Zaawansowany monitor HemoSphere

Podręcznik operatora

Edwards Zaawansowany monitor HemoSphere Instrukcja obsługi

Z uwagi na ciągły proces udoskonalania produktu ceny oraz dane techniczne mogą ulec zmianie bez powiadomienia. Zmiany w treści niniejszej instrukcji, wprowadzone w odpowiedzi na uwagi użytkowników lub w ramach ciągłego procesu udoskonalania produktu, znajdują odzwierciedlenie w kolejnych wydaniach dokumentu. W przypadku zauważenia blędów, pominięć lub nieprawidłowych danych podczas zwykłego korzystania z niniejszej instrukcji użytkownicy proszeni są o kontakt z działem pomocy technicznej lub lokalnym przedstawicielem firmy Edwards.

Dane kontaktowe działu pomocy technicznej firmy Edwards

Stany Zjednoczone i Kanada (24 h/dobę):	800 822 9837 lub tech_support@edwards.com
Poza Stanami Zjednoczonymi	
i Kanadą (24 h/dobę):	949 250 2222
Europa:	+8001 8001 801 lub techserv_europe@edwards.com
Wielka Brytania:	0870 606 2040 — opcja 4
Irlandia:	01 8211012 — opcja 4

PRZESTROGA Prawo federalne (USA) zezwala na sprzedaż niniejszego wyrobu tylko przez lekarzy lub na ich zlecenie.

Wyprodukowane przez	Edwards Lifesciences LLC One Edwards Way Irvine, CA 92614 Wyprodukowano w Stanach Zjednoczonych
Znaki towarowe	Edwards, Edwards Lifesciences, logo w postaci stylizowanej litery E, Acumen, Acumen HPI, Acumen IQ, CCOmbo, CCOmbo V, CO-Set, CO-Set+, FloTrac, ForeSight, FORE-SIGHT, ForeSight Elite, FORE-SIGHT ELITE, HemoSphere, HemoSphere Swan-Ganz, Hypotension Prediction Index, HPI, PediaSat, Swan, Swan-Ganz, Time-In-Target oraz TruWave są znakami towarowymi firmy Edwards Lifesciences Corporation lub jej podmiotów stowarzyszonych. Wszystkie pozostałe znaki towarowe należą do odpowiednich właścicieli.
	Produkcja i dystrybucja tego wyrobu objęta jest co najmniej jednym z następujących amerykańskich patentów: 7,220,230; 7,422,562; 7,452,333; 7,785,263; 7,967,757 oraz odpowiadających im patenty zagraniczne.

©2021 Edwards Lifesciences Corporation. Wszelkie prawa zastrzeżone.

Data wydania podręcznika w wersji 3.4: LUTY 2021; wersja oprogramowania: 2.0

Data wydania oryginału: 9/30/2016

Edwards Lifesciences Services GmbH Edisonstrasse 6 85716 Unterschleissheim, Niemcy

EC

REP

Użytkownicy i/lub pacjenci powinni zgłaszać wszelkie poważne zdarzenia producentowi urządzenia oraz właściwemu organowi kraju członkowskiego, w którym zamieszkuje pacjent i/lub użytkownik ma siedzibę.

Korzystanie z niniejszej instrukcji

Instrukcja obsługi zaawansowanego monitora HemoSphere firmy Edwards jest podzielona na czternaście rozdziałów, osiem dodatków oraz indeks. Ilustracje zawarte w instrukcji mają służyć wyłącznie jako odniesienie i mogą nie być dokładnym odwzorowaniem ekranów z powodu ciągłego wprowadzania poprawek w oprogramowaniu.

Należy dokładnie zapoznać się z instrukcją obsługi z uwzględnieniem ostrzeżeń, środków ostrożności oraz informacji o rezydualnym ryzyku związanych z korzystaniem z tego urządzenia medycznego.

OSTRZEŻENIE	Przed użyciem zaawansowanego monitora HemoSphere firmy Edwards należy uważnie przeczytać niniejszą instrukcję obsługi.
	Należy również zapoznać się z instrukcjami użytkowania dołączonymi do wszystkich zgodnych akcesoriów przed ich użyciem z zaawansowanym monitorem HemoSphere.
PRZESTROGA	Przed użyciem zaawansowanego monitora HemoSphere oraz wszystkich akcesoriów i urządzeń wykorzystywanych razem z monitorem należy je skontrolować pod kątem uszkodzeń. Do uszkodzeń można zaliczyć pęknięcia, rysy, wgniecenia, odkryte styki elektryczne oraz wszelkie inne oznaki, że stan obudowy przewodu mógł się pogorszyć.
OSTRZEŻENIE	Aby zapobiec powstaniu obrażeń ciała pacjenta lub użytkownika, uszkodzeniu platformy oraz niedokładnym pomiarom, nie należy stosować żadnych uszkodzonych ani niezgodnych z platformą akcesoriów, elementów ani przewodów.

