
ClearSight sistēma — 2. Pirksta manšetes 1 darbība beigsies pēc < 5 minūtēm ClearSight sistēma — 2. Pirksta manšetes 2 darbība beigsies pēc < 5 minūtēm	Pirksta manšetes <#> darbība tu- vojas maksimālajam izmantošanas laikam.*	Nomainiet pirksta manšeti <#>, lai nodrošinātu netraucētu mērīšanu*
ClearSight sistēma — 2. Pirksta manšetes 1 darbība tuvojas maksi- mālajam izmantošanas laikam ClearSight sistēma — 2. Pirksta manšetes 2 darbība tuvojas maksi- mālajam izmantošanas laikam	Pirksta manšetes <#> darbība tu- vojas maksimālajam izmantošanas laikam.*	Nomainiet pirksta manšeti <#>, lai nodrošinātu netraucētu mērīšanu*
ClearSight sistēma — HRS derīgu- ma termiņš beidzas pēc < 2 nedē- ļām	HRS derīgums beigsies pēc <#> nedēļām	Nomainiet HRS, lai novērstu aizkavi pārraudzī- bas sākumā
ClearSight sistēma — 2. ieteicama apkope	ClearSight apakšsistēmas sūkņa darbmūžs drīz beigsies	Sazinieties ar Edwards tehniskā atbalsta dienes- tu
* Piezīme. <#> ir CUFF pieslēgvietas numurs (1 vai 2) vai atlikušais laiks līdz manšetes derīguma beigām.		

[†]Manšetes izmēra noteikšana var neattiekties uz visām manšetēm.

14-28. tabula. ClearSight pārraudzības vispārīga problēmu novēršana

Ziņojums	lespējamie cēloņi	leteicamās darbības
Spiediena atšķirība: ClearSight BP salīdzinājums ar Citiem BP	HRS atvienots no pirksta manšetes vai flebostatiskās ass HRS nav pareizi kalibrēts Iespējams, sašaurinātas artērijas (aukstu pirkstu dēļ) Pirksta manšete pārāk vaļīga Cita BP mērījumu ierīce nav nullēta Nepareizi lietots cits BP mērījumu sensors	Pārbaudiet HRS novietojumu — pirksta galam ir jābūt piestiprinātam pie pirksta manšetes un sirds galotnei ir jāatrodas uz flebostatiskās ass Invazīvas BP atsauces gadījumā HRS sirds galot- nei un devējam jāatrodas vienā līmenī Kalibrējiet HRS Sasildiet roku Uzlieciet pirksta manšeti (citam pirkstam) vai uzlieciet pareiza izmēra pirksta manšeti Atkārtojiet citas BP mērījumu ierīces nullēšanu Noņemiet un atkal uzlieciet citu BP mērījumu sensoru [†]
Pievienojiet Acumen IQ manšeti HPI	Acumen IQ manšete nav noteikts, un ir konfigurēts HPI vai HPI galve- nais rādītājs	Pievienojiet Acumen IQ manšeti Nomainiet Acumen IQ manšeti

Ziņojums	lespējamie cēloņi	leteicamās darbības
Pievienojiet Acumen IQ manšeti pie CUFF 1 pieslēgvietas HPI para- metriem	CUFF 1 savienojums nav Acumen IQ manšete, un ir konfigurēts HPI vai HPI galvenais rādītājs	Nomainiet ClearSight manšeti Acumen IQ man- šetei CUFF 1 pieslēgvietā
Pievienojiet Acumen IQ manšeti pie CUFF 2 pieslēgvietas HPI para- metriem	CUFF 2 savienojums nav Acumen IQ manšete, un ir konfigurēts HPI vai HPI galvenais rādītājs	Nomainiet ClearSight manšeti Acumen IQ man- šetei CUFF 2 pieslēgvietā
Pievienojiet HRS HPI parametriem	HRS nav noteikts, un ir konfigurēts HPI vai HPI galvenais rādītājs	Pievienojiet HRS Nomainiet HRS
[†] Manšetes izmēra noteikšana var neattiekties uz visām manšetēm.		

14.10 Venozās oksimetrijas kļūdu ziņojumi

14.10.1 Venozās oksimetrijas kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: venozā oksimetrija — no- tiek atkopšana — lūdzu, gaidiet	Radies neparedzēts gadījums Notiek diagnosticēšana	Gaidiet 60 sekundes, kamēr sistēma diagnosticē problēmu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: venozā oksimetrija — IR vai gaismas diapazona kļūda	Vājš oksimetrijas kabeļa/katetra sa- vienojums Oksimetrijas kabeļa/katetra savie- notāja objektīva darbību netīrumi vai plēve Oksimetrijas kabeļa darbības trau- cējumi Katetrs samezglojies vai bojāts	Pārbaudiet, vai oksimetrijas kabeļa/katetra sa- vienojums ir drošs Notīriet oksimetrijas kabeļa/katetra savienoju- mus ar 70 % izopropilspirtā samitrinātu vates tamponu, ļaujiet tiem nožūt un atkārtojiet ka- librēšanu Nomainiet oksimetrijas kabeli un atkārtojiet ka- librēšanu Ja ir aizdomas par bojājumu, nomainiet katetru un atkārtojiet kalibrēšanu Lai atjaunotu platformas darbību, izslēdziet un ieslēdziet monitoru
Kļūme: venozā oksimetrija — vērtī- ba ārpus diapazona	Nepareizi ievadītas ScvO ₂ /SvO ₂ , HGB vai Hct vērtības Nepareizas HGB mērījumu rādītāju vienības Aprēķinātā ScvO ₂ /SvO ₂ vērtība ir ār- pus 0–99% diapazona	Pārbaudiet, vai ir pareizi ievadītas ScvO ₂ /SvO ₂ , HGB vai Hct vērtības. Pārbaudiet, vai ir pareizi ievadītas HGB mērīju- mu rādītāju vienības. Iegūstiet atjauninātos ScvO ₂ /SvO ₂ laboratoris- kos rādītājus un atkārtojiet kalibrēšanu.
Kļūme: venozā oksimetrija — ne- stabils ieejas signāls	Vājš oksimetrijas kabeļa/katetra sa- vienojums Oksimetrijas kabeļa/katetra savie- notāja objektīva darbību netīrumi vai plēve Oksimetrijas kabeļa darbības trau- cējumi Katetrs samezglojies vai bojāts	Pārbaudiet, vai oksimetrijas kabeļa/katetra sa- vienojums ir drošs Notīriet oksimetrijas kabeļa/katetra savienoju- mus ar 70 % izopropilspirtā samitrinātu vates tamponu, ļaujiet tiem nožūt un atkārtojiet ka- librēšanu Nomainiet oksimetrijas kabeli un atkārtojiet ka- librēšanu Ja ir aizdomas par bojājumu, nomainiet katetru un atkārtojiet kalibrēšanu

14-29. tabula. Venozās oksimetrijas kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: venozā oksimetrija — kabe- ļa darbības traucējumi — ieteicama apkope	Signāla apstrādes darbības traucē- jumi Oksimetrijas kabeļa atmiņas darbī- bas traucējumi Atklāti iekšēji darbības traucējumi oksimetrijas kabelī	Lai atjaunotu platformas darbību, izslēdziet un ieslēdziet monitoru Atvienojiet un pēc tam atkārtoti pievienojiet ka- beli Nomainiet oksimetrijas kabeli un atkārtojiet ka- librēšanu Ja kabelis ir ietīts audumā vai novietots uz izo- lējošas virsmas, piemēram, spilvena, novietojiet kabeli uz gludas virsmas, kas ļauj viegli izkliedēt siltumu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: venozā oksimetrija — kabe- ļa temperatūra	Atklāti iekšēji darbības traucējumi oksimetrijas kabelī	Lai atjaunotu sistēmas darbību, izslēdziet un ie- slēdziet monitoru Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: pieslēgvieta {0} — atvienots venozās oksimetrijas kabelis	Šis monitors nav atklājis nevienu oksimetrijas kabeli	Ja savienojums pārtraukts tīšām, atlasiet trauk- smes apklusināšanas pogu, lai notīrītu kabeļa statusu Pārliecinieties, vai oksimetrijas kabelis ir savie- nots ar monitoru Atvienojiet un atkārtoti pievienojiet oksimetri- jas kabeli Pārlieciet oksimetrijas kabeli uz citu kabeļa pie- slēgvietu
Kļūme: pieslēgvieta {0} — atklāti vairāki oksimetrijas kabeļi, lūdzu, atvienojiet	Pievienots vairāk nekā viens oksi- metrijas kabelis	Atvienojiet visus sekundāros oksimetrijas kabe- ļus
Kļūme: Pieslēgvieta {0} — Venozā Oksimetrija – Nesaderīga Program- matūras Versija	Programmatūras versija kabelī nav saderīga ar šo monitoru	Jauniniet kabeļa programmatūru
Trauksme: venozā oksimetrija — kabeļa darbības traucējumi — ie- teicama apkope	Oksimetrijas kabeļa atmiņas darbī- bas traucējumi Atklāti iekšēji darbības traucējumi oksimetrijas kabelī	Atvienojiet un pēc tam atkārtoti pievienojiet ka- beli Nomainiet oksimetrijas kabeli un atkārtojiet ka- librēšanu Lai atjaunotu platformas darbību, izslēdziet un ieslēdziet monitoru Nomainiet oksimetrijas kabeli un atkārtojiet ka- librēšanu Ja kabelis ir ietīts audumā vai novietots uz izo- lējošas virsmas, piemēram, spilvena, novietojiet kabeli uz gludas virsmas, kas ļauj viegli izkliedēt siltumu. Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Trauksme: venozā oksimetrija — kabeļa temperatūra	Atklāti iekšēji darbības traucējumi oksimetrijas kabelī	Lai atjaunotu sistēmas darbību, izslēdziet un ie- slēdziet monitoru Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu

Ziņojums	lespējamie cēloņi	leteicamās darbības	
Trauksme: venozā oksimetrija — slikta signāla kvalitāte	Lēna asins plūsma katetra galā vai katetra gals ir aizķēries pret asins- vada sienu Būtiskas HGB/Hct rādītāju izmaiņas Nosprostots katetra gals Katetrs samezglojies vai bojāts Katetrs nav pievienots oksimetrijas kabelim	Ja kabelis ir ietīts audumā vai novietots uz izo- lējošas virsmas, piemēram, spilvena, novietojiet kabeli uz gludas virsmas, kas ļauj viegli izkliedēt siltumu Ja kabeļa korpuss ir jūtami silts, pirms lietošanas ļaujiet tam atdzist Pārbaudiet, vai katetra pozīcija ir pareiza (lai ievadītu SvO ₂ , pārbaudiet, vai katetrs ir pareizi ievietots pulmonālajā artērijā): Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml (tikai SvO ₂ uzpildei) Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Veiciet distālā lūmena aspirēšanu un pēc tam izskalojiet atbilstoši slimnīcas protokolam Atjauniniet HGB/Hct rādītājus, izmantojot funk- ciju Atjaunināt Pārbaudiet, vai katetrs nav samezglojies, un at- kārtojiet kalibrēšanu Ja ir aizdomas par bojājumu, nomainiet katetru un atkārtojiet kalibrēšanu Nodrošiniet, ka katetrs ir pievienots oksimetrijas kabelim	
Trauksme: Venozā oksimetrija – Ne- stabils signāls	ScvO ₂ /SvO ₂ , HGB/Hct vai neparastu hemodinamisko rādītāju mainīšana	Stabilizējiet pacienta stāvokli atbilstoši slimnī- cas protokolam un veiciet in vivo kalibrāciju	
Trauksme: Venozā oksimetrija – No- teikts sieniņas artefakts vai ķīlis	Lēna asins plūsma katetra galā Nosprostots katetra gals Katetra gals ir aizķēries asinsvadā vai pret asinsvada sieniņu	Veiciet distālā lūmena aspirēšanu un pēc tam izskalojiet to atbilstoši slimnīcas protokolam Pārbaudiet, vai katetra pozīcija ir pareiza (lai ievadītu SvO ₂ , pārbaudiet, vai katetrs ir pareizi ievietots pulmonālajā artērijā): Apstipriniet ķīļa spiediena balona uzpildes til- pumu no 1,25–1,50 ml (tikai SvO ₂ uzpildei) Pārliecinieties par pareizu katetra novietojumu atbilstoši pacienta augumam, svaram un injek- cijas vietai Apsveriet krūškurvja rentgenizmeklējuma ne- pieciešamību pareiza novietojuma novērtēšanai Veiciet in vivo kalibrāciju	
Trauksme: pieslēgvieta {0} — atklā- ti vairāki oksimetrijas kabeļi, lūdzu, atvienojiet	Pievienots vairāk nekā viens oksi- metrijas kabelis	Atvienojiet visus sekundāros oksimetrijas kabe- ļus	
Piezīme. Kamēr kā galvenais parametrs ir atlasīts GHI, ar venozo oksimetriju saistītās kļūmes/trauksmes tiek parādītas vienmēr neatkarīgi no tā, vai SvO₂ ir atlasīts kā galvenais parametrs.			

14.10.2 Venozās oksimetrijas vispārīgo problēmu novēršana

Ziņojums	lespējamie cēloņi	leteicamās darbības
Venozā oksimetrija – In Vitro Kali- brācijas Kļūda	Neatbilstošs oksimetrijas kabeļa un katetra ScvO ₂ /SvO ₂ savienojums Mitrs kalibrēšanas kausiņš Katetrs samezglojies vai bojāts Oksimetrijas kabeļa darbības trau- cējumi Katetra gals nav katetra kalibrēša- nas kausiņā	Pārbaudiet, vai oksimetrijas kabeļa / katetra sa- vienojums ir drošs Iztaisnojiet visus redzamos samezglojumus; no- mainiet katetru, ja ir aizdomas par bojājumu Nomainiet oksimetrijas kabeli un atkārtojiet ka- librēšanu Pārbaudiet, vai katetra gals ir droši fiksēts ka- librēšanas kausiņā Veiciet in vivo kalibrāciju
Venozā Oksimetrija — Kabelis Nav Kalibrēts	Oksimetrijas kabelis nav kalibrēts (in vivo vai in vitro) Nav veikta venozās oksimetrijas da- tu atsaukšanas funkcija Oksimetrijas kabeļa darbības trau- cējumi	Izpildīt in-vitro kalibrāciju Izpildīt in-vivo kalibrāciju Atsaukt kalibrēšanas vērtības
Venozā oksimetrija – Pacienta da- ti oksimetrijas kabelī ir vecāki par 24 stundām. Atkārtojiet kalibrēšanu	Pēdējā oksimetrijas kabeļa kalibrē- šana veikta pirms > 24 stundām Datums un laiks slimnīcas Edwards monitoros atšķiras	Veiciet in vivo kalibrāciju Visos slimnīcas Edwards monitoros veiciet datu- ma un laika sinhronizēšanu
Venozā oksimetrija – Pievienojiet oksimetrijas kabeli, lai veiktu veno- zās oksimetrijas monitoringu	Nav noteikts oksimetrijas kabeļa savienojums ar HemoSphere Alta pārraudzības platformu Oksimetrijas kabeļa savienotāja ta- pas ir saliektas vai to trūkst	Pārbaudiet, vai oksimetrijas kabeļa savienojums ir drošs Pārbaudiet, vai oksimetrijas kabeļa savienotājā nav saliekti kontakti vai to netrūkst

14-30. tabula. Venozās oksimetrijas vispārīgo problēmu novēršana

14.11 Audu oksimetrijas kļūdu ziņojumi

14.11.1 Audu oksimetrijas kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: audu oksimetrija — apakš- sistēmas darbības traucējumi — nepieciešama apkope	lekšējie sistēmas darbības traucēju- mi	Nepieciešama apkope — izmantojiet citu moni- toru
Kļūme: audu oksimetrija — notiek atkopšana — lūdzu, gaidiet	Radies neparedzēts gadījums Notiek diagnosticēšana	Gaidiet 60 sekundes, kamēr sistēma diagnosticē problēmu Ja problēma arvien pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: audu oksimetrija — ForeSight oksimetra kabelis {0} ir atvienots*	FSOC ir atvienots	Pievienojiet ForeSight oksimetra kabeli HemoSphere Alta monitora pieslēgvietai
Kļūme: audu oksimetrija — {0} sen- sors atvienots*	ForeSight sensors norādītajā kanālā ir atvienots	Pievienojiet sensoru ForeSight oksimetra kabe- lim

14-31. tabula. Audu oksimetrijas kļūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības	
Kļūme: audu oksimetrija — ForeSight oksimetra kabeļa {0} kļū- da*	HemoSphere Alta monitoram zu- duši sakari ar norādīto ForeSight oksimetra kabeli	Atkārtoti pievienojiet kabeli Pārbaudiet, vai tapas nav saliektas vai nolūzušas Mēģiniet pārslēgt ForeSight oksimetra kabeli uz citu monitora audu oksimetrijas pieslēgvietu Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu	
Kļūme: audu oksimetrija — nesade- rīga programmatūra — nepiecieša- ma programmatūras atjaunināšana	Noteikta neveiksmīga programma- tūras jaunināšana vai nesaderīga programmatūras versija	Sazinieties ar Edwards tehniskā atbalsta dienes- tu	
Kļūme: audu oksimetrija — {0} sen- sora apkārtējā apgaismojuma līme- nis pārāk augsts*	Sensors nav pareizi pievienots pa- cientam	Pārbaudīt, vai sensors ir tiešā saskarē ar ādu Ieslēgt apgaismojuma bloķētāju vai apklāt sen- soru, lai samazinātu apgaismojuma ietekmi	
Kļūme: audu oksimetrija — {0} sen- sora temperatūra augsta*	Temperatūra zem sensora ir > 45 °C (pieaugušo režīmā) vai > 43 °C (bēr- nu/jaundzimušo režīmā).	Var būt nepieciešama pacienta vai vides atvēsi- nāšana	
Kļūme: audu oksimetrija — {0} sig- nāla līmenis pārāk zems*	Konstatēta nepietiekama gaisma no pacienta. Audu stāvoklis zem sensoriem var būt, piemēram, šāds: pārmērīga ādas pigmentācija, paaugstināts hematokrīta līmenis, dzimumzīmes, hematoma vai rētaudi. Pediatrijas pacientam (vecums < 18 gadi) tiek izmantots liels (pie- augušo) sensors	Pārbaudiet, vai sensors ir labi piestiprināts pa- cienta ādai. Pārvietojiet sensoru uz vietu, kur SQI ir 3 vai 4. Ja ir tūska, noņemiet sensoru, līdz audu stāvok- lis atkal būs normāls. Pediatrijas pacientiem (vecums < 18 gadi) aiz- stājiet lielu sensoru ar vidēju vai mazu sensoru.	
Kļūme: audu oksimetrija — {0} sig- nāla līmenis pārāk augsts*	Ļoti neparasts stāvoklis, ko, iespē- jams, izraisījis optiskais šunts, kad lielākā daļa izstarotās gaismas tiek novirzīta uz detektoriem Šāda ziņojuma iemesls var būt no- teikti nefizioloģiski materiāli, anato- miskie raksturlielumi vai skalpa tū- ska.	Pārbaudiet, vai sensors tieši saskaras ar ādu un vai caurspīdīgā starplika ir noņemta	
Kļūme: audu oksimetrija — {0} pār- baudiet audus zem sensora*	Audos zem sensora var būt šķidru- ma uzkrāšanās/tūska	Pārbaudīt pacienta tūsku zem sensora Kad audu stāvoklis atkal ir normāls (t.i., pacien- tam vairs nav tūskas), sensoru var lietot atkārtoti	
Kļūme: audu oksimetrija — {0} ļoti traucē izkārnījumi*	Sensors galvenokārt identificē iz- kārnījumus salīdzinājumā ar ap- asiņotiem audiem, un StO2 nevar aprēķināt	Virzīt sensoru uz vietu, kurā zarnu audu relatī- vais daudzums ir mazāks, piemēram, vēdera sā- nos	
Kļūme: audu oksimetrija — {0} sen- sors nobīdīts*	Aprēķinātā StO ₂ vērtība ir ārpus de- rīgā diapazona, vai sensors ir novie- tots uz neatbilstoša objekta	Sensors, iespējams, ir jāpārvieto	
Kļūme: audu oksimetrija — {0} StO ₂ nav fizioloģiskajā diapazonā*	Aprēķinātā vērtība atrodas ārpus fi- zioloģiskā diapazona Sensora darbības traucējumi	Pārbaudīt, vai sensors ir novietots pareizi Pārbaudīt sensora savienojumu	

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: audu oksimetrija — {0} al- goritma kļūme*	StO ₂ aprēķinā norādītajā kanālā ir notikusi apstrādes kļūme	Atvienojiet un atkārtoti pievienojiet norādīto sensora kanālu Nomainiet FSOC Ja problēma joprojām pastāv, sazinieties ar Edwards tehniskā atbalsta dienestu
Kļūme: audu oksimetrija — {0} ΔctHb nav fizioloģiskajā diapazo- nā*	Aprēķinātā vērtība atrodas ārpus fi- zioloģiskā diapazona Sensora darbības traucējumi	Pārbaudīt, vai sensors ir novietots pareizi Pārbaudīt sensora savienojumu
Trauksme: audu oksimetrija — {0} nepareizs sensora izmērs*	Sensora izmērs nav saderīgs ar pa- cienta režīmu vai ķermeņa izvieto- jumu	Izmantojiet citu sensora izmēru (izmantojamo sensoru izmēru tabulu skatīt sensora lietošanas instrukcijā) Attiecīgi elementu konfigurācijas izvēlnē no- mainiet pacienta režīmu vai ķermeņa novietoju- mu
Trauksme: audu oksimetrija — {0} sensora kļūda*	Sensors ir bojāts vai izmantotā sensora ražotājs nav uzņēmums Edwards	Aizstāt ar Edwards sensoru
Trauksme: audu oksimetrija — {0} neatbilstošs signāla līmenis*	Traucē ārējs avots	Pārvietot sensoru tālāk no traucējošā avota
Trauksme: audu oksimetrija — {0} sensora apkārtējā apgaismojuma lī- menis pārāk augsts*	Apkārtējais apgaismojums tuvojas maksimālajai vērtībai	Pārbaudīt, vai sensors ir tiešā saskarē ar ādu Ieslēgt apgaismojuma bloķētāju vai apklāt sen- soru, lai samazinātu apgaismojuma ietekmi
Trauksme: audu oksimetrija — {0} ļoti traucē izkārnījumi*	Izkārnījumu traucēšana tuvojas maksimāli pieļaujamajam līmenim Sensors identificē dažus apasiņotus audus, lai aprēķinātu StO ₂ , bet sen- sora identifikācijas ceļā arī atrodas augsta izkārnījumu koncentrācija	Apsvērt sensora pārvietošanu uz citu vēdera vietu, kurā izkārnījumi traucē mazāk
Trauksme: audu oksimetrija — {0} sensora temperatūra zema*	Temperatūra zem sensora < −10 °C	Var būt nepieciešama pacienta vai vides sasildī- šana
Trauksme: audu oksimetrija — {0} konfigurējiet atrašanās vietu audu oksimetrijas sensoram*	Pievienotajā sensorā nav iestatīta anatomiskā atrašanās vieta uz pa- cienta ķermeņa	lzmantojiet šo audu oksimetrijas konfigurācijas izvēlni, lai norādītajam sensoru kanālam izvēlē- tos ķermeņa novietojumu
Trauksme: audu oksimetrija — {0} ΔctHb atiestatīšana nesekmīga*	ctHb atiestatīšana nav iespējama StO ₂ nestabilitātes dēļ	Pievērsieties StO ₂ nestabilitātei

* Piezīme. {0} ir sensora kanāls. Kanālu opcijas ir: A1 un A2 ForeSight A kabelim, savukārt B1 un B2 ForeSight B kabelim.

Tālāk norādītajiem komponentiem var būt alternatīvs marķējuma formatējums.

ForeSight oksimetra kabelis (FSOC) var būt marķēts arī kā FORE-SIGHT ELITE audu oksimetrijas modulis (FSM).

ForeSight sensori vai ForeSight Jr sensori var būt marķēti arī kā FORE-SIGHT ELITE audu oksimetrijas sensori.

14.11.2 Audu oksimetrijas vispārīgo problēmu novēršana

Ziņojums	lespējamie cēloņi	leteicamās darbības	
Audu oksimetrija — pievienojiet ForeSight oksimetra kabeli <a vai<br="">B>, lai veiktu StO2 pārraudzību	Savienojums starp HemoSphere Al- ta monitoru un FSOC norādītajā pieslēgvietā nav konstatēts	Pievienojiet FSOC norādītajai HemoSphere Alta monitora pieslēgvietai Atkārtoti pievienojiet FSOC	
audu oksimetrija — Pievienojiet audu oksimetrijas sensoru, lai veik- tu StO ₂ pārraudzību — {0}*	Pieslēgums starp FSOC un audu ok- simetrijas sensoru nav noteikts ka- nālā, kuram ir konfigurēts StO ₂	Norādītajam kanālam pievienot audu oksimetrijas sensoru Atkārtoti savienot audu oksimetrijas sensoru ar norādīto kanālu	
Audu oksimetrija – {0} sensora tem- peratūra zemāka par paredzēto diapazonu*	Temperatūra ārpus fizioloģiskā dia- pazona		
Audu oksimetrija — notiek ∆ctHb atiestatīšana	Notiek ctHb atiestatīšana		
* Piezīme. {0} ir sensora kanāls. Kanālu opcijas ir: A1 un A2 ForeSight A kabelim, savukārt B1 un B2 ForeSight B kabelim.			
Tālāk norādītajiem komponentiem var būt alternatīvs marķējuma formatējums.			
ForeSight oksimetra kabelis (FSOC) var būt markēts arī kā FORE-SIGHT FLITF audu oksimetrijas modulis (FSM).			

14-32. tabula.	. Audu oksimetri	ias vispārīgo	problēmu	novēršana
		Jas 1.5pa	P	le le balla

ForeSight sensori vai ForeSight Jr sensori var būt marķēti arī kā FORE-SIGHT ELITE audu oksimetrijas sensori.

14.11.3 Kopējā hemoglobīna kļūmes/trauksmes

14-33. tabula.	Kopējā	hemoglobīna	klūmes/trauksmes

Ziņojums	lespējamie cēloņi	leteicamās darbības
Kļūme: tHb — pievienoti vairāki sensori kreisajā pusē	Vairāki sensori konfigurēti vienā atrašanās vietā smadzenēs	Konfigurējiet tikai vienu sensoru smadzeņu atrašanās vietā L (pa kreisi) un R (pa labi) pirms kalibrēšanas sākšanas
Kļūme: tHb — pievienoti vairāki sensori labajā pusē	Vairāki sensori konfigurēti vienā atrašanās vietā smadzenēs	Konfigurējiet tikai vienu sensoru smadzeņu atrašanās vietā L (pa kreisi) un R (pa labi) pirms kalibrēšanas sākšanas
Kļūme: tHb — inicializācijas kļūda	Kabeļa/sensora savienojumi nesta- bili pirms inicializēšanas Smadzeņu dati nestabili pirms ini- cializēšanas Monitorā atlasīts pediatrijas režīms	Vispārējā apgaismojumā pārbaudiet kabeļa sa- vienojumus/sensorus Atvienojiet un pievienojiet kabeli/sensorus Gaidiet, kamēr smadzeņu dati stabilizējas Mainiet pacienta režīmu uz pieaugušo režīmu
Kļūme: tHb — nav atbalstīts pedia- trijas režīmā	Monitorā atlasīts pediatrijas režīms	Mainiet pacienta režīmu uz pieaugušo režīmu
Trauksme: nav iespējota papildu kopējā hemoglobīna funkcija	Sistēma konstatē, ka ir pievienots ForeSight IQ sensors, bet nav iespē- jotas tHb papildu funkcijas	Sazinieties ar Edwards Lifesciences apkopes die- nesta pārstāvi, lai iespējotu tHb
Trauksme: tHb — ieteicama atkār- tota kalibrēšana	Kalibrētā tHb vērtība ir nestabila, jo notikušas hemodinamiskā stāvokļa izmaiņas Pagājis ilgs laiks bez atkārtotas ka- librēšanas	Pārejiet uz atkārtotas kalibrēšanas cilni, lai ieva- dītu Hgb vai Hct

Ziņojums	lespējamie cēloņi	leteicamās darbības
Trauksme: tHb — pievienoti vairāki sensori kreisajā pusē	Sensoru konfigurācija mainīta uz vienu atrašanās vietu smadzenēs	Atkārtoti konfigurējiet tikai vienu sensoru sma- dzeņu atrašanās vietā L (pa kreisi) un R (pa labi)
Trauksme: tHb — pievienoti vairāki sensori labajā pusē	Sensoru konfigurācija mainīta uz vienu atrašanās vietu smadzenēs	Atkārtoti konfigurējiet tikai vienu sensoru sma- dzeņu atrašanās vietā L (pa kreisi) un R (pa labi)
Trauksme: tHb –Nestabils signāls	Konstatēts nestabils tHb signāls	Vispārējā apgaismojumā pārbaudiet kabeļa sa- vienojumus/sensorus Atvienojiet un pievienojiet kabeli/sensorus Gaidiet, kamēr smadzeņu dati stabilizējas
Trauksme: tHb — ieteicama ka- librēšana	Nav veikta tHb kalibrēšana	Pārejiet uz kalibrēšanas cilni, lai ievadītu Hgb vai Hct
tHb — nekalibrēt	Nederīgs StO2 no smadzeņu senso- ra pirms kalibrēšanas	Gaidiet, kamēr StO₂ vērtība stabilizējas

Pielikums **A**

Specifikācijas un ierīces raksturlielumi

Saturs

Pamata veiktspējas parametri.	380
HemoSphere Alta uzlabotās monitoringa platformas parametri un specifikācijas	382
HemoSphere Alta monitora akumulatora parametri un specifikācijas	384
HemoSphere Alta Swan-Ganz pacienta kabeļa parametri un specifikācijas	385
HemoSphere spiedienkabeļa parametri un specifikācijas	386
HemoSphere oksimetrijas kabeļa parametri un specifikācijas	388
HemoSphere audu oksimetrijas parametri un specifikācijas	388
HemoSphere Alta ClearSight tehnoloģijas parametri un specifikācijas	390
HemoSphere Alta AFM kabeļa parametri un specifikācijas	391

A.1 Pamata veiktspējas parametri

Normālos un atsevišķas kļūmes apstākļos tiek nodrošināta pamata veiktspēja (kas ir aprakstīta tālāk šeit: A-1. tabula 380. lpp.), vai arī lietotājs var nekavējoties noteikt, ka šī veiktspēja netiek nodrošināta (piemēram, parametru vērtību nerādīšana, tehniska trauksme, kropļotas spiediena līknes vai aizkavēta parametru vērtību atjaunināšana, pilnīga monitora atteice utt.).

A-1. tabula 380. lpp. parāda minimālās veiktspējas parametrus, lietojot aprīkojumu pastāvīgas elektromagnētiskās parādības, piemēram, izstarotās un vadītās RF enerģijas, iedarbības vidē, kā tas ir noteikts standartā IEC 60601-1-2. A-1. tabula 380. lpp. parāda arī minimālās veiktspējas parametrus īslaicīgām elektromagnētiskām parādībām, piemēram, straujām sprieguma svārstībām un pārsprieguma impulsam, kā tas ir noteikts standartā IEC 60601-1-2.

Kabelis	Parametrs	Pamata veiktspēja
Vispārīgi: visi pārrau	udzības režīmi un parametri	Pašreizējais pārraudzības režīms netiek pārtraukts. Nav negaidī- tas atkārtotas palaišanas vai darbības apturēšanas. Nav spontā- nas notikumu aktivizēšanas, kam nepieciešama lietotāja rīcība.
		Pacienta savienojumam ir aizsardzība pret defibrilāciju. Pēc pa- kļaušanas defibrilācijas spriegumam sistēma atgriežas darba stā- voklī 10 sekunžu laikā.
		Pēc īslaicīgās elektromagnētiskās parādības sistēmas atgriežas darba stāvoklī 30 sekunžu laikā. Ja notikuma laikā Swan-Ganz nepārtrauktā sirds izsviede (CO) bija aktīva, sistēma automātiski atsāk pārraudzību. Pēc īslaicīgās elektromagnētiskās parādības sistēmā netiek zaudēti nekādi saglabātie dati.
		Ja monitors tiek lietots kopā ar HF ķirurģisko aprīkojumu, pēc HF ķirurģiskā aprīkojuma radītā lauka iedarbības monitora darba stāvoklis tiek atjaunots 10 sekunžu laikā, nezaudējot saglabātos datus.

A-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas pamata veiktspēja — pastāvīga un īslaicīga elektromagnētiskā parādība

Kabelis	Parametrs	Pamata veiktspēja
HemoSphere Alta Swan-Ganz pa- cienta kabelis	Nepārtraukta sirds izsviede (CO) un saistītie parametri ir gan indeksē- ti, gan neindeksēti (SV, SVR, RVEF, EDV)	Uzrauga kvēldiega virsmas temperatūru un pakļaušanas laiku. Ja laika un temperatūras sliekšņvērtība tiek pārsniegta (virs 45 °C), pārraudzība tiek pārtraukta un tiek aktivizēta trauksme.
		Asins temperatūras mērījums ar norādīto precizitāti (±0,3 °C). Trauksme, ja asins temperatūra ir ārpus pārraudzības diapazona.
		Trauksme, ja CO un saistīto parametru vērtības neatbilst trauk- smes diapazoniem. Trauksmes aizkave, pamatojoties uz mainīgu vidējo laiku. Parasti vidējais laiks ir 57 sekundes.
	Intermitējoša sirds izsviede (iCO) un saistītie parametri — gan indek- sētie, gan neindeksētie (SV, SVR)	Asins temperatūras mērījums ar norādīto precizitāti (±0,3 °C). Trauksme, ja asins temperatūra neatbilst pārraudzības diapazo- nam.
HemoSphere Alta Swan-Ganz pa- cienta kabelis un spiedienkabelis	20 sekunžuplūsmas parametri (CO _{20s} , CI _{20s} , SV _{20s} , SVI _{20s})	Trauksme, ja 20 sekunžu parametru vērtības neatbilst trauksmes diapazoniem. Trauksmes aizkavēšana, balstīta uz 20 sekunžu vi- dējošanas laiku.
HemoSphere spie- dienkabelis M di sp ba	arteriālais asinsspiediens (SYS, DIA, MAP), centrālais venozais asinsspie- diens (CVP), plaušu artērijas asins- spiediens (MPAP), labā sirds kam- bara spiediens (RVP)	Asinsspiediena mērījums ar norādīto precizitāti (±4% vai ±4 mmHg atkarībā no tā, kura vērtība ir lielāka).
		Trauksme, ja asinsspiediens neatbilst trauksmes diapazoniem. Trauksmes aizkave par 7 sekundēm, pamatojoties uz 2 sekunžu vidējošanas laiku, un 5 sekundes, kad nav atbilstības trauksmes diapazoniem.
		lerīce atbalsta invazīva spiediena devēja un devēja kabeļa kļū- mes noteikšanu.
		lerīce atbalsta katetra atvienošanas noteikšanu.
HemoSphere spie- diena kontrollers	Neinvazīvs asinsspiediens (SYS, DIA, MAP)	Asinsspiediena mērījumi ar norādīto precizitāti (±1% pilnā skalā, kur maksimālā vērtība ir ±3 mmHg).
		Trauksme, ja asinsspiediens neatbilst trauksmes diapazoniem. Trauksmes aizkave par aptuveni 10 sekundēm, pamatojo- ties uz vidējošanas logu, kas atbilst 5 sirdspukstiem (pie 60 sitieniem minūtē tā būtu 5 sekundes, bet mainās atkarībā no sirdsdarbības ātruma), un 5 secīgām sekundēm, kad tika pār- kāptas trauksmes diapazona robežas.
HemoSphere oksi- metrijas kabelis	skābekļa piesātinājums (jaukts ve- nozais SvO₂vai centrālais venozais	Skābekļa piesātinājuma mērījumi ar norādīto precizitāti (±2% skābekļa piesātinājums).
	oksimetrijas ScvO₂)	Trauksme, ja skābekļa piesātinājums neatbilst trauksmes diapa- zoniem. Trauksmes aizkave par 7 sekundēm, pamatojoties uz 2 sekunžu vidējošanas laiku, un 5 sekundes, kad nav atbilstības trauksmes diapazoniem.

Kabelis	Parametrs	Pamata veiktspēja
ForeSight Audu piesātinājums ar skābekli oksimetra kabelis (StO ₂)	ForeSight oksimetra kabelis atpazīs pievienoto sensoru un parā- dīs atbilstošu ierīces statusu, ja tā nedarbosies vai būs atvienoju- sies. Ja sensors ir pareizi novietots uz pacienta un pievienots pie ForeSight oksimetra kabeļa, ForeSight oksimetra kabelis mēra StO ₂ vērtības atbilstoši sistēmas specifikācijām (skat. A-17. tabula 389. lpp.) un pareizi izvada rezultātus HemoSphere Alta monito- rā.	
		Ja tiks veikta defibrilācija, ForeSight oksimetra kabelis netiks elektriski bojāts.
		Ārēja trokšņa gadījumā, iespējams, tiks ziņoti tādi paši rezultāti kā pirms notikuma, vai arī rezultāti būs nenoteikti (pasvītroti). ForeSight oksimetra kabelis automātiski atsāks darbu un ziņos atbilstošās vērtības 20 sekunžu laikā pēc trokšņa notikuma.
Acumen AFM ka- belis	Šķidruma ievades trasēšana (plūs- mas ātrums)	Izmantojot ar saderīgu šķidruma mērītāju, plūsmas ātruma mērī- šana norādītā precizitātes diapazonā (±20% vai ±1 ml/min atkarī- bā no tā, kura vērtība lielāka). Pēc īslaicīgās elektromagnētiskās parādības iespējams, ka plūsmas ātruma vērtības joprojām tiek ziņotas kā vērtības pirms notikuma. Acumen AFM kabelis auto- mātiski atsāks darbu un ziņos atbilstošās vērtības 30 sekunžu laikā pēc trokšņa notikuma.

A.2 HemoSphere Alta uzlabotās monitoringa platformas parametri un specifikācijas

HemoSphere Alta uzlabotais monitors		
Svars	9,78 kg (21,57 lb)	
Izmēri	Augums	342 mm (13,45")
	Platums	388 mm (15,26")
	Dziļums	208 mm (8,20")
Kāja	Platums	318 mm (12,5")
	Dziļums	201 mm (7,9")
Aizsardzība pret iekļuvi	IPX1	
Ekrāns	Aktīvais laukums	396 mm pa diagonāli (15,6")
	Izšķirtspēja	1920 × 1080
Operētājsistēma	Windows 10 IoT	
Skaļruņu skaits	1	

A-3. tabula. HemoSphere Alta uzlabotās monitoringa platformas vides specifikācijas

Vides specifikācijas		Vērtība
Temperatūra	Lietošanas laikā	No 10 līdz 37 °C
	Netiek lietots/glabāšanā*	No –18 līdz 45 °C
Relatīvais mitrums	Lietošanas laikā	No 10 līdz 90% bez kondensācijas No 10 līdz 70% bez kondensācijas (iz- mantojot ClearSight tehnoloģiju)

Vides specifikācijas		Vērtība
	Netiek lietots/glabāšanā	vidē līdz 90% bez kondensācijas
Augstums virs jūras līmeņa (spiediens)	Lietošanas laikā	No 0 līdz 3000 m (no 70,1 līdz 101,3 kPa)
	Netiek lietots/glabāšanā	Līdz 6000 m

* Piezīme. Akumulatora ietilpības mazināšanās sākas, ja akumulators tiek ilgstoši pakļauts temperatūrai, kas pārsniedz 35 °C.

A-4. tabula. HemoSphere Alta uzlabotās monitoringa platformas transportēšanas vides specifikācijas

Vides specifikācijas	Vērtība	
Temperatūra*	No –18 līdz 45 °C	
Relatīvais mitrums*	No 20 līdz 90% RH, bez kondensācijas	
Augstums virs jūras līmeņa	Maksimāli 6096 m(20 000') līdz 8 stundām	
Standarts	ASTM D4169, DC13	
* Piezīme. Temperatūra un mitrums pirms kondensācijas		

Piezīme

Ja nav norādīts citādi, visiem saderīgajiem HemoSphere Alta uzlabotās monitoringa platformas piederumiem, komponentiem un kabeļiem ir vides specifikācijas, kas norādītas šeit: A-3. tabula 382. lpp. un A-4. tabula 383. lpp.

Informācija par magnētiskās rezonanses attēlveidošanu. Nelietojiet HemoSphere Alta uzlaboto monitoringa platformu vai platformas moduļus un kabeļus MR vidē. HemoSphere Alta uzlaboto monitoringa platformu, tostarp nevienu tās saderīgo savienotājkabeli, nedrīkst lietot MR vidē, jo ierīce satur metāliskas daļas, kuras MR vidē radiofrekvenču ietekmē var

levade/izvade	
Skārienekrāns	Projicējošs kapacitatīvais skāriens
RS-232 seriālā pieslēgvie- ta (2)	Edwards patentēts protokols; maksimālais datu ātrums = 57,6 kilobodi
USB pieslēgvietas (3)	Trīs USB 2.0 aizmugurējā panelī
RJ-45 Ethernet pieslēgvie- ta	Viena
HDMI pieslēgvieta	Viena
Spiediena izvade (1)	Vienreizlietojamā spiediena devēja spiediena izvades signāls no ClearSight tehnoloģijas ir saderīgs ar monitoriem un piederumiem, kas ir paredzēti savienošanai ar Edwards neinvazīvo spiediena signālu

A-5. tabula. HemoSphere Alta uzlabotās monitoringa platformas tehniskie parametri

levade/izvade	
EKG monitora ievade	EKG sinhronizācijas līnijas pārvēršana no EKG signāla: 1 V/mV; ievades sprieguma diapazons ± 10 V pilnīgai skalai; izšķirtspēja = ± 1 sitiens/min; precizitāte = $\pm 10\%$ vai 5 sitieni/min ievadei atkarībā no tā, kurš parametrs lielāks; diapazons = no 30 līdz 200 sitieni/min; ¼" stereo spraud- nis, gals ar pozitīvu polaritāti; analogais kabelis
	Kardiostimulatora impulsa noraidīšanas spējas. Instruments nepieņem nevienu elektrokar- diostimulatora impulsu, kura amplitūdas diapazons ir no ±2 mV līdz ±5 mV (pieņemot 1 V/mV EKG sinhronizācijas līnijas konversiju) un impulsa platuma diapazons ir no 0,1 līdz 5,0 ms gan parastai, gan neefektīvai kardiostimulēšanai. Kardiostimulatora impulsi ar ≤ 7% amplitūdas pārsniegumu (standarta EN 60601-2-27:2014 A metode, 201.12.1.101.13. apakšpunkts) un pār- sniegšanas laika konstantes no 4 ms līdz 100 ms netiek pieņemtas.
	Maksimālas T līknes noraidīšanas spēja. Maksimālas T līknes amplitūda, ko instruments spēj nepieņemt: 1,0 mV (pieņemot 1 V/mV EKG sinhronizācijas līnijas konversiju).
	Neregulārs sirds ritms. Standarta EN 60601-2-27:2014 attēls 201.101.
	* A1 komplekss: ventrikulārā bigeminija; sistēma uzrāda 80 sitienus/min
	* A2 komplekss: lēna mainīga ventrikulārā bigeminija, sistēma uzrāda 60 sitienus/min
	* A3 komplekss: ātra mainīga ventrikulārā bigeminija: sistēma uzrāda 60 sitienus/min
	* A4 komplekss: divvirzienu sistoles: sistēma uzrāda 104 sitienus/min
HR _{avg} displejs	CO uzraudzība izslēgta. Vidējo vērtību noteikšanas laiks: 57 sekundes; atjaunināšanas ātrums: vienam sitienam; reakcijas laiks: 40 sekundes ar soļa pieaugumu no 80 līdz 120 sitieniem/min, 29 sekundes ar soļa samazinājumu no 80 līdz 40 sitieniem/min.
	CO uzraudzība ieslēgta. Vidējo vērtību noteikšanas laiks: laiks starp CO mērījumiem (no 3 līdz 21 minūtei); atjaunināšanas ātrums: aptuveni 1 minūte; reakcijas laiks: 175 sekundes ar soļa pieaugumu no 80 līdz 120 sitieniem/min, 176 sekundes ar soļa samazinājumu no 80 līdz 40 sitieniem/min.
Elektriskais	
Nominālais spriegums	No 100 līdz 240 V maiņstrāva; 50/60 Hz
Nominālā ievade	No 1,5 līdz 2,0 A
Drošinātāji	T 2,5 AH, 250 V; augsta pārtraukšanas jauda; keramika
Trauksme	
Skaņas spiediena līmenis	No 45 līdz 85 dB(A)
Bezvadu	
Tips	Atbalsta dubultās straumes Wi-Fi 2,4 GHz, 5 GHz un 6 GHz joslās

A.3 HemoSphere Alta monitora akumulatora parametri un specifikācijas

A-6. tabula. HemoSphere Alta monitora akumulatora tehniskie parametri

Specifikācija	Vērtība
Izvades spriegums (nominālais)	14,4 V
Maksimālā izlādes strāva	4,096 A (8,5 A pie 25 °C)
Elementi	8 x Li-lon (litija jonu)

A.4 HemoSphere Alta Swan-Ganz pacienta kabeļa parametri un specifikācijas

HemoSphere Alta Swan-Ganz pacienta kabelis		
Svars	Apmēram 0,37 kg (0,81 lb)	
Garums	305±15 cm (120±6")	
Aizsardzība pret iekļūšanu monitora sa- vienojumā	IPX1	
Aizsardzība pret iekļūšanu katetra sa- vienojumā	IPX4	
Daļas, kas saskaras ar pacientu, klasifi- kācija	CF tipa noturīgs pret defibrilāciju	

A-7. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa fizikālie parametri

Piezīme

HemoSphere Alta Swan-Ganz pacienta kabeļa vides specifikācijas skatiet A-3. tabula 382. lpp..