Rozdział	Opis
1	Wprowadzenie: Zawiera opis ogólny zaawansowanego monitora HemoSphere
2	Bezpieczeństwo i symbole : Zawiera objaśnienia informacji oznaczonych jako OSTRZEŻENIA, PRZESTROGI oraz UWAGI, które można znaleźć w niniejszej instrukcji, jak również ilustracje etykiet zamieszczonych na zaawansowanym monitorze HemoSphere oraz akcesoriach
3	Instalacja i konfiguracja : Zawiera informacje na temat sposobu konfiguracji zaawansowanego monitora HemoSphere oraz jego połączeń przed pierwszym uruchomieniem
4	Zaawansowany monitor HemoSphere — skrócony przewodnik: Zawiera instrukcje natychmiastowego zastosowania monitora przeznaczone dla doświadczonych lekarzy oraz użytkowników monitorów przyłóżkowych
5	Nawigacja w obrębie zaawansowanego monitora HemoSphere : Zawiera informacje o wyglądzie ekranów monitorowania

Rozdział	Opis
6	Ustawienia interfejsu użytkownika : Zawiera informacje o różnych ustawieniach wyświetlania, w tym danych pacjenta, języku i jednostkach międzynarodowych, głośności alarmu, czasie i dacie systemu. Zawiera również instrukcje sposobu dostosowania wyglądu ekranów
7	Ustawienia zaawansowane : Zawiera informacje o ustawieniach zaawansowanych, w tym wartościach docelowych alarmów, skalach graficznych, ustawieniach portów szeregowych i trybie demonstracyjnym.
8	Eksportowanie danych i łączność : Zawiera informacje o łączności monitora na użytek przesyłania danych pacjenta i danych klinicznych
9	<i>Monitorowanie za pomocą modułu HemoSphere Swan-Ganz</i> : Zawiera opis procedur konfiguracji i sposobu korzystania z funkcji monitorowania ciągłej pojemności minutowej serca, chwilowej pojemności minutowej serca oraz objętości późnorozkurczowej prawej komory za pomocą modułu Swan-Ganz
10	<i>Monitorowanie za pomocą przewodu ciśnienia HemoSphere</i> : Opisuje procedury dotyczące konfiguracji i obsługi monitorowania ciśnienia naczyniowego.
11	<i>Monitorowanie oksymetrii żylnej</i> : Zawiera opis procedur kalibracji i sposobu działania funkcji pomiaru oksymetrii (wysycenia tlenem)
12	<i>Monitorowanie oksymetrii tkankowej</i> : Zawiera opis procedur konfiguracji i obsługi monitorowania oksymetrii tkankowej z użyciem urządzenia ForeSight Elite.
13	<i>Funkcje zaawansowane</i> : Opisuje zaawansowane funkcje monitorowania, które są aktualnie dostępne do uaktualnienia za pomocą zaawansowanej platformy monitorowania HemoSphere.
14	Pomoc i rozwiązywanie problemów : Opisuje menu pomocy, zawiera listę usterek, alertów oraz komunikatów wraz z przyczynami ich wygenerowania i sugerowanymi działaniami.

Dodatek	Opis
A	Dane techniczne
В	Akcesoria
С	Równania stosowane do obliczania parametrów pacjenta
D	Konfiguracja monitora i ustawienia domyślne
E	Stałe obliczeniowe termodylucji
F	Konserwacja monitora, serwis i pomoc
G	Wytyczne i deklaracja producenta
н	Słownik
Indeks	