Parametrs	Specifikācija	
Nepārtraukta sirds izsviede (CO)	Diapazons	No 1 līdz 20 l/min
	Atkārtojamība ¹	±6% vai 0,1 l/min atkarībā no tā, kura vērtība ir lielāka
	Vidējais atbildes laiks ²	< 10 min (CCO katetriem) < 14 min (CCO tilpuma katetriem)
	Maksimālā termiskā kvēldiega virsmas temperatūra	48 °C
Intermitējošā (bolus) sirds izsviede	Diapazons	No 1 līdz 20 l/min
(iCO)	Atkārtojamība ¹	±3% vai 0,1 l/min atkarībā no tā, kura vērtība ir lielāka
Asins temperatūra (BT)	Diapazons	No 15 līdz 45 °C (no 59 līdz 113 °F)
	Precizitāte	±0,3 °C
Injektāta temperatūra (IT)	Diapazons	No 0 līdz 30 °C (no 32 līdz 86 °F)
	Precizitāte	±1 °C
Vidējais sirdsdarbības ātrums EDV/RVEF noteikšanai (HR _{avg})	Pieņemamais ievades diapazons	No 30 līdz 200 sitieniem/min
Nepārtrauktā labā kambara izsviedes frakcija (RVEF)	Diapazons	No 10 līdz 60%
	Atkārtojamība ¹	±6% vai 3 efu atkarībā no tā, kura vērtī- ba ir lielāka
¹ Variācijas koeficients — mērīts, izmantojo	ot elektroniski ģenerētus datus	
² 90% izmaiņas pie stabilas asins temperat	ūras	

A-8. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa parametru mērījumu specifikācijas

Piezīme

leteicams 3 gadus pēc pirkuma datuma apsvērt HemoSphere Alta Swan-Ganz pacienta kabeļa nomaiņu, ņemot vērā tābrīža kabeļa stāvokli un funkcionalitāti. Ja iekārtai ir darbības traucējumi, sazinieties ar tehniskā atbalsta dienestu vai vietējo Edwards pārstāvi, lai saņemtu turpmāku palīdzību.

A-9. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa 20 sekunžu plūsmas parametra mērījumu specifikācijas*

Parametrs	Specifikācija	
CO _{20s}	Diapazons	No 1 līdz 20 l/min
	Atjaunināšanas ātrums	20 ±1 sekunde
CI _{20s}	Diapazons	No 0 līdz 20 l/min/m ²
	Atjaunināšanas ātrums	20 ±1 sekunde
SV _{20s}	Diapazons	No 0 līdz 300 ml/b
	Atjaunināšanas ātrums	20 ±1 sekunde
SVI _{20s}	Diapazons	No 0 līdz 200 ml/b/m ²
	Atjaunināšanas ātrums	20 ±1 sekunde

¹20 sekunžu plūsmas parametri ir pieejami, tikai uzraugot plaušu artērijas spiedienu, kad ir pievienots HemoSphere spiediena kabelis un TruWave vienreizlietojamais spiediena devējs. Vairāk informācijas par šiem parametriem skatiet šeit: 20 sekunžu plūsmas parametri 153. lpp.

A-10. tabula. HemoSphere Alta Swan-Ganz pacienta kabeļa RVCO algoritma parametra mērījumu specifikācijas

Parametrs	Specifikācija	
Labā sirds kambara izsviede (CO _{RV})	Rādījuma diapazons	No 1 līdz 20,0 l/min
	Precizitāte	Nobīde $\leq \pm 0,6$ l/min
	Atkārtojamība	±6% vai 0,1 l/min atkarībā no tā, kura vērtība ir lielāka
	Atjaunināšanas ātrums	10 ±1 sekunde

A-11. tabula. Transpulmonālas termodolūcijas algoritma parametru mērījumu specifikācijas

Parametrs	Specifikācija	
СО	Rādījuma diapazons	No 1 līdz 20,0 l/min
	Atkārtojamība	±6% vai 0,1 l/min atkarībā no tā, kura vērtība ir lielāka

A.5 HemoSphere spiedienkabeļa parametri un specifikācijas

A-12. tabula. HemoSphere un HemoSphere Alta spiedienkabeļa fizikālie parametri

HemoSphere spiedienkabelis	HEMPSC100	HEMAPSC200
Svars	Apmēram 0,29 kg (0,64 lb)	Apmēram 0,26 kg (0,57 lb)
Garums	3,0 m (10′)	4,6 m (15′)
Aizsardzība pret iekļuvi	IPX4	

HemoSphere spiedienkabelis	HEMPSC100	HEMAPSC200
Daļas, kas saskaras ar pacientu, klasifi- kācija	CF tipa noturīgs pret defibrilāciju	

Piezīme

HemoSphere spiedienkabeļa un HemoSphere Alta spiedienkabeļa vides specifikācijas skatiet šeit: A-3. tabula 382. lpp..

Parametrs	Specifikācija		
FloTrac sirds izsviede (CO)	Rādījuma diapazons	No 1,0 līdz 20 l/min	
	Atkārtojamība ¹	±6% vai 0,1 l/min atkarībā no tā, kura vērtība ir lielāka	
Asinsspiediens ²	Reāllaika spiediena parādāmais diapa- zons	No –34 līdz 312 mmHg	
	MAP/DIA/SYS parādāmais diapazons	No 0 līdz 300 mmHg	
	CVP parādāmais diapazons	No 0 līdz 50 mmHg	
	MPAP parādāmais diapazons	No 0 līdz 99 mmHg	
	MRVP parādāmais diapazons	No 0 līdz 99 mmHg	
	PAOP testētais diapazons ⁴	No 3,7 līdz 34,7 mmHg	
	PAOP precizitāte ⁵	±4 mmHg	
	Precizitāte	±4% vai ±4 mmHg atkarībā no tā, kura vērtība ir lielāka, no –30 līdz 300 mmHg	
	Joslas platums	1–10 Hz	
	Spiediena izvades precizitāte ⁶	±4% vai ±4 mmHg atkarībā no tā, kura vērtība ir lielāka, no –20 un 280 mmHg (pēc nullēšanas, skatot pievienotajā monitorā)	
Sirdsdarbības ātrums (PR)	Precizitāte ³	A _{rms} ≤ 3 sitieni/min	

A-13, tabula, HemoS	ohere un HemoS	phere Alta s	piedienkabela	parametru mērī	iumu specifikācijas
	phere un riemos	phere Alta S	piediciikabeja	parametrameri	јанна зресникасијаз

¹Variācijas koeficients — mērīts, izmantojot elektroniski ģenerētus datus.

²Parametru specifikācijas atbilst IEC 60601-2-34 standartiem. Pārbaude veikta laboratorijas apstākļos.

³Precizitāte pārbaudīta laboratorijas apstākļos.

⁴PAOP mērījums, izmantojot viedā ķīļa algoritmu un Swan-Ganz katetru ar PA spiedienu, kura pārraudzību nodrošina TruWave devējs.

⁵Precizitāte ir vidējā absolūtā kļūda un ir testēta klīniskos apstākļos.

⁶Tikai HemoSphere Alta spiedienkabelis (HEMAPSC200).

Piezīme

leteicams 5 gadus pēc pirkuma datuma apsvērt HemoSphere spiedienkabeļa nomaiņu, ņemot vērā tābrīža kabeļa stāvokli un funkcionalitāti. Ieteicams 3 gadus pēc pirkuma datuma apsvērt HemoSphere Alta spiedienkabeļa nomaiņu, ņemot vērā tābrīža kabeļa stāvokli un funkcionalitāti. Ja iekārtai ir darbības traucējumi, sazinieties ar tehniskā atbalsta dienestu vai vietējo Edwards pārstāvi, lai saņemtu turpmāku palīdzību.

A.6 HemoSphere oksimetrijas kabeļa parametri un specifikācijas

HemoSphere oksimetrijas kabelis		
Svars	Apmēram 0,24 kg (0,54 lb)	
Izmēri	Garums	9,6′ (2,9 m)
Aizsardzība pret iekļuvi	IPX4	
Daļas, kas saskaras ar pacientu, klasifi- kācija	CF tipa noturīgs pret defibrilāciju	

A-14. tabula. HemoSphere oksimetrijas kabeļa fizikālie parametri

Piezīme

HemoSphere oksimetrijas kabeļa vides specifikācijas skatīt: A-3. tabula 382. lpp.

A-15. tabula. HemoSphere oksimetrijas kabeļa parametru mērījumu specifikācijas

Parametrs	Specifikācija	
ScvO ₂ /SvO ₂ oksimetrija (skābekļa piesā- tinājums)	Diapazons	No 0 līdz 99%
	Precizitāte ¹	±2% pie 30–99%
	Atjaunināšanas ātrums	2 sekundes
¹ Precizitāte testēta laboratorijas apstākļos.		

Piezīme

leteicams 3 gadus pēc pirkuma datuma apsvērt oksimetrijas kabeļa nomaiņu, ņemot vērā tābrīža kabeļa stāvokli un funkcionalitāti. Ja iekārtai ir darbības traucējumi, sazinieties ar tehniskā atbalsta dienestu vai vietējo Edwards pārstāvi, lai saņemtu turpmāku palīdzību.

A.7 HemoSphere audu oksimetrijas parametri un specifikācijas

Piezīme

ForeSight oksimetra kabeļa vides specifikācijas skatiet šeit: A-3. tabula 382. lpp.

A-16. tabula. ForeSight oksimetra kabeļa fizikālie parametri		
ForeSight oksimetra kabelis		
Svars	montāžas fiksators	0,05 kg (0,1 lb)
	ietvars, kabeļi un fiksators	1,0 kg (2,3 lb)
Izmēri	monitora kabeļa garums	4,6 m (15′) ¹
	sensora kabeļa garums (2)	1,5 m (4,9') ¹
	kabeļa korpuss (A x P x D)	15,24 cm (6,0") x 9,52 cm (3,75") x 6,00 cm (2,75")
	montāžas fiksators (A x P x D)	6,2 cm (2,4") x 4,47 cm (1,75") x 8,14 cm (3,2")
Aizsardzība pret iekļuvi	IPX4	
Daļas, kas saskaras ar pacientu, klasifi- kācija	BF tipa noturīgs pret defibrilāciju	

ForeSight oksimetra kabelis

¹Monitora un sensora kabeļu garumi ir nomināli.

A-17. tabula. ForeSight oksimetra kabeļa parametru mērījumu specifikācijas

Parametrs	Mērījums			
StO₂ un ∆ctHb				
Smadzeņu rajons StO ₂ un	Diapazons		No 1 līdz 99%	
vietas, kas nav smadzeņu ra- jons StO ₂ (somatisks)	Minimālā izšķirtspēja		1%	
Relatīvās izmaiņas kopējā he-	Diapazons		No –100 līdz 100 μM	
moglobina (ΔctHb)	Minimālā izšķirtspēja		1	
StO ₂	Precizitāte*			
Smadzeņu rajons StO₂	lielie sensori	No 46% līdz 88%: -0,06 ± 3,25	%: −0,06 ± 3,25% SN = 1	
		No 46% līdz 88%: -0,06 ± 3,28% 1 SN ⁺		
	vidēji lielie sensori	No 44% līdz 91%: 0,97 ± 5,43% SN = 1		
		No 44% līdz 91%: 1,21 ± 5,63%	6 1 SN [†]	
		No 44% līdz 91%: 1,27 ± 4,93% 1 SN [‡]		
	mazie sensori	No 44% līdz 90%: -0,74 ± 5,98% SN = 1		
Vietas, kas nav smadzeņu ra-	lielie sensori	No 51% līdz 92%: -0,12 ± 4,15% SN = 1		
jons StO ₂ (somatisks)		No 51% līdz 92%: -0,12 ± 4,17% 1 SN [†]		
	vidēji lielie sensori	No 52% līdz 88%: -0,14 ± 5,75% SN = 1		
	mazie sensori	No 66% līdz 96%: 2,35 ± 5,25% SN = 1		
ΔctHb	Precizitāte [*]			
Relatīvās izmaiņas kopējā he- moglobīnā (ΔctHb)	Sensora izmērs	Bland-Altman nobīde ± pre- cizitāte, RSME (rokas)	re- Novērtēšanas metode^	
	liels	0,22±2,53 µM pie 1 SD, 2,53 µM	Izovolēmiskā hemodilūcijas pētījumā ar cilvēkiem	
		–0,26±2,04 µM pie 1 SN; 2,04 µM	Vieglas hipoksijas pētījumā ar cilvēkiem	
	vidējs	–1,10±5,27 µM pie 1 SN; 5,39 µM	Asins fantoma pētījums	
	mazs	–0,02±5,96 µМ pie 1 SN; 5,96 µМ	Asins fantoma pētījums	
		–0,50±2,09 μM pie 1 SN; 2,15 μM	Ar asins hemoglobīna kon- centrāciju saistītas skābekļa desaturācijas fantoma pētī- jums	

^{*}Precizitāte (novirze \pm precizitāte) nav noteikta ārpus norādītajiem diapazoniem

[†]Atkarīgie dati Bland-Altman

[‡]Smadzeņu StO₂ vidējās vērtības salīdzinājumā ar REF CX novirzi un precizitāti

^Diferenciālais ceļa garuma faktors = 5

Piezīme. StO₂ precizitāti nosaka, balstoties uz 30:70% (arteriālais:venozais) REF CX atsauces mērījumu. Novērtēšanas metode visiem StO₂ sensora izmēra precizitātes mērījumiem bija atbilstoša klīniskās novērtēšanas pētījumiem ar cilvēkiem.

Piezīme

leteicams 5 gaduspēc pirkuma datuma apsvērt ForeSight oksimetra kabeļa nomaiņu, ņemot vērā tābrīža kabeļa stāvokli un funkcionalitāti. Ja iekārtai ir darbības traucējumi, sazinieties ar tehniskā atbalsta dienestu vai vietējo Edwards pārstāvi, lai saņemtu turpmāku palīdzību.

A.8 HemoSphere Alta ClearSight tehnoloģijas parametri un specifikācijas

Parametrs	Specifikācija		
Arteriālais asinsspie- diens	Rādījuma diapazons	No 0 līdz 300 mmHg	
	Precizitāte ¹	Novirzes sistoliskais spiediens (SYS) $\leq \pm 5,0$ mmHg	
		Novirzes diastoliskais spiediens (DIA) $\leq \pm 5,0$ mmHg	
		Precīzais (1 σ) sistoliskais spiediens (SYS) $\leq \pm 8,0 \text{ mmHg}$	
		Precīzais (1 σ) diastoliskais spiediens (DIA) $\leq \pm 8,0$ mmHg	
	Spiediena izvades pre- cizitāte	4 mmHg vai 4%atkarībā no tā, kura vērtība ir lielāka, no −20 un 280 mmHg	
Pirksta manšetes spie- diens	Diapazons	No 0 līdz 300 mmHg	
	Precizitāte	1% no pilnas skalas (maks. 3 mmHg), automātiska nullēšana	
Sirds izsviede (CO)	Rādījuma diapazons	No 1,0 līdz 20,0 l/min	
	Precizitāte ²	Nobīde ≤ ±0,6 l/min vai ≤ 10% (atkarībā no tā, kura vērtība lielāka)	
		Precizitāte (1 σ) \leq ±23,75% sirds izsviedes diapazonā no 2 līdz 20 l/min	
	Atkārtojamība ³	±6%	
	Atjaunināšanas ātrums	20 sekundes	
sirdsdarbības ātrums (PR)	Precizitāte ⁴	Arms ≤ 3 sitieni/min	
¹ Precizitāte pārbaudīta laboratorijas apstākļos salīdzinājumā ar kalibrētu spiediena mērinstrumentu			
² Salīdzinot ar predikātierīci (FloTrac sensors vai plaušu artērijas intermitējošā sirds izsviede (PA-iCO))			
³ Variācijas koeficients — mērīts, izmantojot elektroniski ģenerētus datus			
⁴ Precizitāte pārbaudīta laboratorijas apstākļos			

A-18. tabula. HemoSphere Alta ClearSight tehnoloģijas parametru mērījumu specifikācijas

A-19. tabula. Edwards pirksta manšetes parametri

Pirksta manšete			
Maksimālais svars	11 g (0,02 lb)		
LED spektrālais izstarojums	Skatiet A-1. att. 391. lpp.		
Maksimāla optiskā izvade	0,013 milivati		
Maksimālā izvades variācija apstrādes zonā	50%		

2. Viļņu garums (nm)

A-1. attēls. Spektrālais izstarojums un gaismas emisijas atveres atrašanās vieta

A.9 HemoSphere Alta AFM kabeļa parametri un specifikācijas

HemoSphere oksimetrijas kabelis			
Svars	Apmēram 0,45 kg (1 lb)		
Izmēri	Garums	4,5 m (15′)	
Aizsardzība pret iekļuvi	IPX4		
Daļas, kas saskaras ar pacientu, klasifi- kācija	BF tipa noturīgs pret defibrilāciju		

A-20. tabula. HemoSphere Alta AFM kabeļa fizikālie parametri

A-21. tabula. HemoSphere Alta AFM kabeļa ekspluatācijas vides specifikācijas

Vides specifikācijas	Vērtība
Temperatūra	No 10 līdz 37 °C
Relatīvais mitrums	No 20 līdz 90% bez kondensācijas
Augstums virs jūras līmeņa	No 0 līdz3048 m (10 000')

A-22. tabula. HemoSphere Alta AFM kabeļa transportēšanas vides specifikācijas

Vides specifikācijas	Vērtība	
Temperatūra*	No 18 līdz 45 °C	
Relatīvais mitrums*	No 20 līdz 90% bez kondensācijas 45 °C temperatūrā	
Augstums virs jūras līmeņa	No 0 līdz 6096 m (20 000′)	
* Piezīme. Temperatūra un mitrums pirms kondensācijas		

Piezīme

leteicams 3 gadus pēc pirkuma datuma apsvērt HemoSphere Alta AFM kabeļa nomaiņu, ņemot vērā tābrīža kabeļa stāvokli un funkcionalitāti. Ja iekārtai ir darbības traucējumi, sazinieties ar tehniskā atbalsta dienestu vai vietējo Edwards pārstāvi, lai saņemtu turpmāku palīdzību.

Parametrs	Specifikācija	
Bolus injekcijas tilpums	Diapazons	no 100 līdz 500 ml
	Precizitāte	±9% [*]
*Precizitāte pārbaudīta laboratorijas apstākļos.		

A-23. tabula. HemoSphere Alta AFM kabeļa parametru mērījumu specifikācijas

Piederumi

Saturs

Piederumu saraksts	. 393
Papildpiederumu apraksts	. 394

B.1 Piederumu saraksts

BRĪDINĀJUMS

Izmantojiet tikai Edwards piegādātus un marķētus, apstiprinātus HemoSphere Alta uzlabotās monitoringa platformas piederumus, kabeļus un/vai komponentus. Neapstiprinātu piederumu, kabeļu un/vai komponentu izmantošana var ietekmēt pacienta drošību un mērījumu precizitāti.