Spis treści

1 Wprowadzenie		
	1.1 Cel niniejszego podręcznika	20
	1.2 Wskazania do stosowania	20
	1.2.1 Zaawansowany monitor HemoSphere z modułem HemoSphere Swan-Ganz	
	1.2.2 Zaawansowany monitor HemoSphere z przewodem do oksymetrii	
	HemoSphere	
	HemoSphere	21
	tkankowej HemoSphere	21
	1.3 Przeciwwskazania	22
	1.4 Deklarowane przeznaczenie	22
	1.5 Oczekiwana korzyść kliniczna	27
	1.6 Złącza technologii hemodynamicznej zaawansowanego monitora HemoSphere	27
	1.6.1 Moduł HemoSphere Swan-Ganz	28
	1.6.2 Przewód ciśnienia HemoSphere	29
	1.6.3 Przewod do oksymetrii HemoSphere	30
	1.6.4 Modul do oksymetrii tkankowej HemoSphere	
	1.0.5 Dokumentacja i materialy szkoleniowe.	
	1./ Konwencje stosowane w podręczniku	32
2 Bezpieczeństwo	1.8 Skróty stosowane w niniejszym podręczniku	33
1	2.1 Definicje wyrażeń wskazujących zagrożenie	35
	2.1.1 Ostrzeżenie.	35
	2.1.2 Przestroga	35
	2.1.3 Uwaga	35
	2.2 Ostrzeżenia	36
	2.3 Przestrogi	43
	2.4 Symbole interfeisu użytkownika	48
	2.5 Symbole na etykietach produktu	51
	2.6 Obowiązujące normy	52
	2.7 Funkcionowanie zasadnicze zaawansowanego monitora HemoSphere	5.3
3 Instalacja i konf	figuracja	
	3.1 Rozpakowywanie 3.1.1 Zawartość opakowania.	54 54
	3.1.2 Wymagane akcesoria modulów platformy i przewodów	.55
	3.2 Porty przyłączeniowe zaawansowanego monitora HemoSphere	56 57
	3.2.2 Tyl monitora.	57

3.2.3 Prawy panel monitora
3.2.4 Lewy panel monitora
3.3 Instalacja zaawansowanego monitora HemoSphere
3.3.1 Możliwości i zalecenia dotyczące montażu
3.3.2 Instalacja baterii
3.3.3 Podłączanie przewodu zasilania
3.3.3.1 Połączenie wyrównawcze
3.3.4 Podłączanie i odłączanie modulu do monitorowania
hemodynamicznego
3.3.5 Podłączanie i odłączanie przewodu do monitorowania
hemodynamicznego
3.3.6 Podłączanie przewodow urządzen zewnętrznych
3.4 Pierwsze uruchomienie
3.4.1 Procedura uruchamiania
4 Zaawansowany monitor HemoSphere — skrócony przewodnik
4.1 Monitorowanie pojemności wyrzutowej serca za pomocą
modułu HemoSphere Swan-Ganz
4.1.1 Monitorowanie ciągłej pojemności minutowej serca
4.1.2 Monitorowanie chwilowej pojemności minutowej serca
4.1.3 Monitorowanie ciągłej objętości późnorozkurczowej68
4.2 Monitorowanie za pomocą przewodu ciśnienia HemoSphere
4.2.1 Konfiguracja przewodu ciśnienia
4.2.2 Zerowanie przewodu ciśnienia
4.3 Monitorowanie za pomocą przewodu do oksymetrii HemoSphere71
4.3.1 Kalibracja in vitro72
4.3.2 Kalibracja in vivo
4.4 Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere74
4.4.1 Podłączanie modułu do oksymetrii tkankowej HemoSphere74
5 Nawigacja w obrębie zaawansowanego monitora HemoSphere
5.1 Wygląd ekranu zaawansowanego monitora HemoSphere
5.2 Pasek nawigacji
5.3 Widoki monitora
5.3.1 Kafelki parametrów
5.3.1.1 Zmiana parametrów
5.3.1.2 Zmiana alarmu/wartości docelowej
5.3.1.3 Wskaźniki stanu
5.3.2 Główny widok monitorowania
5.3.3 Widok monitorowania trendu graficznego
5.3.3.1 Tryb przewijania trendów graficznych
5.3.3.2 Zdarzenia interwencji
5.3.3.3 Wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym89
5.3.4 Tabela trendów
5.3.4.1 Tryb przewijania tabeli trendów
5.3.5 Podzielony ekran z trendem graficznym/tabelą trendów91