Apraksts	Modeļa numurs		
HemoSphere Alta uzlabotais monitors			
HemoSphere Alta sirds monitors	ALTACR1		
HemoSphere Alta viedās atkopšanas monitors	ALTASR1		
HemoSphere Alta universālais monitors	ALTAALL1		
HemoSphere Alta Swan-Ganz uzraudzība			
HemoSphere Alta Swan-Ganz pacienta kabelis	HEMA70CC2		
Edwards Swan-Ganz/Swan-Ganz IQ/Swan-Ganz Jr katetri	*		
Sistēmai pieslēgtā temperatūras zonde (CO-SET+ slēgta injicējamā šķīduma piegā- des sistēma)	93522		
Injicējamā šķīduma vannas temperatūras zonde	9850A		
Pārraudzība, izmantojot HemoSphere Alta spiedienkabeli			
HemoSphere spiedienkabelis	HEMPSC100		
HemoSphere Alta spiedienkabelis	HEMAPSC200		
Edwards FloTrac, FloTrac Jr vai Acumen IQ sensors	*		
Edwards TruWave spiediena pārraudzības devējs	*		
HemoSphere Alta venozās oksimetrijas pārraudzība			
HemoSphere oksimetrijas kabelis	HEMOXSC100		
HemoSphere oksimetrijas moduļa turētājs	HEMOXCR1000		
Edwards oksimetrijas katetrs	*		
HemoSphere Alta audu oksimetrijas pārraudzība			
ForeSight oksimetra kabelis (var būt marķēts arī kā FORE-SIGHT ELITE audu oksimetrijas modulis)	HEMFSM10		

B-1. tabula. HemoSphere Alta uzlabotās monitoringa platformas elementi

Apraksts	Modeļa numurs	
ForeSight Jr sensori (izmērs: nelīpošs mazs un mazs) (var būt marķēti arī kā FORE-SIGHT ELITE oksimetrijas sensori)	*	
ForeSight oksimetrijas sensori (izmēri: vidējs un liels) (var būt marķēti arī kā FORE-SIGHT ELITE oksimetrijas sensori)	*	
HemoSphere Alta pārraudzība ar ClearSight tehnoloģiju		
Spiediena kontrollera komplekts	PC2K HEMPC2K	
Spiediena kontrollers	PC2 HEMPC	
Spiediena kontrollera josla, vairākas iepakojumā	PC2B	
Spiediena kontrollera vāks	PCCVR	
Sirds kontrolsensors	EVHRS	
ClearSight manšete	*	
ClearSight Jr manšete	*	
Acumen IQ manšete	*	
HemoSphere Alta uzlabotās monitoringa platformas kabeļi		
Acumen AFM kabelis	HEMAFM100	
Acumen IQ šķidruma mērītājs	AIQFM	
Elektrotīkla kabelis	*	
Analogie EKG monitora kabeļi	**	
Papildu HemoSphere Alta uzlabotās monitoringa platformas piederumi		
HemoSphere monitora statīvs uz ritenīšiem	HEMRLSTD1000	
HemoSphere Alta monitora statīva uz ritenīšiem kronšteins	HEMABRKT1000	
HemoSphere Alta monitora akumulators	**	
* Lai saņemtu informāciju par konkrētu modeli un pasūtīšanu, sazinieties ar Edwards pārstāvi.		

** Edwards Lifesciences analogie ievades kabeļi ir īpaši paredzēti pie gultas novietojamiem monitoriem; tie ir pieejami uzņēmu-

mu grupai, kas izplata pie gultas novietojamus monitorus, piemēram, Philips (Agilent), GE (Marquette) un Spacelabs (OSI Systems). Lai saņemtu informāciju par konkrētu modeli un pasūtīšanu, sazinieties ar Edwards pārstāvi.

B.2 Papildpiederumu apraksts

B.2.1 Statīvs uz ritenīšiem

HemoSphere monitora statīvs uz ritenīšiem ir saderīgs ar HemoSphere Alta uzlaboto monitoru, kam ir statīva uz ritenīšiem kronšteins. HemoSphere Alta statīva uz ritenīšiem kronšteins (HEMBRKT1000) jau ir uzstādīts HemoSphere Alta monitorā, un to var iegādāties. Lai saņemtu informāciju par pasūtīšanu, sazinieties ar Edwards pārstāvi. Lai noņemtu kronšteinu, izskrūvējiet četras skrūves, kas parādītas 3-3. att. 76. lpp.. Informāciju par statīvu uz ritenīšiem montāžu un brīdinājumiem skatiet komplektā ietvertajās instrukcijās. Novietojiet samontēto statīvu uz grīdas, pārliecinoties, ka visi riteņi saskaras ar grīdu, un droši nostipriniet monitoru uz statīva plaukta, kā norādīts instrukcijās.

B.2.2 Oksimetrijas plaukts

HemoSphere oksimetrijas plaukts ir atkārtoti lietojams piederums, lai nostiprinātu HemoSphere oksimetrijas kabeli, kamēr tiek īstenots monitorings ar HemoSphere Alta uzlaboto monitoringa platformu. Informāciju par statīva montāžu skatīt iekļautajās instrukcijās.

B.2.3 Spiediena kontrollera vāks

Spiediena kontrollera vāks nostiprina sirds kontrolsensoru spiediena kontrollerā. Spiediena kontrollera vāks ir paredzēts ierobežotai atkārtotai lietošanai. Operators novērtēs, vai atkārtota lietošana ir atbilstoša. Lietojot atkārtoti, ievērojiet platformas tīrīšanas norādījumus, kas pieejami šeit: Monitora un kabeļu tīrīšana 410. lpp. Nomainiet, ja bojāts.

Spiediena kontrollera vāka uzlikšana.

- 1. Pārliecinieties, ka sirds kontrolsensors (HRS) ir pievienots, pirms spiediena kontrolleram tiek uzlikts spiediena kontrollera vāks.
- 2. Spiediena kontrollera vāka aizmugurējo montāžas ierobi uzlieciet ap spiediena kontrollera kabeli. Skatiet 1. darbību šeit: B-1. att. 395. lpp.
- 3. Spiediena kontrollera vāku pievienojiet virs spiediena kontrollera, pārliecinoties, ka spiediena kontrollera vāks netraucē sirds kontrolsensora (HRS) savienojumam. Skatiet 2. darbību šeit: B-1. att. 395. lpp.

B-1. attēls. Spiediena kontrollera vāka uzlikšana

4. Lai noņemtu spiediena kontrollera vāku, velciet to uz augšu, satverot aiz priekšējās mēlītes. To norāda

bultiņu simbols 🧖 . Nedrīkst noņemt spiediena kontrollera vāku no sāniem, satverot aiz HRS

savienojuma, ko norāda nenoņemšanas simbols

UZMANĪBU

Lietošanas laikā nesaspiediet sirds kontrolsensora caurules un vadus zem spiediena kontrollera vāka. Parūpējieties, lai vienīgais vads aizmugurējā montāžas ierobē būtu spiediena kontrollera kabelis.

Neceliet PCCVR aiz cita punkta, izņemot priekšējo mēlīti.

Pielikums **C**

Aprēķināto pacienta parametru vienādojumi

Šajā sadaļā ir aprakstīti vienādojumi, ko izmanto HemoSphere Alta uzlabotās monitoringa platformas attēloto nepārtraukto un intermitējošo pacienta parametru aprēķināšanai.

Piezīme

Pacienta parametri tiek aprēķināti ar vairākām decimālzīmēm aiz komata, nekā redzams ekrānā. Piemēram, ekrāna CO vērtība 2,4 faktiski var būt CO 2,4492. Tādēļ, ja mēģināt pārbaudīt monitora attēlojuma precizitāti, izmantojot turpmāk minētos vienādojumus, varat iegūt rezultātus, kas nedaudz atšķiras no monitorā aprēķinātajiem datiem.

Visos aprēķinos, kuros ietverts SvO₂, ScvO₂ tiek aizstāts, ja lietotājs atlasa ScvO₂.

SI apakšrakstā = standarta starptautiskās vienības

Parametrs	Apraksts un formula	Mērvienības
KVL	Ķermeņa virsmas laukums (DuBois formula) KVL = 71,84 x (WT ^{0,425}) x (HT ^{0,725}) / 10 000	m ²
	kur:	
	WT — pacienta svars, kg	
	HT — pacienta auguma garums, cm	
CaO ₂	Arteriālā skābekļa saturs CaO ₂ = (0,0138 × HGB × SaO ₂) + (0,0031 × PaO ₂) (ml/dl)	ml/dl
	$CaO_2 = [0,0138 \times (HGB_{SI} \times 1,611) \times SaO_2] + [0,0031 \times (PaO_{2SI} \times 7,5)] (ml/dl)$	
	kur:	
	HGB — kopējais hemoglobīns, g/dl	
	HGB _{SI} — kopējais hemoglobīns, mmol/l	
	SaO ₂ — arteriālā O ₂ piesātinājums, %	
	PaO₂ — daļējs arteriālā skābekļa spiediens, mmHG	
	PaO _{2SI} — daļējs arteriālā skābekļa spiediens, kPa	

C-1. tabula. Sirds un oksigenācijas profila vienādojumi
Parametrs	Apraksts un formula	Mērvienības
CvO ₂	Venozā skābekļa saturs CvO ₂ = (0.0138 x HGB x SvO ₂) + (0.0031 x PvO ₂) (ml/dl)	ml/dl
	$CvO_2 = [0,0138 \times (HGB_{S1} \times 1,611) \times SvO_2] + [0,0031 \times (PvO_{2S1} \times 7,5)] (ml/dl)$	
	kur:	
	HGB — kopējais hemoglobīns, g/dl	
	HGB _{sı} — kopējais hemoglobīns, mmol/l	
	SvO ₂ — venozā O ₂ piesātinājums, %	
	PvO ₂ — venozā skābekļa daļējais spiediens, mmHG	
	PvO _{2SI} — venozā skābekļa daļējais spiediens, kPa	
	un PvO ₂ var ievadīt lietotājs monitoringa režīmā Invazīvs, un tas tiek uzskatīts par 0 visos pārējos monitoringa režīmos	
Ca-vO ₂	Arteriovenozā skābekļa satura atšķirība Ca-vO ₂ = CaO ₂ - CvO ₂ (ml/dl)	ml/dl
	kur:	
	CaO ₂ — arteriālā skābekļa saturs (ml/dl)	
	CvO ₂ — venozā skābekļa saturs (ml/dl)	
CI	Sirds indekss CI = CO/KVL	l/min/m ²
	kur:	
	CO — sirds izsviede, l/min	
	KVL — ķermeņa virsmas laukums, m²	
СРІ	Sirds jaudas indekss CPI = MAP \times CI \times 0,0022	W/m ²
СРО	Sirds izvades jauda CPO = CO \times MAP \times K	W
	kur:	
	sirds izvades jauda (CPO) (W) ir aprēķināta, izmantojot vienādojumu MAP $ imes$ CO/451	
	<i>K</i> ir pārrēķināšanas koeficients (2,22 $ imes$ 10 ⁻³), lai iegūtu vērtību vatos	
	MAP vērtība ir izteikta mmHG	
	CO l/min	
DO ₂	Skābekļa padeve	ml O ₂ /min
	$DO_2 = CaO_2 \times CO \times 10$	
	kur:	
	CaO ₂ — arteriālā skābekļa saturs, ml/dl	
	CO — sirds izsviede, l/min	
DO₂I	Skābekļa padeves indekss $DO_2I = CaO_2 \times CI \times 10$	ml O ₂ /min/m ²
	kur:	
	CaO ₂ — arteriālā skābekļa saturs, ml/dl	
	CI — sirds indekss, I/min/m ²	

Parametrs	Apraksts un formula	Mērvienības
dP/dt	Sistoliskais kritums, kas aprēķināts kā maksimālais pirmais arteriālā spiediena līknes atvasi- nājums attiecībā pret laiku dP/dt = maks. (P[n+1]-P[n])/ts, no n=0 līdz N=1	mmHG/s
	kur:	
	P[n] — pašreizējais arteriālā spiediena signāla paraugs, mmHg	
	ts — paraugu ņemšanas laika intervāls sekundēs	
	N — kopējais paraugu skaits konkrētā sirds ciklā	
Ea _{dyn}	Dinamiskā arteriālā elastība Ea _{dyn} = PPV/SVV	nav
	kur:	
	SVV — sistoles tilpuma variācija, %	
	PPV — pulsa spiediena variācija, %	
EDV	Beigu diastoliskais tilpums EDV = SV/EF	ml
	kur:	
	SV — sistoles tilpums (ml)	
	EF — izsviedes frakcija, % (efu)	
EDVI	Beigu diastoliskā tilpuma indekss EDVI = SVI/EF	ml/m ²
	kur:	
	SVI — sirds sistoles tilpuma indekss (ml/m²)	
	EF — izsviedes frakcija, % (efu)	
ESV	Beigu sistoliskais tilpums ESV = EDV - SV	ml
	kur:	
	EDV — beigu diastoliskais tilpums (ml)	
	SV — sistoles tilpums (ml)	
ESVI	Beigu sistoliskā tilpuma indekss ESVI = EDVI - SVI	ml/m ²
	kur:	
	EDVI — beigu diastoliskā tilpuma indekss (ml/m²)	
	SVI — sirds sistoles tilpuma indekss (ml/m²)	
LVSWI	Kreisā kambara sistoliskā darba indekss LVSWI = SVI x (MAP – PAWP) x 0,0136	g-m/m²/sit.
	$LVSWI = SVI \times (MAP_{SI} - PAWP_{SI}) \times 0,0136 \times 7,5$	
	kur:	
	SVI — sistoles tilpuma indekss, ml/sitieni/m²	
	MAP — vidējais arteriālais spiediens, mmHG	
	MAP _{SI} — vidējais arteriālais spiediens, kPa	
	PAWP — plaušu artēriju ieķīlēšanās spiediens, mmHG	
	PAWP _{SI} — plaušu artēriju ieķīlēšanās spiediens, kPa	

Parametrs	Apraksts un formula	Mērvienības
O ₂ EI	Skābekļa ekstrakcijas indekss	%
	$O_2EI = \{(SaO_2 - SvO_2) / SaO_2\} \times 100 (\%)$	
	kur:	
	$SaO_2 - arteriala O_2 piesatinajums, %$	
	SvO ₂ — jauktu venozo asiņu O ₂ piesātinājums, %	
O₂ER	Skābekļa ekstrakcijas koeficients $O_2ER = (Ca-vO_2 / CaO_2) \times 100 (\%)$	%
	kur:	
	CaO ₂ — arteriālā skābekļa saturs, ml/dl	
	Ca-vO ₂ — arteriovenozā skābekļa satura atšķirība, ml/dl	
PPV	Pulsa spiediena variācija PPV = 100 x (PP maks PP min.) / vidējā (PP)	%
	kur:	
	PP — pulsa spiediens, mmHG, kas ir aprēķināts, izmantojot šādu vienādojumu:	
	PP = SYS - DIA	
	SYS — sistoliskais spiediens	
	DIA — diastoliskais spiediens	
PVR	Plaušu asinsvadu pretestība PVR = {(MPAP - PAWP) x 80} /CO	dyn-s/cm ⁵ (kPa-s/l) _{SI}
	$PVR = \{(MPAP_{SI} - PAWP_{SI}) \times 60\}/CO$	
	kur:	
	MPAP — vidējais plaušu artērijas spiediens, mmHG	
	MPAP _{SI} — vidējais plaušu artērijas spiediens, kPa	
	PAWP — plaušu artēriju ieķīlēšanās spiediens, mmHG	
	PAWP _{SI} — plaušu artēriju ieķīlēšanās spiediens, kPa	
	CO — sirds izsviede, l/min	
PVRI	Plaušu asinsvadu pretestības indekss PVRI = {(MPAP – PAWP) x 80} /Cl	dyn-s-m²/cm ⁵ (kPa-s-m²/l) _{SI}
	$PVRI = \{(MPAP_{SI} - PAWP_{SI}) \times 60\} / CI$	
	kur:	
	MPAP — vidējais plaušu artērijas spiediens, mmHG	
	MPAP _{SI} — vidējais plaušu artērijas spiediens, kPa	
	PAWP — plaušu artēriju ieķīlēšanās spiediens, mmHG	
	PAWP _{sl} — plaušu artēriju ieķīlēšanās spiediens, kPa	
	CI — sirds indekss, I/min/m ²	

Parametrs	Apraksts un formula	Mērvienības
RVSWI	Labā kambara sistoliskā darba indekss RVSWI = SVI x (MPAP – CVP) x 0,0136	g-m/m²/sit.
	$RVSWI = SVI \times (MPAP_{SI} - CVP_{SI}) \times 0,0136 \times 7,5$	
	kur:	
	SVI — sistoles tilpuma indekss, ml/sitieni/m²	
	MPAP — vidējais plaušu artērijas spiediens, mmHG	
	MPAP _{SI} — vidējais plaušu artērijas spiediens, kPa	
	CVP — centrālais venozais spiediens, mmHG	
	CVP _{SI} — centrālais venozais spiediens, kPa	
StO ₂	Audu piesātinājums ar skābekli StO ₂ = [HbO ₂ /(HbO ₂ + Hb)] × 100	%
	kur:	
	HbO ₂ — ar skābekli piesātināts hemoglobīns	
	Hb — atskābekļots hemoglobīns	
SV	Sistoles tilpums SV = (CO/PR) x 1000	ml/sitieni
	kur:	
	CO — sirds izsviede, l/min	
	PR — sirdsdarbības ātrums, sitieni/min	
SVI	Sistoles tilpuma indekss	ml/sit./m ²
	Kur:	
	CI — sirdsdorbibas štrums sitioni/min	
SVR	Sistēmiskā asinsvadu pretestība SVR = {(MAP - CVP) x 80} /CO (dyne-s/cm ⁵)	dyn-s/cm ⁵ (kPa-s/l) _{SI}
	$SVR = \{(MAP_{SI} - CVP_{SI}) \times 60\} / CO$	
	kur:	
	MAP — vidējais arteriālais spiediens, mmHG	
	MAP _{SI} — vidējais arteriālais spiediens, kPa	
	CVP — centrālais venozais spiediens, mmHG	
	CVP _{SI} — centrālais venozais spiediens, kPa	
	CO — sirds izsviede, l/min	

Parametrs	Apraksts un formula	Mērvienības
SVRI	Sistēmiskās asinsvadu pretestības indekss SVRI = {(MAP - CVP) x 80} /CI	dyn-s-m²/cm ⁵ (kPa-s-m²/l) _{SI}
	$SVRI = \{(MAP_{SI} - CVP_{SI}) \times 60\} / CI$	
	kur:	
	MAP — vidējais arteriālais spiediens, mmHG	
	MAP _{SI} — vidējais arteriālais spiediens, kPa	
	CVP — centrālais venozais spiediens, mmHG	
	CVP _{SI} — centrālais venozais spiediens, kPa	
	CI — sirds indekss, I/min/m ²	
SVV	Sistoles tilpuma variācija SVV = 100 × (SV _{maks.} - SV _{min.}) / vid.(SV)	%
VO ₂	Skābekļa patēriņš VO ₂ = Ca-vO ₂ x CO x 10 (ml O ₂ /min)	ml O ₂ /min
	kur:	
	Ca-vO ₂ — arteriovenozā skābekļa satura atšķirība, ml/dl	
	CO — sirds izsviede, l/min	
VO ₂ e	Prognozētā skābekļa patēriņa indekss, uzraugot ScvO ₂ VO ₂ e = Ca-vO ₂ x CO x 10 (ml O ₂ /min)	ml O ₂ /min
	kur:	
	Ca-vO ₂ — arteriovenozā skābekļa satura atšķirība, ml/dl	
	CO — sirds izsviede, l/min	
VO ₂ I	Skābekļa patēriņa indekss VO ₂ / KVL	ml O ₂ /min/m ²
VO ₂ le	Prognozētā skābekļa patēriņa indekss, uzraugot ScvO ₂ VO ₂ e / KVL	ml O ₂ /min/m ²

Parametrs	Apraksts un formula	Mērvienības
VQI	Ventilēšanas perfūzijas indekss	%
	$1.38 \times \text{HGB} \times (1.0 - (\text{SaO}_2/100)) + (0.0031 \times \text{PAO}_2) \times 100$	
	$\sqrt{Q1} = \frac{1}{\{1,38 \times \text{HGB} \times (1,0 - (\text{SvO}_2/100)) + (0,0031 \times \text{PAO}_2)\}} \times 100}$	
	{1,38 x HGB _{SI} x 1,611344 x (1,0 - (SaO ₂ /100)) + (0,0031 x PAO ₂)}	
	$\sqrt{QI} = \frac{1}{\{1,38 \times \text{HGB}_{SI} \times 1,611344 \times (1,0 - (\text{SvO}_2/100)) + (0,0031 \times \text{PAO}_2)\}} \times 100}$	
	kur:	
	HGB — kopējais hemoglobīns, g/dl	
	HGB _{SI} — kopējais hemoglobīns, mmol/l	
	SaO ₂ — arteriālā O ₂ piesātinājums, %	
	SvO ₂ — jauktu venozo asiņu O ₂ piesātinājums, %	
	PAO_2 — alveolārais O_2 spraigums, mmHg	
	un:	
	PAO ₂ = ((PBAR - PH ₂ 0) x FiO ₂) - PaCO ₂ x (FiO ₂ +(1,0 - FiO ₂)/0,8)	
	kur:	
	FiO ₂ — ieelpotā skābekļa frakcija	
	PBAR — 760 mmHg	
	$PH_2O - 47 mmHg$	
	PaCO ₂ — 40 mmHg	

Pielikums **D**

Monitora iestatījumi un noklusējuma iestatījumi

Saturs

Pacienta datu ievades diapazons	. 403
Tendenču mēroga noklusējuma robežvērtības	.403
Parametru rādījums un konfigurējamie trauksmes/mērķa diapazoni	. 405
Trauksmes un mērķa noklusējuma vērtības	. 406
Trauksmju prioritātes līmeņi	. 407

D.1 Pacienta datu ievades diapazons

D-1. tabula. Informācija par pacientu

Parametrs	Minimums	Maksimums	Pieejamās mērvienības
Dzimums	M (Vīrietis) / F (Sieviete)	Nav piemērojams	Nav piemērojams
Vecums	2	120	gadi
Augstums	30 cm / 12"	250 cm / 98"	cm vai collas (in)
Svars	1,0 kg / 2 mārciņas	400,0 kg / 881 mārciņa	kg vai mārciņas
KVL	0,08	5,02	m ²
ID	0 ciparu	40 rakstzīmes	Nav

D.2 Tendenču mēroga noklusējuma robežvērtības

D-2. tabula. Grafisko tendenču parametru mēroga noklusējuma vērtības

Parametrs	Mērvienības	Minimālā noklu- sējuma vērtība	Maksimālā no- klusējuma vērtī- ba	lestatījuma pie- augums	Minimālā atstar- pe
ART (reāllaika spie- diena līknes attēlo- jums)	mmHg	50	130	1	1
CVP/PAP/RVP (reāllaika spiedie- na līknes attēlo- jums)	mmHg	0	30	1	1
CO/iCO/sCO/CO _{RV}	l/min	0,0	12,0	0,1	1
CI/iCI/sCI	l/min/m ²	0,0	12,0	0,1	1
CPO/CPO _{RV}	W	0,0	9,99	0,01	1
CPI/CPI _{RV}	W/m ²	0,0	9,99	0,01	1
CVP	mmHg	0	20	1	1

Parametrs	Mērvienības	Minimālā noklu- sējuma vērtība	Maksimālā no- klusējuma vērtī- ba	lestatījuma pie- augums	Minimālā atstar- pe
DIA _{ART}	mmHg	50	110	1	5
DIA _{PAP}	mmHg	0	35	1	1
DIA _{RVP}	mmHg	0	35	1	1
dP/dt	mmHg/s	0	2000	20	100
Ea _{dyn}	nav	0,2	1,5	0,1	0,1
EDV/sEDV	ml	0	800	10	25
EDVI/sEDVI	ml/m ²	0	400	5	25
GHI	nav	0	100	1	10
НРІ	nav	0	100	1	10
MAP	mmHg	50	130	1	5
MPAP	mmHg	0	45	1	5
MRVP	mmHg	0	45	1	5
PPV	%	0	50	1	10
PR	sitieni/min	40	130	1	5
PR _{RVP}	sitieni/min	40	130	1	5
RV dP/dt	mmHg/s	100	700	1	50
RV EDP	mmHg	0	25	1	1
RVEF/sRVEF	%	0	100	1	10
StO ₂	%	0	99	1	10
SV/SV _{20s} /SV _{RV}	ml/b	0	160	5	20
SVI/SVI _{20s}	ml/b/m ²	0	80	5	20
SVR/iSVR	dyn-s/cm ⁵	500	1500	20	100
SVRI/iSVRI	dyn-s-m ² /cm ⁵	500	3000	50	200
SvO ₂ /ScvO ₂	%	0	99	1	10
SVV	%	0	50	1	10
SYS _{ART}	mmHg	80	160	1	5
SYS _{PAP}	mmHg	0	55	1	1
SYS _{RVP}	mmHg	20	55	1	5
ΔctHb	nav	-20	20	1	5

Piezīme

HemoSphere Alta uzlabotā monitoringa platforma nepieņem tādus skalas augšējās atzīmes iestatījumus, kas ir mazāki par skalas apakšējās atzīmes iestatījumiem. Netiek pieņemti arī tādi skalas augšējās atzīmes iestatījumi, kas ir mazāki par skalas apakšējās atzīmes iestatījumiem.