5.3.6 Ekran stanu fizjologicznego	92
5.3.6.1 Wskaźnik nachylenia SVV	93
5.3.7 Ekran kokpitu	93
5.3.8 Zależności fizjologiczne	94
5.3.8.1 Tryby ciągły i historyczny	94
5.3.8.2 Okna parametrów	96
5.3.8.3 Ustawianie wartości parametrów wejściowych i docelowych	96
5.3.9 Ekran pozycjonowania celu	97
5.4 Zogniskowany format monitorowania	98
5.4.1 Wybieranie widoku monitorowania	98
5.4.2 Kafelek krzywej ciśnienia krwi	98
5.4.3 Zogniskowany kafelek parametru	99
5.4.4 Zmiana parametrów	99
5.4.5 Zmiana wartości alarmowych/docelowych	.100
5.4.6 Zogniskowany ekran główny	.100
5.4.7 Zogniskowany ekran trendu graficznego	.101
5.4.8 Zogniskowany ekran dokumentacji	.102
5.5 Narzędzia kliniczne	.103
5.5.1 Wybierz tryb monitorowania	.103
5.5.2 Wprowadzanie CVP.	.103
5.5.3 Kalkulator wartości wyliczanej	.104
5.5.4 Przegląd zdarzeń	.104
5.6 Pasek informacji	.107
5.6.1 Bateria	.108
5.6.2 Jasność ekranu	.109
5.6.3 Głośność alarmu	.109
5.6.4 Zrzut ekranu	.109
5.6.5 Zablokuj ekran	.110
5.7 Pasek stanu	.110
58 Nawigacia w obrebie ekranu monitora	111
5.8.1 Przewijanie w pionie	111
5.8.2 Ikony nawigacij	111
6 Ustawienia interfeisu użytkownika	
61 Ochrona hastem	113
6.1.1.7 miana basel	115
	.115
6.2 Dane pacjenta	.113
6.2.1 Nowy pagent	.110
6.2.2 Kontynuacja monitorowania dotych zasowego pacjenta	.110
	.110
6.3 Ugolne ustawienia monitora	.118
6.3.1 Zmiana języka.	.119
6.3.2 Ekran zmiany daty i czasu	.119
0.3.2.1 Regulacja daty lub godziny	120
0.3.3 Ustawienia ekranow monitorowania	.120

	6.3.4 Odstępy czasu/uśrednianie
	6.3.4.1 Wyświetlanie zmiany wartości parametru
	6.3.4.2 Czas uśredniania CO/ciśnienia
	6.3.5 Analogowy sygnal wejściowy ciśnienia
	6.3.5.1 Kalibracja125
7 Ustawienia zaaw	vansowane
	7.1 Alarmy/wartości docelowe
	7.1.1 Wyciszanie alarmów129
	7.1.1.1 Alarmy fizjologiczne
	7.1.1.2 Alarmy techniczne
	7.1.2 Ustawianie głośności alarmu
	7.1.3 Ustawianie wartości docelowych130
	7.1.4 Ekran konfiguracji alarmów/wartości docelowych130
	7.1.5 Konfiguracja wszystkich wartości docelowych
	7.1.6 Konfiguracja wartości docelowych i alarmów dla jednego parametru 132
	7.2 Wyreguluj wagę
	7.3 Ustawienia parametrów SVV/PPV na ekranie fizjologii i zależności
	fizjologicznych
	7.4 Tryb demonstracyjny
8 Eksportowanie	danych i ustawienia łączności
1	81 Eksportowanie danych 138
	811 Pobieranie danych 138
	8.1.2 Eksport diagnostyki 140
	2 2 U-t-min in home sin home similarity (141
	8.2 Ustawienia łączności bezprzewodowej141
	8.3 Łączność HIS
	8.3.1 Dane demograficzne pacjenta
	8.3.2 Dane fizjologiczne pacjenta143
	8.3.3 Alarmy fizjologiczne i usterki urządzenia
	8.4 Bezpieczeństwo cybernetyczne144
	8.4.1 HIPAA
9 Monitorowanie	za pomocą modułu HemoSphere Swan-Ganz
	9.1 Podłączanie modulu HemoSphere Swan-Ganz
	9.1.1 Test przewodu CCO pacjenta
	9.1.2 Menu wyboru parametru
	9.2 Ciagła pojemność minutowa serca
	9.2.1 Podłaczanie przewodów pacienta
	9.2.2 Rozpoczecie monitorowania
	9.2.3 Warunki dotyczace sygnału termicznego
	9.2.4 Czasomierz CO
	9.2.5 STAT CO
	0.3 Chwilowa poiompość minutowa sorza 152
	0.2.1 Dodlazzania pazawodów posienta
	9.5.1 Fourączanie przewodow pacjenta
	9.3.1.1 wydor sondy