D.3 Parametru rādījums un konfigurējamie trauksmes/mērķa diapazoni

Parametrs	Mērvienības	Rādījuma diapazons	Konfigurējamais trauk- smes/mērķa diapazons
CO/CO _{RV}	l/min	no 1,0 līdz 20,0	no 1,0 līdz 20,0
iCO	l/min	no 0,0 līdz 20,0	no 0,0 līdz 20,0
sCO	l/min	no 1,0 līdz 20,0	no 1,0 līdz 20,0
CO _{20s}	l/min	no 1,0 līdz 20,0	no 1,0 līdz 20,0
CI	l/min/m ²	no 0,0 līdz 20,0	no 0,0 līdz 20,0
iCl	l/min/m ²	no 0,0 līdz 20,0	no 0,0 līdz 20,0
sCl	l/min/m ²	no 0,0 līdz 20,0	no 0,0 līdz 20,0
Cl _{20s}	l/min/m ²	no 0,0 līdz 20,0	no 0,0 līdz 20,0
CPO/CPO _{RV}	W	no 0,0 līdz 9,99	no 0,0 līdz 9,100
CPI/CPI _{RV}	W/m ²	no 0,0 līdz 9,101	nav piemērojams
SV/SV _{RV}	ml/b	no 0 līdz 300	no 0 līdz 300
SV _{20s}	ml/b	no 0 līdz 300	no 0 līdz 300
SVI	ml/b/m ²	no 0 līdz 200	no 0 līdz 200
SVI _{20s}	ml/b/m ²	no 0 līdz 200	no 0 līdz 200
SVR	dins-s/cm ⁵	no 0 līdz 5000	no 0 līdz 5000
SVRI	dins-s-m ² /cm ⁵	no 0 līdz 9950	no 0 līdz 9950
iSVR	dins-s/cm ⁵	no 0 līdz 5000	no 0 līdz 5000
iSVRI	dins-s-m ² /cm ⁵	no 0 līdz 9950	no 0 līdz 9950
SVV	%	no 0 līdz 99	no 0 līdz 99
Venozā oksimetrija (ScvO ₂ / SvO ₂)	%	no 0 līdz 99	no 0 līdz 99
Audu oksimetrija (StO ₂)*	%	no 0 līdz 99	no 0 līdz 99
ΔctHb [*]	nav	no –100 līdz 100	nav piemērojams^
CAI*	nav	no 0 līdz 100	nav piemērojams [†]
EDV	ml	no 0 līdz 800	no 0 līdz 800
sEDV	ml	no 0 līdz 800	no 0 līdz 800
EDVI	ml/m ²	no 0 līdz 400	no 0 līdz 400
sEDVI	ml/m ²	no 0 līdz 400	no 0 līdz 400
RVEF	%	no 0 līdz 100	no 0 līdz 100
sRVEF	%	no 0 līdz 100	no 0 līdz 100
CVP*	mmHg	no 0 līdz 50	no 0 līdz 50
MAP*	mmHg	no 0 līdz 300	no 10 līdz 300
ART/PAP/CVP/RVP [*] (reāllaika spiediena līknes attēlojums)	mmHg	no –34 līdz 312	no 0 līdz 300†
MPAP*	mmHg	no 0 līdz 99	no 0 līdz 99

D-3. tabula. Konfigurējamie parametru trauksmes un rādīšanas diapazoni

Parametrs	Mērvienības	Rādījuma diapazons	Konfigurējamais trauk- smes/mērķa diapazons
MRVP	mmHg	no 0 līdz 99	nav piemērojams [†]
SYS _{ART} *	mmHg	no 0 līdz 300	no 10 līdz 300
SYS _{PAP} *	mmHg	no 0 līdz 99	no 0 līdz 99
SYS _{RVP}	mmHg	no 0 līdz 200	nav piemērojams [†]
DIA _{ART} *	mmHg	no 0 līdz 300	no 10 līdz 300
DIA _{PAP} *	mmHg	no 0 līdz 99	no 0 līdz 99
DIA _{RVP}	mmHg	no –10 līdz 99	nav piemērojams [†]
PPV	%	no 0 līdz 99	no 0 līdz 99
PR	sitieni/min	no 0 līdz 220	no 0 līdz 220
PR _{RVP}	sitieni/min	no 0 līdz 220	nav piemērojams [†]
RV dP/dt	mmHg/s	No 0 līdz 999	nav piemērojams [†]
RV EDP	mmHg	no 0 līdz 99	nav piemērojams [†]
НРІ	nav	no 0 līdz 100	nav piemērojams [†]
GHI	nav	no 0 līdz 100	nav piemērojams [†]
dP/dt	mmHg/s	no 0 līdz 3000	no 0 līdz 3000
Ea _{dyn}	nav	no 0,0 līdz 3,0	nav piemērojams [†]

^{*}Parametrs ir pieejams bezpulsāciju režīmā. Asinsspiediena parametri ir pieejami tikai bezpulsāciju režīmā, veicot minimāli invazīvu un invazīvu uzraudzību. ART spiediena līkne, MAP, DIA_{ART} un SYS_{ART} parametri nav pieejami bezpulsāciju režīmā neinvazīvas uzraudzības laikā.

[†] HPI, GHI, CAI, RVP parametru un RVP spiediena līknes parametru trauksmes diapazonu nevar konfigurēt.

[^]Ea_{dyn} un Δ ctHb nav trauksmes parametri. Šeit attēlotajiem diapazoniem ir tikai ilustratīva nozīme.

D.4 Trauksmes un mērķa noklusējuma vērtības

D-4. tabula. Parametru	sarkanā līmena	trauksmes un	mērka no	oklusēiuma	vērtības

Parametrs	Mērvienības	EW noklusējuma apakšējais trauksmes (sar- kanās zonas) ie- statījums	EW noklusējuma apakšējais mērķa iestatījums	EW noklusējuma augšējais mērķa iestatījums	EW noklusējuma augšējais trauk- smes (sarkanā zona) iestatījums
CI/iCI/sCI/CI _{20s}	l/min/m ²	1,0	2,0	4,0	6,0
СРО	W	0,6	0,8	9,99	9,99
SVI/SVI _{20s}	ml/b/m ²	20	30	50	70
SVRI/iSVRI	dyne-s-m ² /cm ⁵	1000	1970	2390	3000
SVV	%	0	0	13	20
ScvO ₂ /SvO ₂	%	50	65	75	85
StO ₂	%	50	60	85	90
EDVI/sEDVI	ml/m ²	40	60	100	200
RVEF/sRVEF	%	20	40	60	60
CVP	mmHg	2	2	8	10
SYS _{ART}	mmHg	90	100	130	150

Parametrs	Mērvienības	EW noklusējuma apakšējais trauksmes (sar- kanās zonas) ie- statījums	EW noklusējuma apakšējais mērķa iestatījums	EW noklusējuma augšējais mērķa iestatījums	EW noklusējuma augšējais trauk- smes (sarkanā zona) iestatījums
SYS _{PAP}	mmHg	10	14	23	34
DIA _{ART}	mmHg	60	70	90	100
DIA _{PAP}	mmHg	0	4	13	16
МАР	mmHg	60	70	100	120
МРАР	mmHg	5	9	18	25
HGB	g/dl	7,0	11,0	17,0	19,0
	mmol/l	4,3	6,8	10,6	11,8
PPV	%	0	0	13	20
PR	sitieni/min	60	70	100	120
НРІ	nav	0	Nav piemērojams	Nav piemērojams	85
dP/dt	mmHg/s	380	480	1300	1800
CAI	nav	0	Nav piemērojams	Nav piemērojams	45

Piezīme

Neindeksētie diapazoni ir noteikti, pamatojoties uz indeksētajiem diapazoniem un ievadītajām KVL vērtībām.

D.5 Trauksmju prioritātes līmeņi

D-5. tabula. Parametru trauksmes signāli, kļūmes un trauksmes prioritātes

Fizioloģiskais parametrs (trauksmes) / ziņojuma veids	Apakšējā fizioloģiskās trauksmes (sarkanā līme- ņa) prioritāte	Augšējā fizioloģiskās trauksmes (sarkanā līme- ņa) prioritāte	Ziņojuma veida prioritāte
CO/CI/sCO/sCI/CO _{20s} /CI _{20s}	Augsts	Vidējs	
CPO/CPI/CPO _{RV} /CPI _{RV}	Vidējs	Nav piemērojams	
SV/SVI/SV _{20s} /SVI _{20s}	Augsts	Vidējs	
SVR/SVRI	Vidējs	Vidējs	
SVV	Vidējs	Vidējs	
SvO ₂	Augsts	Vidējs	
StO ₂	Augsts	Vidējs	
EDV/EDVI/sEDV/sEDVI	Vidējs	Vidējs	
RVEF/sRVEF	Vidējs	Vidējs	
SYS _{ART} /SYS _{PAP}	Augsts	Augsts	
SYS _{RVP}	Nav piemērojams	Nav piemērojams	
DIA _{ART} /DIA _{PAP}	Augsts	Augsts	
DIA _{RVP}	Nav piemērojams	Nav piemērojams	
МАР	Augsts	Augsts	
МРАР	Vidējs	Vidējs	
MRVP	Nav piemērojams	Nav piemērojams	

Fizioloģiskais parametrs (trauksmes) / ziņojuma veids	Apakšējā fizioloģiskās trauksmes (sarkanā līme- ņa) prioritāte	Augšējā fizioloģiskās trauksmes (sarkanā līme- ņa) prioritāte	Ziņojuma veida prioritāte
PR	Augsts	Augsts	
PR _{RVP}	Nav piemērojams	Nav piemērojams	
CVP	Vidējs	Vidējs	
PPV	Vidējs	Vidējs	
HPI	Nav piemērojams	Augsts	
dP/dt	Vidējs	Vidējs	
Ea _{dyn}	Nav piemērojams	Nav piemērojams	
RV EDP	Nav piemērojams	Nav piemērojams	
RV dP/dt	Nav piemērojams	Nav piemērojams	
Kļūme			Vidēja/augsta
Trauksme			Zema

Piezīme

Trauksmes signāla ģenerēšanas aizkave ir atkarīga no parametra. Ar oksimetriju saistītu parametru gadījumā aizkave ir mazāka par 2 sekundēm pēc tam, kad parametrs pastāvīgi nav atbildis diapazonam vismaz 5 sekundes. Ar HemoSphere Alta Swan-Ganz pacienta kabeli nepārtraukti mērītā parametra CO un saistīto parametru aizkave ir mazāka nekā 360 sekundes, lai gan parasti parametru aprēķināšanas izraisītā aizkave ir 57 sekundes. Ar HemoSphere spiedienkabeli nepārtraukti mērītā parametra CO un saistīto ar FloTrac sistēmu mērīto parametru aizkave ir 2 sekundes, ja parametru vidējais laiks ir 5 sekundes (pēc tam, kad parametrs nepārtraukti neatbilst diapazonam 5 vai vairāk sekundes kopā 7 sekundes) un 20 sekundes, ja parametru vidējais laiks ir 20 sekundes un 5 minūtes (skat. 5-4. tabula 131. lpp.). HemoSphere spiedienkabelim ar TruWave vienreizlietojamo spiediena devēju izmērītajiem parametriem aizkave ir 2 sekundes pēc tam, kad parametrs neietilpst diapazonā nepārtraukti 5 vai vairāk sekundes (kopā 7 sekundes). HemoSphere ClearSight moduļa neinvazīvajam nepārtrauktajam CO un saistītajiem hemodinamiskajiem parametriem aizkave ir 20 sekundes. Reāllaika asinsspiediena līknei uzraudzības ar HemoSphere ClearSight moduli laikā aizkave ir 5 sirdspuksti pēc tam, kad parametrs nepārtraukti neatbilst diapazonam 5 vai vairāk sekundes.

Augstākas prioritātes fizioloģiskās trauksmes gadījumā parametra vērtība mirgo biežāk nekā vidējas prioritātes fizioloģiskās trauksmes gadījumā. Ja vienlaikus atskan vidējas un augstas prioritātes trauksmes stāvokļa signāli, ir dzirdams augstas prioritātes fizioloģiskās trauksmes stāvokļa signāls. Ja ir aktīvs zemas prioritātes trauksmes stāvoklis un tiek ģenerēti vidējas vai augstākas prioritātes trauksmes stāvokļa signāli, zemas prioritātes trauksmes vizuālais indikators tiks aizstāts ar augstākas prioritātes vizuālo indikatoru.

Lielākajai daļai tehnisko kļūmju ir vidēja prioritāte. Brīdinājumi un citi sistēmas ziņojumi ir zemas prioritātes.

Aprēķina konstantes

Saturs

E.1 Aprēķina konstanšu vērtības

Režīmā iCO HemoSphere Alta Swan-Ganz pacienta kabelis aprēķina sirds izsviedi, izmantojot vannas zondes iestatījumu vai sistēmai pieslēgto zondi un turpmākajās tabulās uzskaitītās aprēķina konstantes. HemoSphere Alta Swan-Ganz pacienta kabelis automātiski nosaka izmantotās injektāta temperatūras zondes veidu, un atbilstošā injektāta temperatūra, katetra izmērs un injektāta tilpums nosaka izmantojamo aprēķina konstanti.

Piezīme

Turpmāk minētās aprēķina konstantes ir nominālas un parasti attiecas uz noteiktiem katetru izmēriem. Izmantotajam katetram noteiktās aprēķina konstantes skatiet katetra lietošanas norādījumos.

Modeļiem noteiktās aprēķina konstantes iCO režīmam tiek ievadītas manuāli iestatīšanas izvēlnē.

Injektāta tempera-	Injektāta til- Katetra izmērs (franču)					
tūras diapazons* (°C)	pums (ml)	8	7,5	7	6	5,5
lstabas temp.	10	0,612	0,594	0,595	0,607	0,616
22,5–27 °C	5	0,301	0,283	0,287	0,304	0,304
	3	0,177	0,159	0,165	0,180	0,180
lstabas temp.	10	0,588	0,582	0,578	0,597	0,606
18–22,5 °C	5	0,283	0,277	0,274	0,297	0,298
	3	0,158	0,156	0,154	0,174	0,175
Auksts (atdzesēts)	10	0,563	0,575	0,562	0,573	0,581
5–18 ℃	5	0,267	0,267	0,262	0,278	0,281
	3	0,148	0,150	0,144	0,159	0,161
Auksts (atdzesēts)	10	0,564	0,564	0,542	0,547	0,555
0–5 ℃	5	0,262	0,257	0,247	0,259	0,264
	3	0,139	0,143	0,132	0,144	0,148
* Lai ontimizētu sirds n	arametru mērījum	nus ieteicams noc	lročināt lai iniektā	ita temperatūra a	thilstu kādam po l	vatetra lietoča-

E-1. tabula. Vannas temperatūras zondes aprēķina konstantes

* Lai optimizētu sirds parametru mērījumus, ieteicams nodrošināt, lai injektāta temperatūra atbilstu kādam no katetra lietošanas norādījumos minētajiem temperatūras diapazoniem.

Pielikums **F**

Sistēmas apkope, remonts un atbalsts

Saturs

Vispārīgā apkope	
Monitora un kabeļu tīrīšana	
Platformas kabeļu tīrīšana	
Apkope un atbalsts	414
Edwards Lifesciences reģionālais birojs	415
Monitora iznīcināšana	415
Profilaktiskā apkope	
Trauksmes signālu pārbaude	
Garantija	

F.1 Vispārīgā apkope

HemoSphere Alta uzlabotā monitoringa platforma nesatur detaļas, kuru apkopi var veikt lietotājs, un to drīkst remontēt tikai kvalificēti apkopes dienesta pārstāvji. Šajā pielikumā ir sniegti norādījumi par monitora un tā piederumu tīrīšanu, kā arī informācija par saziņu ar vietējo Edwards pārstāvi, lai saņemtu atbalstu un informāciju par remontu un/vai nomaiņu.

BRĪDINĀJUMS

HemoSphere Alta uzlabotā monitoringa platforma nesatur detaļas, kuru apkope būtu jāveic lietotājam. Noņemot pārsegu vai veicot citus demontāžas darbus, pieaug risks saskarties ar bīstamu spriegumu.

UZMANĪBU

Pēc katras lietošanas reizes tīriet un noglabājiet instrumentu un piederumus.

Uzmanīgi izpildiet visus tīrīšanas norādījumus, lai monitors un platformas kabeļi būtu rūpīgi notīrīti. Pēc tīrīšanas aplūkojiet HemoSphere Alta uzlaboto monitoru un visus piederumus, vai uz tiem nav atlieku un svešķermeņu. Ja pēc tīrīšanas joprojām redzamas atliekas, atkārtoti izpildiet tīrīšanas norādījumus. Izpildiet visus papildu tīrīšanas norādījumus, ko sniedz norādīto apstiprināto tīrīšanas līdzekļu ražotājs.

HemoSphere Alta uzlabotā monitoringa platforma un monitora kabeļi ir jutīgi pret elektrostatisko izlādi (ESD). Nemēģiniet atvērt kabeļa korpusu vai izmantot kabeli, ja tā korpuss ir bojāts.

F.2 Monitora un kabeļu tīrīšana

BRĪDINĀJUMS

Elektriskās strāvas trieciena vai aizdegšanās risks! Neiegremdējiet HemoSphere Alta uzlaboto monitoringa platformu vai platformas kabeļus nekādā šķidrumā. Nepieļaujiet šķidrumu iekļūšanu instrumentā.

HemoSphere Alta uzlaboto monitoringa platformu un kabeļus var tīrīt ar biežāk lietotajiem slimnīcu tīrīšanas līdzekļiem, piemēram, tālāk norādītajiem vai līdzvērtīgiem, ja vien nav norādīts citādi.

Clorox Healthcare balinātāja baktericīdās salvetes

- PDI sani-cloth baktericīdās vienreizlietojamās salvetes
- PDI super sani-cloth baktericīdās vienreizlietojamās salvetes (purpurkrāsas vāciņš)
- Metrex CaviWipes1 salvetes
- Clorox Healthcare Hydrogen Peroxide tīrīšanas līdzekļa dezinfekcijas salvete

HemoSphere Alta uzlaboto monitoringa platformu un kabeļus var tīrīt arī ar bezplūksnu drānu, kas ir samitrināta tālāk norādītajos tīrīšanas līdzekļos.

- 10% balinātāja šķīdums
- 70% izopropilspirta
- Metrex CaviCide1 vai četraizvietota amonija šķīdums
- ūdeņraža peroksīda šķīdums (3%)

Neizmantojiet citus tīrīšanas līdzekļus. Ja nav norādīts citādi, šie tīrīšanas līdzekļi ir apstiprināti lietošanai ar visiem HemoSphere Alta uzlabotās monitoringa platformas piederumiem un kabeļiem.