9.3.2 Ustawienia konfiguracji	.154
9.3.2.1 Wybór objętości iniektatu	.154
9.3.2.2 Wybór rozmiaru cewnika	.155
9.3.2.3 Wybór stałej obliczeniowej	.155
9.3.2.4 Wybierz tryb	.155
9.3.3 Instrukcje dotyczące trybów z pomiarem bolusa	.155
9.3.4 Ekran podsumowania termodylucji	.157
9.4 Monitorowanie EDV/RVEF	.158
9.4.1 Podłączanie przewodów pacjenta	.158
9.4.2 Podłączanie przewodu interfejsu EKG	.159
9.4.3 Rozpoczęcie pomiaru.	.161
9.4.4 Aktywne monitorowanie parametru EDV	.161
9.4.5 STAT EDV i RVEF	.163
9.5 SVR	.163
10 Monitorowanie za pomocą przewodu ciśnienia HemoSphere	
10.1 Opis przewodu ciśnienia	.164
10.2 Wybór trybu monitorowania	.167
10.3 Monitorowanie za pomocą czujnika FloTrac	.167
10.3.1 Podłączanie czujnika FloTrac lub Acumen IQ.	.168
10.3.2 Ustawianie czasu uśredniania.	. 169
10.3.3 Wyzeruj ciśnienie tętnicze	.169
10.3.4 Monitorowanie SVR.	.171
10.4 Monitorowanie z użyciem przewodu ciśnienia z przetwornikiem DPT TruWave	.171
10.4.1 Podłączanie przetwornika DPT TruWave	.171
10.4.2 Zerowanie ciśnienia wewnątrznaczyniowego	.172
10.5 Monitorowanie przy użyciu przewodu ciśnienia w trybie monitorowania	
za pomocą modułu Śwan-Ganz	.173
10.6 Ekran Wyzeruj i krzywa	.174
10.6.1 Wybór ciśnienia i zerowanie czujnika	.175
10.6.2 Wyjście sygnału ciśnienia	.175
10.6.3 Potwierdzanie przebiegu krzywej	.175
11 Monitorowanie oksymetrii żylnej	
11.1 Przegląd informacji o przewodzie do oksymetrii	.176
11.2 Konfiguracja oksymetrii zylnej	.177
11.3 Kalibracia in vitro	.179
11.3.1 Bład kalibracii in vitro	.180
11.4 Kalibracia in vivo	180
11.5 Wekeénik jakości syczaby	181
$11.5 \text{ w shalling jacOSCI Sygnatu } \dots $	102
11.0 Przywołaj dane oksymetrii	. 182
11./ Aktualizuj HGB	.184
11.8 Resetowanie przewodu do oksymetrii HemoSphere	.184
11.9 Nowy cewnik	.185

12 Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere	
12.1 Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere .	186
12.2 Oksymetr tkankowy ForeSight Elite — przegląd informacji	187
12.2.1 Rozwiązania do mocowania modulu ForeSight Elite	188
12.2.2 Instalowanie zacisku montażowego	188
12.2.3 Zdejmowanie zacisku montażowego	190
12.3 Laczenie modułu do oksymetrii tkankowej HemoSphere z modułem	
ForeSight Elite	192
12.3.1 Mocowanie czujników na ciele pacjenta	196
12.3.1.1 Wybór miejsca przymocowania czujnika	196
12.3.1.2 Przygotowywanie miejsca przymocowania czujnika	198
12.3.1.3 Nakładanie czujników	198
12.3.1.4 Podłączanie czujników do przewodów	201
12.3.2 Odłączanie czujników po monitorowaniu	203
12.3.3 Uwagi dotyczące monitorowania.	203
12.3.3.1 Użytkowanie modułu podczas defibrylacji	203
12.3.3.2 Zakłocenia	203
12.3.3.5 Interpretowanie wartosci StO2	204
12.3.4 Licznik czasu: sprawdzanie stanu skory	205
12.3.5 Ustawianie czasu usredniania.	206
12.3.0 W SKAZINK JAKOSCI Sygnatu.	200
12.5.7 Ekran stanu inzjologicznego w trybie oksymetrii tkankowej	200
	200
13.1 Funkcja programowa Wskaznik predykcji niedocisnienia (Acumen HPI).	208
13.1.1 W SKAZNIK predykcji niedocisnienia (Acumen HPI)	210
13.1.2 HP1 jako parametr kiuczowy	212
13.1.5 Alarm HP1	215
13.1.4 FIP1 na pasku informacji	215
13.1.6 Elyman podrogran elerta avectici wartości HDI	210
13.1.7 Dodetkowy okrep HDI	210
13.1.8 Zastosowania Elinizzna	210
13.1.0 Zastosowanie Kiniczne	220
13.1.10 Walidacia kliniczna	222
13 1 10 1 Pacienci leczeni chiruroicznie	222
13.1.10.2 Pacienci nieleczeni chirurgicznie	223
13.1.11 Piśmiennictwo	
13.2 Rozszerzone monitorowanie parametrów	229
13.2.1 Śledzenie GDT.	
13.2.1.1 Wybór kluczowego parametru i wartości docelowej	229
13.2.1.2 Aktywne śledzenie GDT.	231
13.2.1.3 Historyczne GDT	231
13.2.2 Optymalizacja SV	232
13.2.3 Pobieranie raportu GDT	232
13.3 Test odpowiedzi na podane płyny	233