UZMANĪBU

Nelejiet un nesmidziniet šķidrumus uz HemoSphere Alta uzlabotās monitoringa platformas, piederumiem vai kabeļiem.

Lietojiet tikai norādītos dezinfekcijas šķīdumu veidus.

NEPIEĻAUJIET

- nekādu šķidrumu nonākšanu saskarē ar jaudas savienotāju;
- nekādu šķidrumu iekļūšanu monitora korpusa vai moduļu savienotājos vai atverēs.

Ja jebkāds šķidrums nonāk saskarē ar iepriekš minētajām daļām, NEMĒĢINIET lietot monitoru. Nekavējoties atvienojiet elektropadevi un sazinieties ar jūsu biomedicīnas nodaļas darbiniekiem vai vietējo Edwards pārstāvi.

F.3 Platformas kabeļu tīrīšana

Platformas kabeļu tīrīšanai var izmantot tīrīšanas līdzekļus, kas norādīti šeit: Monitora un kabeļu tīrīšana 410. lpp., un tālāk norādītās metodes.

UZMANĪBU

Regulāri pārbaudiet, vai nevienam kabelim nav bojājumu. Glabāšanas laikā nesaritiniet kabeļus pārāk cieši.

- 1. Izmantojiet apstiprinātu vienreizlietojamo tīrīšanas salveti vai samitriniet bezplūksnu drānu dezinfekcijas līdzeklī un noslaukiet virsmas.
- 2. Pēc noslaucīšanas ar dezinfekcijas līdzekli noslaukiet virsmas ar kokvilnas marli, kas samitrināta sterilā ūdenī. Noslaukiet rūpīgi, lai noņemtu visas dezinfekcijas līdzekļa paliekas.
- 3. Nosusiniet virsmu ar tīru, sausu drānu.

Uzglabājiet platformas kabeļus oriģinālajā iepakojumā vēsā, sausā vietā, lai novērstu bojājumu rašanos. Papildu instrukcijas, kas attiecas uz atsevišķiem kabeļiem, ir norādītas tālākajās apakšsadaļās.

UZMANĪBU

Neizmantojiet citus tīrīšanas līdzekļus un aerosolus, kā arī nelejiet tīrīšanas līdzekli tieši uz platformas kabeļiem. Platformas kabeļus nedrīkst tīrīt ar tvaiku, apstarot vai sterilizēt ar EO. Neiegremdējiet platformas kabeļus.

F.3.1 HemoSphere oksimetrijas kabeļa tīrīšana

Oksimetrijas kabeļa korpusa un savienotājkabeļa tīrīšanai izmantojiet iepriekš sadaļā Monitora un kabeļu tīrīšana 410. lpp. norādītos tīrīšanas līdzekļus, izņemot tīrīšanas līdzekļus uz ūdeņraža peroksīda bāzes. Oksimetrijas kabeļa optisko šķiedru saskarnei ir jābūt tīrai. Oksimetrijas katetra optisko šķiedru savienotājs atbilst oksimetrijas kabeļa optiskajām šķiedrām. Samitriniet bezplūksnainu kokvilnas aplikatoru ar sterilu, spirtu saturošu līdzekli un, pielietojot vieglu spiedienu, notīriet oksimetrijas kabeļa korpusa priekšpusē ievietotās optiskās šķiedras.

UZMANĪBU

Nesterilizējiet HemoSphere oksimetrijas kabeli ar tvaiku, starojumu vai etilēnoksīdu.

Neiegremdējiet HemoSphere oksimetrijas kabeli šķīdumos.

F.3.2 HemoSphere Alta pacienta kabeļa un savienotāja tīrīšana

Pacienta CCO kabelis satur elektriskus un mehāniskus komponentus, tādēļ normālas lietošanas laikā tas var nolietoties un nodilt. Pirms katras lietošanas reizes vizuāli pārbaudiet kabeļa izolācijas apvalku, fiksatoru un savienotājus. Ja konstatējat kādu no tālāk minētajiem bojājumiem, pārtrauciet kabeļa lietošanu.

- Bojāta izolācija
- Nodilums
- Savienotāja kontaktu starpā ir spraugas vai tie ir saliekti
- Savienotājs ir nelīdzens un/vai saplaisājis
- 1. Pacienta CCO kabelis nav aizsargāts pret šķidrumu ieplūšanu. CCO kabeļa tīrīšanai izmantojiet mīkstu drānu, kas samitrināta ar Monitora un kabeļu tīrīšana 410. lpp. norādītajiem tīrīšanas līdzekļiem.
- 2. Ļaujiet savienotājam nožūt.

UZMANĪBU

Ja monitoram pievienota kabeļa savienotājos iekļūst jebkāds elektrolīta šķīdums, piemēram, Ringera laktāta šķīdums un monitors tiek ieslēgts, ierosmes spriegums var izraisīt elektrolīta koroziju un strauju elektrisko kontaktu noārdīšanos.

Neiegremdējiet kabeļa savienotājus mazgāšanas līdzeklī, izopropilspirtā vai glutaraldehīdā.

Nežāvējiet kabeļa savienotājus ar fēnu.

3. Lai saņemtu papildu palīdzību, sazinieties ar tehniskā atbalsta dienestu vai vietējo Edwards pārstāvi.

F.3.3 HemoSphere spiedienkabeļa tīrīšana

HemoSphere spiedienkabeļus var tīrīt, izmantojot tīrīšanas līdzekļus, kas norādīti šeit: Monitora un kabeļu tīrīšana 410. lpp. (un metodes, kas ir norādītas platformas kabeļu tīrīšanai šīs sadaļas sākumā (Platformas kabeļu tīrīšana 411. lpp.)). Atvienojiet spiediena kabeli no pārraudzības ierīces, lai gaisa ietekmē nožāvētu devēja savienotāju. Lai nožāvētu devēja savienotāju ar gaisa pūsmu, vismaz divas minūtes izmantojiet tīru un sausu gaisu no sieniņas gaispūša vai saspiesta gaisa bundžas vai CO₂ aerosolu. Ja žāvējat savienotāju istabas apstākļos, pirms lietošanas žāvējiet to divas dienas.

UZMANĪBU

Ja monitoram pievienota kabeļa savienotājos iekļūst jebkāds elektrolīta šķīdums, piemēram, Ringera laktāta šķīdums un monitors tiek ieslēgts, ierosmes spriegums var izraisīt elektrolīta koroziju un strauju elektrisko kontaktu noārdīšanos.

Neiegremdējiet kabeļa savienotājus mazgāšanas līdzeklī, izopropilspirtā vai glutaraldehīdā.

Nežāvējiet kabeļa savienotājus ar fēnu.

lerīce satur elektroniku. Rīkoties piesardzīgi.

F.3.4 ForeSight oksimetra kabeļa tīrīšana

ForeSight oksimetra kabeļa tīrīšanai ir ieteicams izmantot šādus tīrīšanas līdzekļus:

- Aspeti-Wipe
- 3M Quat #25
- Metrex CaviCide
- Fenolgermicidālu tīrīšanas līdzekli (pēc ražotāja ieteikumiem)
- Četraizvietotā amonija germicidālu tīrīšanas līdzekli (pēc ražotāja ieteikumiem)

Skatiet produktu lietošanas norādījumus un etiķetes, lai uzzinātu detalizētu informāciju par aktīvajām sastāvdaļām un dezinfekcijas īpašībām.

ForeSight oksimetra kabelis jātīra ar šim nolūkam paredzētām salvetēm vai mitrajām salvetēm. Kad visas virsmas ir notīrītas, noslaukiet visu kabeļa virsmu, izmantojot mīkstu drānu, kas samitrināta ar tīru ūdeni, lai notīrītu līdzekļu atliekas.

Sensoru kabeļus var tīrīt ar šādam nolūkam paredzētām salvetēm vai mitrajām salvetēm. Tos var tīrīt, slaukot virzienā no ForeSight oksimetra kabeļa korpusa gala līdz sensoru savienojumiem.

BRĪDINĀJUMS

Nekādos apstākļos neveiciet ForeSight oksimetra kabeļa tīrīšanu vai apkopi, kamēr kabelis tiek izmantots pacienta pārraudzībai. Monitors ir jāizslēdz, un HemoSphere Alta uzlabotās monitoringa platformas barošanas vads ir jāatvieno, vai arī kabelis ir jāatvieno no monitora, un sensori jānoņem no pacienta.

Pirms jebkādu tīrīšanas vai apkopes darbu veikšanas pārbaudiet, vai ForeSight oksimetra kabelis, kabeļu savienojumi, ForeSight sensori un citi piederumi nav bojāti. Pārbaudiet, vai kabeļiem nav saliektu vai bojātu sazarojumu un vai kabeļi nav saplaisājuši vai sadriskāti. Ja konstatējat bojājumus, kabeli nedrīkst izmantot, kamēr tas nav pārbaudīts un salabots vai nomainīts. Sazinieties ar Edwards tehniskā atbalsta dienestu.

Šīs procedūras neievērošanas gadījumā pastāv smagu traumu vai nāves risks.

F.3.5 Sirds kontrolsensora un spiediena kontrollera tīrīšana

Sirds kontrolsensoru (HRS) un spiediena kontrolleru drīkst tīrīt ar šādiem dezinfekcijas līdzekļiem:

- 70% izopropilspirta šķīdumu
- 10% nātrija hipohlorīta ūdens šķīdumu
- 1. Samitriniet tīru drānu ar dezinfekcijas līdzekli un noslaukiet virsmas.
- 2. Nosusiniet virsmu ar tīru, sausu drānu.

UZMANĪBU

Nedezinficējiet sirds kontrolsensoru vai spiediena sensoru autoklāvā vai ar gāzes sterilizācijas metodi.

Spiediena kontrolleru, sirds kontrolsensoru un jebkādus kabeļu savienojumus nedrīkst iemērkt šķidrumā.

Pēc katras lietošanas reizes notīriet un uzglabājiet sirds kontrolsensoru.

F.3.5.1 Spiediena kontrollera noņemšana no joslas

F-1. attēls. Spiediena kontrollera noņemšana no joslas

Lai noņemtu spiediena kontrolleru no spiediena kontrollera joslas, pavelciet apvalku nedaudz uz āru (skatiet 1. darbību šeit: F-1. att. 414. lpp.) un sasveriet spiediena kontrolleru, lai to izņemtu no apvalka (skatiet 2. darbību šeit: F-1. att. 414. lpp.). Spiediena kontrollera josla ir paredzēta ierobežotai atkārtotai lietošanai. Operators novērtēs, vai atkārtota lietošana ir atbilstoša. Lietojot atkārtoti, ievērojiet platformas tīrīšanas norādījumus, kas pieejami šeit: Monitora un kabeļu tīrīšana 410. lpp. Nomainiet, ja bojāts.

F.4 Apkope un atbalsts

Informāciju par diagnostiku un labošanas iespējām skat.: Problēmu novēršana 338. lpp. Ja ar tajā sniegto informāciju problēmu nevar novērst, sazinieties ar Edwards Lifesciences.

Edwards nodrošina HemoSphere Alta uzlabotās monitoringa platformas ekspluatācijas atbalstu:

- ASV un Kanādā zvaniet uz 1.800.822.9837.
- Ārpus ASV un Kanādas sazinieties ar vietējo Edwards Lifesciences pārstāvi.
- Sūtiet e-pasta ziņojumu ar ekspluatācijas atbalsta jautājumiem uz adresi tech_support@edwards.com.

Pirms zvana sagatavojiet šādu informāciju:

- HemoSphere Alta uzlabotās monitoringa platformas sērijas numurs, kas atrodas uz aizmugurējā paneļa;
- visu kļūdas ziņojumu teksts un detalizēta informācija par problēmu.

F.5 Edwards Lifesciences reģionālais birojs

ASV:	Edwards Lifesciences LLC One Edwards Way Irvine, CA 92614 ASV 949.250.2500 800.424.3278 www.edwards.com	Ķīna:	Edwards (Shanghai) Medical Products Co., Ltd. Unit 2602-2608, 2 Grand Gateway, 3 Hong Qiao Road, Xu Hui District Shanghai, 200030 Ķīna Tālrunis 86.21.5389.1888
Šveice:	Edwards Lifesciences S.A. Route de l'Etraz 70 1260 Nyon, Šveice Tālrunis 41.22.787.4300	Indija:	Edwards Lifesciences (India) Pvt. Ltd Techniplex II, 7th floor, Unit no 1 & 2, off. S.V.Road Goregaon west-Mumbai 400062 Indija Tālrunis +91.022.66935701 04
Japāna:	Edwards Lifesciences LLC Shinjuku Front Tower 2-21-1, Kita-Shinjuku, Shinjuku-ku Tokyo 169-0074 Japan Tālrunis 81.3.6895.0301	Austrālija:	Edwards Lifesciences Pty Ltd Unit 2 40 Talavera Road North Ryde NSW 2113 PO Box 137, North Ryde BC NSW 1670 Austrālija Tālrunis +61(2)8899 6300
Brazīlija:	Edwards Lifesciences Avenida das Nações Unidas, 14.401 – Parque da Cidade Torre Sucupira – 17º. Andar – cj. 171 Chácara Santo Antonio – São Paulo/SP		

Tālrunis 55.11.5567.5200

CEP: 04794-000 Brazīlija

F.6 Monitora iznīcināšana

Lai nepieļautu personāla, vides vai citu iekārtu inficēšanu, pirms iznīcināšanas pārliecinieties, ka HemoSphere Alta uzlabotā monitoringa platforma un/vai kabeļi ir pienācīgi dezinficēti un dekontaminēti saskaņā ar jūsu valsts tiesību aktiem par elektriskās un elektroniskās daļas saturošām iekārtām.

Iznīcinot vienreizējas lietošanas daļas un piederumus, ievērojiet vietējos noteikumus par slimnīcas atkritumu utilizāciju, ja nav norādīts citādi.

F.6.1 Akumulatoru utilizācija

Nomainiet HemoSphere akumulatora iepakojumu tad, kad tā vairs nevar saglabāt uzlādi. Pēc izņemšanas rīkojieties saskaņā ar vietējiem atkritumu pārstrādes noteikumiem.

UZMANĪBU

Pārstrādājiet vai iznīciniet litija jonu akumulatorus atbilstoši valsts, reģionālajiem un vietējiem noteikumiem.

F.7 Profilaktiskā apkope

Periodiski no ārpuses pārbaudiet HemoSphere Alta uzlabotā monitora vispārējo fizisko stāvokli. Pārliecinieties, vai korpusam nav plaisu, lūzumu vai saliektu daļu un neviena detaļa nav nozaudēta. Pārliecinieties, vai nav izlietu šķīdumu vai nevērīgas apiešanās pazīmju.

Regulāri pārbaudiet, vai vadiem un kabeļiem nav nodiluma un plaisu, un pārliecinieties, vai nav atsegtu vadītāju. Gādājiet arī, lai korpusa durtiņas oksimetrijas kabeļa katetra savienojuma vietā kustētos brīvi un pienācīgi fiksētos. Atvienojot platformas kabeļus no HemoSphere Alta uzlabotās monitoringa platformas, tos nedrīkst raut.

HemoSphere Alta pārraudzības platforma (HemoSphere Alta viedās atkopšanas monitors [ALTASR1], HemoSphere Alta universālais monitors [ALTAALL1] un HemoSphere Alta sirdsdarbības monitors [ALTACR1]) jāsūta uz Edwards servisa centru ik pēc diviem gadiem, lai veiktu profilaktisku apkopi.

F.7.1 Akumulatora apkope

Lai pārbaudītu akumulatora darbspēju, pārskatiet akumulatora informāciju, pieskaroties iestatījumu ikonai

→ pogai Sistēmas statuss. Sadaļā Akumulatora informācija rādītājam Pilna uzlādes kapacitāte (mAh) jābūt 60% no rādītāja Konstrukcijas uzlādes kapacitāte (mAh) jeb apmēram 4140 mAh. Lai saņemtu informāciju par akumulatora pasūtīšanu, sazinieties ar vietējo Edwards pārstāvi. Lai piekļūtu akumulatoram, izskrūvējiet 2 fiksācijas skrūves (skat. 3-3. att. 76. lpp.). Lai atvieglotu izskrūvēšanu, tās laikā turiet akumulatora nodalījuma durtiņas aizvērtas. Akumulatora nodalījuma durtiņas jātur aizvērtas arī tad, kad uzstādāt tās atpakaļ un pievelkat skrūves.

BRĪDINĀJUMS

Sprādzienbīstamība! Neatveriet akumulatoru, nesadedziniet to, neuzglabājiet augstā temperatūrā un neradiet īsslēgumu. Tas var uzliesmot, eksplodēt, iztecēt vai sakarst, izraisot nopietnas traumas vai nāvi.

F.7.1.1 Akumulatora glabāšana

Akumulatora iepakojumu var atstāt ievietotu HemoSphere Alta uzlabotajā monitoringa platformā. Glabāšanas vides specifikācijas skatiet šeit: HemoSphere Alta uzlabotās monitoringa platformas parametri un specifikācijas 382. lpp.

Piezīme

Ilgstoši uzglabājot akumulatoru augstā temperatūrā, var samazināties tā darbības laiks.

F.7.2 HRS profilaktiskā apkope

Sirds kontrolsensora (HRS) pirksta komponents var tikt bojāts, ja tas tiek pakļauts mērenam vai spēcīgam triecienam pret virsmu. Lai arī bojājuma iespējamība ir maza, iegūtās parādītās vērtības var ietekmēt augstuma atšķirība no sirds līdz pirksta manšetei. Kaut arī šo bojājumu nevar pamanīt, aplūkojot sirds kontrolsensoru, pirms katras lietošanas ir iespējams pārliecināties, vai bojājums ir radies, veicot tālāk norādīto procedūru.

- 1. Pievienojiet sirds kontrolsensoru pie spiediena kontrollera, kas pievienots HemoSphere Alta uzlabotajai monitoringa platformai, un atveriet ekrānu lestatīšana uz nulli.
- 2. Novietojiet sirds kontrolsensora abus galus vienā līmenī, kā norādīts sadaļā Sirds kontrolsensora izmantošana 190. lpp..
- 3. levērojiet vērtību, kas norādīta ekrānā lestatīšana uz nulli.
- 4. Paceliet sirds kontrolsensora vienu galu 15 cm (6 collas) virs otra gala.
- 5. levērojiet parādīto vērtību, kas mainījusies vismaz par 5 mmHg.
- 6. Apgrieziet galus tā, lai otrs gals tagad būtu 15 cm (6 collas) virs pirmā gala.
- 7. levērojiet parādīto vērtību, kas mainījusies pretējā virzienā vismaz par 5 mmHg no sākotnējās vērtības.

Ja vērtība nemainās, kā aprakstīts, tad sirds kontrolsensors, iespējams, ir bojāts. Sazinieties ar vietējo tehniskā atbalsta dienesta biroju, kā norādīts uz iekšējā vāka vai sadaļā Apkope un atbalsts 414. lpp. Jānodrošina rezerves vienība. Ja vērtība mainās, sirds kontrolsensors darbojas kā parasti un to var izmantot hemodinamiskā stāvokļa pārraudzībā.

F.8 Trauksmes signālu pārbaude

Katru reizi, kad HemoSphere Alta uzlabotā monitoringa platforma tiek ieslēgta, automātiski tiek izpildīta pašpārbaude. Daļa no pašpārbaudes ir trauksmes skaņas signāla atskaņošana. Tas norāda, ka skaņas trauksmes signālu indikatori funkcionē pareizi. Tālāk pārbaudot atsevišķu mērījumu trauksmes, periodiski pielāgojiet trauksmes ierobežojumus un pārbaudiet, vai trauksmes signāls atskan pienācīgi.

F.9 Garantija

Edwards Lifesciences (Edwards) garantē, ka HemoSphere Alta uzlabotā monitoringa platforma atbilst marķējumā aprakstītajiem lietošanas nolūkiem un indikācijām vienu (1) gadu no iegādes datuma, ja to lieto saskaņā ar lietošanas norādījumiem. Šī garantija tiek anulēta un nav spēkā, ja aprīkojums netiek izmantots saskaņā ar šiem norādījumiem. Nav piemērojama nekāda cita veida tieša vai izrietoša garantija, tostarp jebkāda pieprasījuma vai piemērotības garantija noteiktam mērķim. Šī garantija neattiecas uz kabeļiem, zondēm vai oksimetrijas kabeļiem, kas tiek lietoti kopā ar HemoSphere Alta uzlaboto monitoringa platformu. Edwards vienīgais pienākums un pircēja ekskluzīvas tiesiskās aizsardzības līdzeklis jebkādu garantijas noteikumu pārkāpšanas gadījumā attiecas tikai uz HemoSphere Alta uzlabotās monitoringa platformas remontu vai nomaiņu pēc uzņēmuma Edwards ieskatiem.

Uzņēmums Edwards neuzņemas atbildību par tiešiem, nejaušiem vai izrietošiem zaudējumiem. Saskaņā ar šo garantiju uzņēmumam Edwards nav pienākuma remontēt vai nomainīt bojātu HemoSphere Alta uzlaboto monitoringa platformu, ja šie bojājumi vai darbības traucējumi ir radušies, lietotājam izmantojot cita izgatavotāja katetrus, nevis Edwards izstrādājumus.

Pielikums **G**

Norādījumi un ražotāja deklarācija

Saturs

Elektromagnētiskā saderība	418
Lietošanas instrukcija	418
Informācija par bezvadu tehnoloģiju	423

G.1 Elektromagnētiskā saderība

Atsauce: IEC/EN 60601-1-2 izdevums 4.1 2020-09 un IEC 80601-2-49 2018

HemoSphere Alta uzlabotā monitoringa platforma ir paredzēta lietošanai šajā pielikumā norādītā elektromagnētiskajā vidē. Klientam vai HemoSphere Alta uzlabotās monitoringa platformas lietotājam ir jānodrošina, ka šī ierīce tiek izmantota šādā vidē. Ja tie ir pievienoti HemoSphere Alta uzlabotajai monitoringa platformai, visi piederumu kabeļi, kas ir norādīti šeit: B-1. tabula 393. lpp., atbilst iepriekš norādītajiem EMS standartiem.

G.2 Lietošanas instrukcija

Uz medicīnas elektroiekārtām attiecas īpaši piesardzības pasākumi attiecībā uz EMS, un tās ir jāuzstāda un jānodod ekspluatācijā saskaņā ar EMS informāciju, kas sniegta sadaļās un tabulās tālāk.

BRĪDINĀJUMS

Izmantojot piederumus, devējus un kabeļus, ko nav norādījis vai nodrošinājis šī aprīkojuma ražotājs, var tikt paaugstinātas šī aprīkojuma elektromagnētiskās emisijas vai samazināts tā elektromagnētiskais noturīgums, tādējādi izraisot nepareizu darbību.

HemoSphere Alta uzlaboto monitoringa platformu nedrīkst modificēt.

Tāds portatīvais un mobilais RF saziņas aprīkojums un citi elektromagnētisko traucējumu avoti kā diatermija, litotripsija, RFID, elektromagnētiskās pretzādzības sistēmas un metāla detektori var potenciāli ietekmēt visu elektronisko medicīnas aprīkojumu, tostarp HemoSphere uzlaboto monitoru.

Norādījumi par atbilstoša attāluma nodrošināšanu starp sakaru ierīcēm un HemoSphere uzlaboto monitoru ir sniegti šeit: G-3. tabula 420. lpp.. Citu RF raidītāju iedarbība nav zināma, un tie var ietekmēt HemoSphere pārraudzības platformas darbību un drošību.

UZMANĪBU

Instruments ir testēts un atbilst standartā IEC 60601-1-2 minētajām robežvērtībām. Šīs parametru robežas paredzētas stabilas aizsardzības nodrošināšanai pret kaitīgu iedarbību tipiskas medicīniskas instalācijas apstākļos. Šī iekārta ģenerē, izmanto un var izstarot radiofrekvenču enerģiju, kā arī var izraisīt kaitīgus traucējumus citu tuvumā esošu ierīču darbībā, ja tā nav uzstādīta un netiek lietota atbilstoši instrukcijām. Tomēr netiek garantēts, ka noteiktos apstākļos traucējumi nevar rasties. Ja šī iekārta izraisa kaitīgus traucējumus citu ierīču darbībā, ko var noteikt, izslēdzot un ieslēdzot iekārtu, ieteicams novērst traucējumus, veicot vienu vai vairākus no šiem pasākumiem:

pagrieziet uztvērējierīci citā virzienā vai pārvietojiet to;

- palieliniet attālumu starp ierīcēm;
- lūdziet palīdzību ražotājam.

Piezīme

Šīs iekārtas EMISIJU parametri padara to piemērotu izmantošanai rūpniecības zonās un slimnīcās (CISPR 11, A klase). Ja tā tiek izmantota dzīvojamā vidē (kam parasti ir nepieciešama CISPR 11, B klase), iekārta var nenodrošināt atbilstošu aizsardzību radiofrekvenču sakaru pakalpojumiem. Lietotājam, iespējams, būs jāveic tādi riska mazināšanas pasākumi kā iekārtas pārvietošana vai novietojuma maiņa.

G-1. tabula. Elektromagnētiskās emisi	jas
---------------------------------------	-----

Norādījumi un	ražetāja	doklarācija	alaktroma	anātickāc	omicijac
Noracijumi un	razulaja	Geklaracila	— elektroma	aneuskas	emisiias

HemoSphere Alta uzlabotā monitoringa platforma ir paredzēta lietošanai elektromagnētiskajā vidē, kas norādīta tālāk. Klientam vai HemoSphere Alta uzlabotās monitoringa platformas lietotājam ir jānodrošina, ka šī ierīce tiek izmantota norādītajā vidē.

Emisijas	Atbilstība	Apraksts			
RF emisijas CISPR 11	1. grupa	HemoSphere Alta uzlabotā monitoringa platforma izmanto RF enerģiju tikai iekšējo funkciju veikšanai. Tādēļ tā RF emisiju līmenis ir ļoti zems un parasti nerada nekādus traucējumus tuvumā esošo elektronisko ierīču darbībā.			
RF emisijas CISPR 11	A klase	HemoSphere Alta uzlabotā monitoringa platforma ir piemērota lietoša- nai visās vidēs, izņemot mājsaimniecības un iestādes, kas pievienotas			
Harmoniskās emisijas IEC 61000-3-2	A klase	mērķiem paredzētas ēkas.			
Sprieguma svārstību/mirgošanas emisijas IEC 61000-3-3	Atbilst				

G-2. tabula. Norādījumi un ražotāja deklarācija — noturīgums pret RF bezvadu sakaru aprīkojuma iespaidu

Pārbaužu bie- žums	Josla ¹	Apkope ¹	Modulācija ²	Maksimālā jauda	Attālums	Noturīguma pārbaudes līmenis
MHz	MHz			w	Metri	(V/m)
HemoSphere Alt Klientam vai He	a uzlabotā monito moSphere Alta uz	oringa platforma Iabotās monitorii	ir paredzēta lietošanai elek nga platformas lietotājam i norādītajā vidē.	tromagnētiska rjānodrošina,	ajā vidē, kas no lai šī ierīce tik	orādīta tālāk. tu izmantota
385	380–390	TETRA 400	Impulsu modulācija ² 18 Hz	1,8	0,3	27
450	430–470	GMRS 460, FRS 460	FM ³ ±5 kHz novirze 1 kHz sinu- soidāli	2	0,3	28
710 745 780	704–787	LTE 13. josla, 17	Impulsu modulācija ² 217 Hz	0,2	0,3	9

Pārbaužu bie- žums	Josla ¹	Apkope ¹	Modulācija ²	Maksimālā jauda	Attālums	Noturīguma pārbaudes līmenis
MHz	MHz			W	Metri	(V/m)
HemoSphere Alt Klientam vai He	HemoSphere Alta uzlabotā monitoringa platforma ir paredzēta lietošanai elektromagnētiskajā vidē, kas norādīta tālāk. Klientam vai HemoSphere Alta uzlabotās monitoringa platformas lietotājam ir jānodrošina, lai šī ierīce tiktu izmantota norādītajā vidē.					
810	800–960	GSM 800/900,	Impulsu modulācija ²	2	0,3	28
870		TETRA 800,	18 Hz			
930		iDEN 820,				
		CDMA 850,				
		LTE 5. josla				
1720	1700–1900	GSM 1800;	Impulsu modulācija ²	2	0,3	28
1845		CDMA 1900;	217 Hz			
1970		GSM 1900;				
		DECT;				
		LTE 1., 3.,				
		4, 25;				
		UMTS				
2450	2400–2570	Bluetooth,	Impulsu modulācija ²	2	0,3	28
		WLAN,	217 Hz			
		802.11 b/g/n,				
		RFID 2450,				
		LTE 7. josla				
5240	5100-5800	WLAN	Impulsu modulācija ²	0,2	0,3	9
5500		802.11a/n	217 Hz			
5785						

Piezīme. Ja nepieciešams sasniegt NOTURĪGUMA PĀRBAUDES LĪMENI, attālums starp raidošo antenu un ME APRĪKOJUMU vai ME SISTĒMU var tikt samazināts līdz 1 m. 1 m pārbaudes attālumu pieļauj standarts IEC 61000-4-3.

¹ Dažos pakalpojumos tiek iekļautas tikai augšupsaites frekvences.

²Datu nesējs jāmodulē, izmantojot 50% darba cikla kvadrāta formas līknes signālu.

³ Kā alternatīvu FM modulācijai var izmantot 50% impulsu modulāciju ar 18 Hz, jo, lai gan netiek pārstāvēta faktiskā modulācija, tas būs sliktākais variants.

G-3. tabula. leteicamie atstatumi starp portatīvajām un mobilajām RF sakaru iekārtām un HemoSphere Alta uzlaboto monitoringa platformu

HemoSphere Alta uzlabotā monitoringa platforma ir paredzēta lietošanai elektromagnētiskā vidē, kurā izstarotie RF traucējumi tiek kontrolēti. Lai novērstu elektromagnētiskos traucējumus, ievērojiet minimālo attālumu starp portatīvajām un mobilajām RF sakaru iekārtām (raidītājiem) un HemoSphere Alta uzlaboto monitoringa platformu saskaņā ar tālāk minētajiem norādījumiem atbilstoši maksimālajai sakaru iekārtu izejas jaudai.

Raidītāja frekvence	No 150 kHz līdz 80 MHz	No 80 līdz 800 MHz	No 800 līdz 2500 MHz	No 2,5 līdz 5,0 GHz
Vienādojums	d = 1,2 √P	d = 1,2 √P	d = 2,3 √P	d = 2,3 √P
Nominālā maksimālā raidītāja izejas jauda (vati)	Atstatums (metri)	Atstatums (metri)	Atstatums (metri)	Atstatums (metri)
0,01	0,12	0,12	0,24	0,24

HemoSphere Alta uzlabotā monitoringa platforma ir paredzēta lietošanai elektromagnētiskā vidē, kurā izstarotie RF traucējumi tiek kontrolēti. Lai novērstu elektromagnētiskos traucējumus, ievērojiet minimālo attālumu starp portatīvajām un mobilajām RF sakaru iekārtām (raidītājiem) un HemoSphere Alta uzlaboto monitoringa platformu saskaņā ar tālāk minētajiem norādījumiem atbilstoši maksimālajai sakaru iekārtu izejas jaudai.

0,1	0,37	0,37	0,74	0,74
1	1,2	1,2	2,3	2,3
10	3,7	3,8	7,4	7,4
100	12	12	23	23

Raidītājiem, kuru nominālā maksimālā izejas jauda tabulā nav norādīta, ieteicamo atstatumu d var aprēķināt, izmantojot vienādojumu atbilstošajā kolonnā, kur P ir raidītāja maksimālā izejas jauda vatos atbilstoši raidītāja ražotāja informācijai.

1. piezīme. Uz 80 MHz un 800 MHz attiecas atstatums, kas paredzēts augstākām frekvencēm.

2. piezīme. Šīs norādes var neattiekties uz visām situācijām. Elektromagnētisko izplatību ietekmē struktūru, objektu un cilvēku absorbcijas un atstarošanas spēja.

G-4. tabula. Vairāku bezvadu savienojumu līdzāspastāvēšana, apstarotās bezatbalss kameras (RAC) rezultāti — normālas darbības režīms (2,4, 5 un 6 GHz WiFi) HemoSphere Alta uzlabotajam monitoram (EUT) ar neparedzēta signāla klātbūtni

Pārbaužu biežums	Neparedzēts signāls Tx līdz neparedzētam signāla Rx attālumam	HemoSphere Alta monitors (EUT) līdz maršrutētāja (atbal- sta) attālumam	EUT KPI	PER % (neparedzēts signāls Tx līdz nepa- redzētam signālam Rx)
2,4 GHz ¹	10 m	10 m	HemoSphere Alta mo- nitora (EUR) savieno- jums ar palīgierīci (at- balstu) ir saglabāts. Nav konstatēta datu neprecīza pārraide/uz- tveršana.	0,22%
	1 cm*	10 m		0,24%
5 GHz ²	10 m	10 m		0,08%
	1 cm*	10 m		0,16%
6 GHz ³	10 m	10 m		0,14%
	1 cm*	10 m		0,18%

¹HemoSphere Alta monitora (EUT) uztvertā signāla stiprums (RSS) pie uztvērēja: –39,90 dBm.

²HemoSphere Alta monitora (EUT) uztvertā signāla stiprums (RSS) pie uztvērēja: –38,89 dBm.

³HemoSphere Alta monitora (EUT) uztvertā signāla stiprums (RSS) pie uztvērēja: –55,85 dBm.

^{*}1 cm starp EUT un neparedzētā signāla Tx avotu (Rohde and Schwarz CMW 270) un neparedzētā signāla Rx avotu (planšetdators).

G-5. tabula. Vairāku bezvadu savienojumu līdzāspastāvēšana, apstarotās bezatbalss kameras (RAC) rezultāti — normālas darbības režīms (2,4, 5 un 6 GHz Wi-Fi) palīgierīcei (maršrutētājam) ar neparedzēta signāla klātbūtni

Pārbaužu biežums	Neparedzēts signāls Tx līdz neparedzētam signāla Rx attālumam	HemoSphere Alta monitors (EUT) līdz maršrutētāja (atbal- sta) attālumam	EUT KPI	PER % (neparedzēts signāls Tx līdz nepa- redzētam signālam Rx)
2,4 GHz ¹	10 m	10 m	HemoSphere Alta mo- nitora (EUR) savieno- jums ar palīgierīci (at- balstu) ir saglabāts. Nav konstatēta datu neprecīza pārraide/uz- tveršana	0,50%
	1 cm*	10 m		0,74%
5 GHz ²	10 m	10 m		0,24%
	1 cm*	10 m		0,54%
6 GHz ³	10 m	10 m		0,18%
	1 cm*	10 m		0,88%

Pārbaužu biežums	Neparedzēts signāls Tx līdz neparedzētam signāla Rx attālumam	HemoSphere Alta monitors (EUT) līdz maršrutētāja (atbal- sta) attālumam	EUT KPI	PER % (neparedzēts signāls Tx līdz nepa- redzētam signālam Rx)	
¹ HemoSphere Alta monitora (EUT) uztvertā signāla stiprums (RSS) pie uztvērēja: –40,84 dBm.					
² HemoSphere Alta monitora (EUT) uztvertā signāla stiprums (RSS) pie uztvērēja: –30,02 dBm.					
³ HemoSphere Alta monitora (EUT) uztvertā signāla stiprums (RSS) pie uztvērēja: —41,58 dBm.					
*1 cm starn naliaiarisi un	non gradzātā cienāla Tv gu	atu (Dabda and Schwarz (sian Ela Du avatu	

^{*}1 cm starp palīgierīci un neparedzētā signāla Tx avotu (Rohde and Schwarz CMW 270) un neparedzētā signāla Rx avotu (planšetdators).

G-6. tabula. Elektromagnētiskais noturīgums (ESD, EFT, pārspriegums, kritumi un magnētiskais lauks)

Noturīguma pārbaude	IEC 60601-1-2 pārbaudes līme- nis	Atbilstības līmenis	Elektromagnētiskā vide — no- rādes	
HemoSphere Alta uzlabotā monitoringa platforma ir paredzēta lietošanai elektromagnētiskajā vidē, kas norādīta tālāk. Klientam vai HemoSphere Alta uzlabotās monitoringa platformas lietotājam ir jānodrošina, ka šī ierīce tiek izmantota norādītajā vidē.				
Elektrostatiskā izlāde (ESD) IEC 61000-4-2	±8 kV kontakts	±8 kV	Grīdām jābūt izgatavotām no	
	±15 kV gaiss	±15 kV	koka, betona vai keramikas fli- zēm. Ja grīdas ir klātas ar sintē- tisku materiālu, relatīvā mitruma līmenim jābūt vismaz 30%.	
Straujš elektriskais izsta-	±2 kV barošanas avota līnijām	±2 kV barošanas avota līnijām	Elektroapgādes tīkla kvalitātei	
rojums/pieaugums IEC 61000-4-4	±1 kV ieejas/izejas līnijām > 3 metri	±1 kV ieejas/izejas līnijām > 3 metri	un/vai slimnīcas videi.	
Pārspriegums IEC 61000-4-5	±1 kV no līnijas(-ām) uz līni- ju(-ām)	±1 kV no līnijas(-ām) uz līni- ju(-ām)		
	±2 kV no līnijas(-ām) uz zemi	±2 kV no līnijas(-ām) uz zemi		
Sprieguma kritumi, īsi pārtraukumi un sprie- guma variācijas baroša- nas avota maiņstrāvas ievades līnijās IEC 61000-4-11	0% U _T (100% kritums U _T) 0,5 ci- klos (0°, 45°, 90°, 135°, 180°, 225°, 270° un 315°)	0% U _T	Elektroapgādes tīkla kvalitātei jāatbilst tipiskai komerciālajai vai slimnīcas videi. Ja HemoSphere	
	0% U _T (100% kritums U _T) 1 ci- klam (viena fāze 0° temperatūrā)	0% U _T	Alta uzlabotas monitoringa plat- formas lietotājam ir nepiecieša- ma nepārtraukta darbība elek-	
	70% U _T (30% kritums U _T) 25/30 cikliem (viena fāze 0° tem- peratūrā)	70% U _T	tropadeves traucējumu laikā, ie- teicams nodrošināt HemoSphere Alta uzlaboto monitoringa plat-	
	Pārtraukums: 0% U _T (100% kri- tums U _T) 250/300 cikliem	0% U _T	nas avotu vai akumulatoru.	
Tīkla frekvence (50/60 Hz) magnētiskais lauks IEC 61000-4-8	30 A (rms)/m	30 A/m	Jaudas frekvences magnētiskā lauka līmenim jābūt tādam, kas atbilst tipiskai atrašanās vietai ti- piskā komerciālā vai slimnīcas vi- dē.	
Tuvuma magnētiskais lauks	134,2 kHz ar modulāciju 2,1 kHz un 65 A/m	65 A/m	Tuvuma magnētiskā lauka līme- nim jābūt tādam, kas atbilst ti-	
IEC 61000-4-39	13,56 MHz ar modulāciju 50 kHz un 7,5 A/m	7,5 A/m	piskai atrašanās vietai tipiskā ko- merciālā vai slimnīcas vidē.	
Piezīme. U _T ir maiņstrāvas	tīkla spriegums pirms pārbaudes līm	neņa lietošanas.		

Noturīguma pārbau- de	IEC 60601-1-2 pārbaudes lī- menis	Atbilstības līmenis	Elektromagnētiskā vide — norādes		
HemoSphere Alta uzl Klientam vai HemoS	HemoSphere Alta uzlabotā monitoringa platforma ir paredzēta lietošanai elektromagnētiskajā vidē, kas norādīta tālāk. Klientam vai HemoSphere Alta uzlabotās monitoringa platformas lietotājam ir jānodrošina, ka šī ierīce tiek izmantota norādītajā vidē.				
			Portatīvās un mobilās RF sakaru iekārtas ne- drīkst lietot nevienas HemoSphere Alta uzlabo- tās monitoringa platformas daļas, tostarp kabe- ļu, tuvumā, ja šis attālums ir mazāks par aprēķi- nāto atstatumu, izmantojot raidītāju frekvencei piemērojamo vienādojumu.		
Vadītā BE	3 Vrms	3 Vrms	leteicamais atstatums		
IEC 61000-4-6	150 kHz līdz80 MHz	5 11115	d = [1,2] x √P ; no 150 kHz līdz 80 MHz		
			d = [1,2] x √P ; no 80 MHz līdz 800 MHz		
Vadītā RF	6 Vrms (ISM josla) no	6 Vrms	d = [2,3] x √P ; no 800 MHz līdz 2500 MHz		
IEC 61000-4-6	150 kHz līdz80 MHz		Kur P ir raidītāja maksimālā izejas jauda vati (W) atbilstoši raidītāja ražotāja informācijai, un d ir ieteicamais atstatums metri (m).		
Izstarotā RF IEC 61000-4-3	3 V/m No 80 līdz 2700 MHz	3 V/m	Fiksētu RF raidītāju lauka stiprums, kas noteikts vietas elektromagnētiskajā pārbaudē, ^a nedrīkst pārsniegt katra frekvences diapazona atbilstī- bas līmeni. ^b		
			Traucējumi var rasties ar šo simbolu marķētu iekārtu tuvumā:		
			(((•))		

G-7. tabula. Elektromagnētiskais noturīgums (izstarotās un vadītās RF)

^aFiksētu raidītāju, piemēram, radiotelefonu (mobilo/bezvadu) un sauszemes mobilo radiosakaru, amatieru radio, AM un FM radio apraides un TV apraides bāzes staciju, lauka stiprumu teorētiski nevar precīzi prognozēt. Lai novērtētu elektromagnētisko vidi saistībā ar stacionāriem RF raidītājiem, jāveic vietas elektromagnētiskā apsekošana. Ja vietā, kur tiek lietota HemoSphere Alta uzlabotā monitoringa platforma, izmērītais lauka stiprums pārsniedz iepriekš minēto piemērojamo RF atbilstības līmeni, HemoSphere Alta uzlabotā monitoringa platforma ir jānovēro, lai pārliecinātos, ka tās darbība ir normāla. Ja konstatējat novirzes no normas, var būt nepieciešami papildu pasākumi, piemēram, HemoSphere Alta uzlabotās monitoringa platformas pagriešana citā virzienā vai pārvietošana.

^bFrekvenču diapazonā no 150 kHz līdz 80 MHz lauka stiprumam ir jābūt mazākam nekā 3 V/m.

1. piezīme. Uz 80 MHz un 800 MHz attiecas atstatums, kas paredzēts augstākām frekvencēm.

2. piezīme. Šīs norādes var neattiekties uz visām situācijām. Elektromagnētisko izplatību ietekmē struktūru, objektu un cilvēku absorbcijas un atstarošanas spēja.

G.3 Informācija par bezvadu tehnoloģiju

HemoSphere Alta monitors ir aprīkots ar bezvadu sakaru tehnoloģiju, kas nodrošina uzņēmumiem piemērotu Wi-Fi 6E savienojamību. HemoSphere Alta monitora bezvadu sakaru tehnoloģija ir saderīga ar IEEE 802.11a/b/d/e/g/h/i/k/n/r/u/v/w/ac/ax ar pilnībā iebūvētu drošības lokālā tīkla pieprasītājportu, kas nodrošina 802.11i/WPA2 uzņēmumu autentifikāciju, un datu šifrēšanu. Tā atbalsta dubultās straumes Wi-Fi 2,4 GHz, 5 GHz un 6 GHz joslās, kā arī Bluetooth 5.2.

HemoSphere Alta monitorā iebūvētās bezvadu tehnoloģijas tehniskie dati ir ietverti nākamajā tabulā.

Funkcija	Apraksts		
Wi-Fi SERTIFICĒTS*	Wi-Fi 6E (802.11ax) Wi-Fi 4,5,6 (mantots)		
IEEE WLAN standarti	IEEE 802.11a, b, d, e, g, h, i, k, n, r, u, v, w, ax		
Modulācijas veids	DSSS, OFDM/OFDMA, GFSK, pi/4-DQPSK, 8-DPS	К	
Atbalstītie radio	802.11b/g/n/ax	2,4 GHz (2400,0–2483,5 MHz)	
	802.11a/n/ac/ax	5,2 GHz (5150,0–5350,0 MHz) 5,6 GHz (5470,0–5725,0 MHz) 5,8 GHz (5725,0–5895,0 MHz) 6 GHz (5,925–7,125 GHz)	
Drošības metodes	Individuālais un uzņēmuma līmeņa WPA3, tostarp WPA2 pārejas režīms		
Wi-Fi vides piekļuves protokols	Nesējkontroles daudzpiekļuve ar sadursmju atklāšanu (Carrier sense multiple access with colli- sion avoidance, CSMA/CA)		
Autentifikācijas proto- koli	802.1X EAP-TLS EAP-TTLS/MSCHAPv2 PEAPv9-MSCHAPv2 (EAP-SIM, EAP-AKA)		
Šifrēšana	128 bitu AES-CCMP, 256 bitu AES-GCMP		
Bluetooth darbības de- talizēta informācija	Bluetooth pamata ātrums +EDR Raidīšanas frekvence Uztveršanas frekvence Modulācija Raidīšanas jauda Bluetooth Low Energy (BLE) Raidīšanas frekvence	No 2402 MHz līdz 2480 MHz No 2402 MHz līdz 2480 MHz GFSK, Π/4 DQPSK, 8DPSK 13,2 dBm, e.i.r.p. No 2402 MHz līdz 2480 MHz	
	Uztveršanas frekvence	No 2402 MHz līdz 2480 MHz	
	Modulācija	GFSK	
	Raidīšanas jauda	9,9 dBm, e.i.r.p.	

G-8. tabula. Informācija par HemoSphere Alta monitora bezvadu tehnoloģiju

Funkcija	Apraksts	
Wi-Fi darbības detalizē-	IEEE 802.11b/g/n/ax WLAN	
ta informācija	Raidīšanas frekvence	No 2412 MHz līdz 2472 MHz (20 MHz) No 2422 MHz līdz 2462 MHz (40 MHz)
	Uztveršanas frekvence	No 2412 MHz līdz 2472 MHz (20 MHz) No 2422 MHz līdz 2462 MHz (40 MHz)
	Modulācija	DSSS (DBPSK, DQPSK, CCK), OFDM/OFDMA (BPSK, QPSK, 16QAM, 64QAM, 1024QQAM)
	Raidīšanas jauda	20 dBm, e.i.r.p.
	IEEE 802.11a/n/ac/ax WLAN	
	Raidīšanas frekvence	No 5180 MHz līdz 5320 MHz (20 MHz) No 5190 MHz līdz 5310 MHz (40 MHz) No 5210 MHz līdz 5290 MHz (80 MHz) 5250 MHz (160 MHz)
	Uztveršanas frekvence	No 5180 MHz līdz 5320 MHz (20 MHz) No 5190 MHz līdz 5310 MHz (40 MHz) No 5210 MHz līdz 5290 MHz (80 MHz) 5250 MHz (160 MHz)
	Modulācija	OFDM/OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
	Raidīšanas jauda	22,9 dBm, e.i.r.p.
	IEEE 802.11a/n/ac/ax WLAN	
	Raidīšanas frekvence	No 5500 MHz līdz 5700 MHz (20 MHz) No 5510 MHz līdz 5670 MHz (40 MHz) No 5530 MHz līdz 5610 MHz (80 MHz) 5570 MHz (160 MHz)
	Uztveršanas frekvence	No 5500 MHz līdz 5700 MHz (20 MHz) No 5510 MHz līdz 5670 MHz (40 MHz) No 5530 MHz līdz 5610 MHz (80 MHz) 5570 MHz (160 MHz)
	Modulācija	OFDM/OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
	Raidīšanas jauda	22,9 dBm, e.i.r.p.
	IEEE 802.11a/n/ac/ax WLAN	
	Raidīšanas frekvence	No 5745 MHz līdz 5825 MHz (20 MHz) No 5755 MHz līdz 5795 MHz (40 MHz) 5775 MHz (80 MHz)
	Uztveršanas frekvence	No 5745 MHz līdz 5825 MHz (20 MHz) No 5755 MHz līdz 5795 MHz (40 MHz) 5775 MHz (80 MHz)
	Modulācija	OFDM/OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)

Funkcija	Apraksts	
	Raidīšanas jauda	13,95 dBm, e.i.r.p.
	IEEE 802.11ax WLAN	
	Raidīšanas frekvence	No 5995 MHz līdz 6415 MHz (20 MHz) No 5965 MHz līdz 6405 MHz (40 MHz) No 5985 MHz līdz 6385 MHz (80 MHz) No 6025 MHz līdz 6345 MHz (160 MHz)
	Uztveršanas frekvence	No 5995 MHz līdz 6415 MHz (20 MHz) No 5965 MHz līdz 6405 MHz (40 MHz) No 5985 MHz līdz 6385 MHz (80 MHz) No 6025 MHz līdz 6345 MHz (160 MHz)
	Modulācija	OFDMA (1024QAM)
	Raidīšanas jauda	22,8 dBm, e.i.r.p.
Drošība	Standarti	
	Individuālais un uzņēmuma līmeņa WPA3, to	ostarp WPA2 pārejas režīms
	Šifrēšana	
	128 bitu AES-CCMP, 256 bitu AES-GCMP	
	Autentifikācijas protokoli	
	802.1X EAP-TLS EAP-TTLS/MSCHAPv2 PEAPv0-MSCHAPv2 (EAP-SIM, EAP-AKA, EAP	-ΑΚΑ΄)

Funkcija	Apraksts	
Atbilstība	ETSI Regulatory Domain	
	EN 300 328	EN 60950-1
	EN 300 328 v1.8.1 (BT 2.1)	EN 55022:2006 B klase
	EN 301 489-1	EN 55024:1998 +A1:2001, A2:2003
	EN 301 489-17	EN 61000-3-2:2006
	EN 301 893	EN 61000-3-3:1995 +A1:2001, A2:2005
	EN 301 489-3	ES 2002/95/EK (RoHS)
	FCC Regulatory Domain (Sertifikācijas ID: PD9AX210D2) Industry Canada (Sertifikācijas IC ID: 1000M-AX210D2)	
	1.000-REG27/-9.4E>.27 ↓ EMISUID LIBEPERAL: ACT ↓ BC ↓ ACT ↓ BC ↓ ACT ↓ BC ↓ BC ↓ ACT	
	MIC (Japāna) (Sertifikācijas ID:)	
	RF: 003-200255 Tālr.: D200217003 KC (Koreja) (Sertifikācijas ID: R-C-INT-AX210D2W) NCC (Taivāna) (Sertifikācijas ID: CCAH20Y10090T9) acma (Austrālija) ANATEL (Brazīlija) (Sertifikācijas ID: 04022-21-04423) Kīna (CMIIT ID: 2020AJ15108(M))	
Sertifikācijas	Wi-Fi Alliance	
	802.11a, 802.11b, 802.11g, 802.11n	
	WPA Enterprise	
	WPA2 Enterprise Ar Cisco saderīgi paplašinājumi (4. versija) FIPS 140-2. 1. līmenis	
	Linux 3.8 45. sērijas Wi-Fi modulī ar ARM92 modulis v2.0 (validācijas sertifikāta Nr. 174	26 (ARMv5TEJ) — OpenSSL FIPS Object 17)
Antenas veids	PIFA	

G.3.1 Bezvadu un vadu tehnoloģijas pakalpojuma kvalitāte

Pakalpojuma kvalitāte (Quality of service — QoS) ir norādīta, ņemot vērā kopējo datu zudumu normālam savienojumam, ja HemoSphere Alta monitors darbojas ar mērenu vai lielu signāla stiprību (7-1. tabula 144. lpp.) un tīkla savienojuma kvalitāte ir laba. Ir apstiprināts, ka iepriekš minētajos apstākļos HemoSphere Alta monitora bezvadu pārraides laikā kopējais datu zudums ir mazāks par 5%. HemoSphere Alta monitora bezvadu tehnoloģijas efektīvais diapazons ir 150 pēdas (skata līnija) un 75 pēdas (skats bez līnijas). Efektīvo diapazonu var ietekmēt citas tuvumā esošas bezvadu signālu ierīces.

HemoSphere Alta monitors atbalsta datu pārraidi ar bezvadu vai vada savienojumu. Visi pārraidītie dati ir jāapstiprina sistēmā, kas tos saņem. Ja datu saņemšana nav sekmīga, tie tiek sūtīti no jauna. HemoSphere Alta monitors automātiski mēģina atkārtoti izveidot visus savienojumus, kas tika pārtraukti. Ja nevar noteikt iepriekš esošu savienojumu, HemoSphere Alta monitors brīdina lietotāju, atskaņojot trauksmes signālu un parādot ziņojumu (piemēram: **Trauksme: HemoSphere Remote lietotnes savienojamība — sistēmas kļūda** [skat. 14-8. tabula 346. lpp.]).

UZMANĪBU

Bezvadu tehnoloģijas pakalpojuma kvalitāti (QoS) var ietekmēt tuvumā esošas citas ierīces, kas izraisa radiofrekvenču traucējumus (RFI). Šādas RFI ierīces var būt elektrokauterizācijas aprīkojums, mobilie tālruņi, bezvadu personālie datori un planšetdatori, peidžeri, RFID, magnētiskās rezonanses attēlveidošanas aprīkojums vai citas elektroniskas ierīces. Izmantojot tādu ierīču tuvumā, kas izraisa iespējamus augstfrekvences traucējumus, jāmēģina palielināt attālumu starp ierīcēm un jānovēro, vai pastāv iespējamu traucējumu pazīmes, piemēram, sakaru zudums vai pazemināts Wi-Fi signāla stiprums.

G.3.2 Bezvadu datu pārraides aizsardzības pasākumi

Bezvadu signāli tiek aizsargāti, izmantojot nozares standarta bezvadu drošības protokolus (G-8. tabula 424. lpp.). Bezvadu drošības standarti WEP un WPA nenodrošina pilnīgu aizsardzību pret datu zādzību, tādēļ tos nav ieteicams izmantot. Uzņēmums Edwards bezvadu datu pārraides aizsardzībai iesaka iespējot IEEE 802.11i (WPA2) drošību un FIPS režīmu. Pārsūtot HemoSphere Alta monitora datus uz HIS sistēmu, lai tos aizsargātu, uzņēmums Edwards iesaka izmantot arī tīkla drošības pasākumus, piemēram, virtuālo LAN tīklu un ugunsmūri.

G.3.3 Problēmu novēršana saistībā ar vairāku bezvadu savienojumu līdzāspastāvēšanu

Instruments ir testēts un atbilst standartā IEC 60601-1-2 minētajām robežvērtībām. Ja rodas HemoSphere Alta monitora bezvadu tehnoloģijas sakaru problēmas, pārliecinieties, vai ir nodrošināts minimālais attālums starp portatīvo un mobilo RF sakaru aprīkojumu (raidītājiem) un HemoSphere Alta monitoru. Papildinformāciju par atdalīšanas attālumiem skatiet šeit: G-3. tabula 420. lpp.

G.3.4 Federālās sakaru komisijas (Federal Communication Commission — FCC) paziņojumi par traucējumiem

Piezīme

Lai nodrošinātu atbilstību FCC prasībām saistībā ar RF iedarbību, šī raidītāja antenai jābūt uzstādītai vismaz 20 cm attālumā no visām personām, un to nedrīkst novietot vai darbināt blakus citām antenām vai raidītājiem.

Federālās sakaru komisijas paziņojumi par traucējumiem

Šis aprīkojums ir pārbaudīts un atzīts par atbilstošu A klases digitālai ierīcei noteiktajiem ierobežojumiem saskaņā ar FCC noteikumu 15. daļu. Šie ierobežojumi ir izstrādāti, lai nodrošinātu pienācīgu aizsardzību pret kaitīgiem traucējumiem dzīvojamās telpās. Šis aprīkojums ģenerē, izmanto un var izstarot radiofrekvenču enerģiju, un, ja tas nav uzstādīts un izmantots saskaņā ar šiem noteikumiem, var izraisīt kaitīgus radiosakaru traucējumus. Tomēr netiek garantēts, ka noteiktos apstākļos traucējumi nevar rasties. Ja šis aprīkojums rada kaitīgus radio un televīzijas signālu uztveršanas traucējumus, kurus var konstatēt, izslēdzot un ieslēdzot aprīkojumu, aicinām lietotāju mēģināt novērst traucējumus, veicot vienu tālāk norādītajām darbībām.

- 1. Mainiet uztverošās antenas orientāciju vai pārvietojiet to.
- 2. Palieliniet attālumu starp aprīkojumu un uztvērēju.
- 3. Pievienojiet aprīkojumu kontaktligzdai, kas atrodas citā ķēdē, nevis tajā, kurai pievienots uztvērējs.

4. Lūdziet palīdzību izplatītājam vai pieredzējušam radio/TV tehniķim.

UZMANĪBU

Veicot izmaiņas vai modifikācijas, kuras nav skaidri apstiprinājusi par atbilstību atbildīgā puse, lietotājs var zaudēt tiesības lietot šo aprīkojumu.

Šī ierīce atbilst FCC noteikumu 15. daļai. Uz lietošanu attiecas šādi divi nosacījumi: 1) šī ierīce nevar radīt kaitīgus traucējumus, 2) šai ierīcei jāspēj uzņemt visus saņemtos traucējumus, ieskaitot traucējumus, kas var izraisīt nevēlamu darbību.

Ja tiek izmantots no 5,15 līdz 5,25 GHz frekvences režīms, šo iekārtu paredzēts lietot tikai iekštelpās.

Saskaņā ar FCC prasībām, ja tiek izmantots no 5,15 līdz 5,25 GHz frekvences režīms, lai novērstu iespējamus traucējumus tā paša kanāla mobilo sakaru satelītu sistēmām, šis izstrādājums jālieto iekštelpās.

Šo ierīci nav atļauts lietot 116.–128. kanālā (5580–5640 MHz) attiecībā uz 11na un 120.–128. kanālā (5600–5640 MHz) attiecībā uz 11a, ja tas pārklājas ar 5600–5650 MHz joslu.

Piezīme

FCC paziņojums par pakļaušanu starojumam:

šī iekārta atbilst FCC norādītajiem starojuma ierobežojumiem, kas ir noteikti attiecībā uz neuzraugāmo vidi. Šī iekārta jāuzstāda un jāekspluatē, nodrošinot vismaz 20 cm attālumu starp izstarošanas ierīci un cilvēka ķermeni.

G.3.5 Industry Canada paziņojumi

Brīdinājums par RF starojuma apdraudējumu

Lai nodrošinātu atbilstību FCC un Industry Canada prasībām saistībā ar pakļaušanu RF iedarbībai, šī iekārta jāuzstāda vietā, kur iekārtas antenas atrodas vismaz 20 cm attālumā no visām personām. Nav atļauts izmantot antenas ar lielāku pastiprinājumu vai cita veida antenas, kas nav apstiprinātas lietošanai šim izstrādājumam. Iekārtu nedrīkst novietot blakus citam raidītājam.

Maksimālais antenas pastiprinājums — ja integrators konfigurē iekārtu tā, ka antenas signālu var uztvert no saimniekiekārtas.

Šo radio raidītāju (IC ID: 3147A-WB45NBT) Industry Canada apstiprināja kā saderīgu ar tālāk norādītajiem antenu veidiem, ievērojot maksimālo atļauto pastiprinājumu un nepieciešamo antenas pretestību attiecībā uz katru norādīto antenas veidu. Sarakstā nenorādītie antenu veidi, kam pastiprinājums ir lielāks par maksimālo attiecīgajam veidam norādīto vērtību, ir stingri aizliegts izmantot šai ierīcei.

"Lai novērstu iespējamu kaitīgu starojuma radītu ietekmi citiem lietotājiem, antenas veids un tās pastiprinājums jāizvēlas tā, lai ekvivalentā izotropiski izstarotā jauda (equivalent isotropically radiated power, EIRP) nav lielāka par sekmīgiem sakariem nepieciešamo."

"Šī ierīce ir izstrādāta tā, lai darbotos ar antenu, kuras maksimālais pastiprinājums ir [4] dBi. Saskaņā ar Industry Canada noteikumiem stingri aizliegts izmantot antenu ar lielāku pastiprinājumu. Nepieciešamā antenas pilnā pretestība ir 50 omi."

Ierīce atbilst Industry Canada nelicencējamiem RSS standartiem. Uz lietošanu attiecas šādi divi nosacījumi: 1) ierīce nedrīkst izraisīt traucējumus un 2) ierīcei ir jāuztver visi saņemtie traucējumi, tostarp traucējumi, kas var nevēlami ietekmēt ierīces darbību.

UZMANĪBU

Saskaņā ar Industry Canada prasībām, ja tiek izmantots no 5,15 līdz 5,25 GHz frekvences režīms, lai novērstu iespējamus traucējumus tā paša kanāla mobilo sakaru satelītu sistēmām, šis izstrādājums jālieto iekštelpās.

G.3.6 Eiropas Savienības Radioiekārtu direktīvas paziņojumi

Šī ierīce atbilst Radioiekārtu direktīvas 2014/53/ES pamatprasībām. Lai apliecinātu pieņēmumu par atbilstību Radioiekārtu direktīvas 2014/53/ES pamatprasībām, tika izmantotas šādas testa metodes:

• EN 62368-1:2014/A11:2017

Drošības prasības audio/video, informācijas un tehnoloģiju iekārtām

- EN 300 328 V2.2.2: (2019-07)
 Elektromagnētiskās saderības un radiofrekvenču spektra jautājumi (ERM); platjoslas datu pārraides sistēmas; datu pārraides iekārtas, kas darbojas 2,4 GHz ISM joslā un izmanto izplatības spektra modulācijas metodes; saskaņotie EN standarti ar svarīgām prasībām saskaņā ar RTTI Direktīvas 3.2. punktu.
 EN 62311:2008 | EN 50665:2017 | EN 50385:2017
- EN 62311:2008 | EN 50665:2017 | EN 50385:2017 RF iedarbība
- EN 301 489-1 V2.2.0 (2017-03)
 Elektromagnētiskās saderības un radiofrekvenču spektra jautājumi (ERM); Elektromagnētiskās saderības (EMC) standarts radioiekārtām un pakalpojumiem; 1. daļa: kopējās tehniskās prasības
- EN 301 489-17 V3.2.0 (2017-03)
 Elektromagnētiskās saderības un radiofrekvenču spektra jautājumi (ERM); Elektromagnētiskās saderības (EMC) standarts radioiekārtām un pakalpojumiem; 17. daļa: noteiktas prasības attiecībā uz 2,4 GHz platjoslas datu pārraides sistēmām un 5 GHz lielas veiktspējas RLAN iekārtām
- EN 301 893 V2.1.1 (2017-05)
 Elektromagnētiskās saderības un radiofrekvenču spektra jautājumi (ERM); platjoslu radio piekļuves tīkli (BRAN); noteiktas prasības attiecībā uz 5 GHz lielas veiktspējas RLAN iekārtām
- EU 2015/863 (RoHS 3)
 Atbilstības deklarācija ES Direktīva 2015/863; par dažu bīstamu vielu izmantošanas ierobežošanu (RoHS)

Šī iekārta ir 2,4 GHz platjoslas datu pārraides sistēma (raiduztvērējs), ko ir atļauts izmantot visās ES dalībvalstīs un EBTA valstīs, izņemot Francijā un Itālijā, kur ir spēkā ierobežojumi.

Itālijā lietotājam jāiegūst licence valsts iestādē, lai iegūtu tiesības lietot iekārtu uzstādīšanai ārpus telpām radio savienojumu un/vai publiskas piekļuves telekomunikāciju un/vai tīkla pakalpojumu nodrošināšanai.

Francijā šo iekārtu nevar izmantot radio savienojumu nodrošināšanai ārpus telpām, un daļā apgabalu RF izvades jauda var būt ierobežota līdz 10 mW EIRP ar frekvences diapazonu 2454–2483,5 MHz. Lai iegūtu papildinformāciju, lietotājam ir jāsazinās ar attiecīgo valsts iestādi Francijā.

Ar šo uzņēmums Edwards Lifesciences apliecina, ka šis monitors atbilst Direktīvas 2014/53/ES (RED) pamatprasībām un citiem atbilstošajiem nosacījumiem.

Uzmanību! Saskaņā ar ASV federālajiem tiesību aktiem šo ierīci drīkst pārdot tikai ārstam vai pēc ārsta pasūtījuma. Pilnu informāciju par izrakstīšanu skatiet lietošanas instrukcijā.

Edwards, Edwards Lifesciences un stilizētais E logotips ir korporācijas Edwards Lifesciences preču zīmes. Acumen, Acumen AFM, Acumen HPI, Acumen IQ, AFM, CCOmbo, CCOmbo V, ClearSight, ClearSight Jr, CO-Set, CO-Set+, FloTrac, FloTrac Jr, ForeSight, ForeSight IQ, ForeSight Jr, HemoSphere, HemoSphere Alta, HPI, PediaSat, Physiocal, Swan, Swan-Ganz, Swan-Ganz IQ, Swan-Ganz Jr, Time-In-Target un TruWave ir uzņēmuma Becton, Dickinson and Company preču zīmes. Visas citas preču zīmes pieder to attiecīgajiem īpašniekiem.

© 2024 Becton, Dickinson and Company. Visas tiesības paturētas. A/W daļas Nr. 10062005001/A

Edwards Lifesciences • One Edwards Way, Irvine CA 92614 USA • edwards.com