	13.3.2 Test bolusa płynowego	.235
	13.3.3 Archiwalne wyniki testów	.236
14 Rozwiązywanie j	problemów	
1	4.1 Pomoc ekranowa	.237
1	4.2 Światła stanu monitora	.238
1	4.3 Komunikacja za pomocą przewodu ciśnienia	.239
1	4.4 Dane komunikacyjne na czujniku modułu ForeSight Elite	.240
1	4.5 Komunikaty o błędzie zaawansowanego monitora HemoSphere	.241
	14.5.1 Usterki/alerty systemu	.241
	14.5.2 Ostrzeżenia systemowe	.244
	14.5.3 Blędy klawiatury numerycznej	.244
1	4.6 Komunikaty o blędzie modułu HemoSphere Swan-Ganz	.245
	14.6.1 Usterki/alerty CO	.245
	14.6.2 Usterki/alerty EDV i SV	.247
	14.6.3 Usterki/alerty iCO	.248
	14.6.4 Usterki/alerty SVR	. 249
	14.6.5 Rozwiązywanie problemów ogólnych	.249
1	4.7 Komunikaty o blędach przewodu ciśnienia	.251
	14.7.1 Ogólne usterki/alerty przewodu ciśnienia	.251
	14.7.2 Usterki/alerty CO	.253
	14.7.3 Usterki/alerty SVR	.255
	14.7.4 Usterki/alerty MAP	. 256
	14.7.5 Rozwiązywanie problemów ogólnych	.257
1	4.8 Komunikaty o błędzie oksymetrii żylnej	.258
	14.8.1 Usterki/alerty oksymetrii żylnej	.258
	14.8.2 Ostrzeżenia oksymetrii żylnej	.260
	14.8.3 Rozwiązywanie problemów ogólnych dotyczących oksymetrii żylnej	.260
1	4.9 Komunikaty o blędzie oksymetrii tkankowej	.261
	14.9.1 Usterki/alerty oksymetrii tkankowej	.261
Dodately A. Dave t	14.9.2 Rozwiązywanie problemow ogolnych dotyczących oksymetrii tkankowej	.263
Dodatek A: Dane to		244
A	A.I Charakterystyka funkcjonowania zasadniczego	.264
А	A.2 Dane techniczne zaawansowanego monitora HemoSphere	.266
А	A.3 Dane techniczne akumulatora HemoSphere	.269
А	A.4 Dane techniczne modułu HemoSphere Swan-Ganz	.269
А	1.5 Dane techniczne przewodu ciśnienia HemoSphere	.270
А	1.6 Dane techniczne przewodu do oksymetrii HemoSphere	.271
А	1.7 Dane techniczne oksymetrii tkankowej HemoSphere	.272
Dodatek B: Akceso	ria	
В	3.1 Lista akcesoriów	.274
В	3.2 Opis dodatkowych akcesoriów	.275

B.2.1 Stojak na kółkach	;
B.2.2 Uchwyt do oksymetrii	;
Dodatek C: Równania stosowane do obliczania parametrów pacjenta	
Dodatek D: Konfiguracja monitora i ustawienia domyślne	
D.1 Zakres danych wejściowych pacjenta	2
D.2 Domyślne wartości graniczne skali trendu	<u>)</u>
D.3 Zakresy wyświetlania parametrów oraz konfigurowalne zakresy alarmów/ wartości docelowych	3
D.4 Ustawienia domyślne alarmów i wartości docelowych	;
D.5 Priorytety alarmów	Ś
D.6 Domyślne ustawienia języka*	7
Dodatek E: Stałe obliczeniowe	
E.1 Wartości stałej obliczeniowej	3
Dodatek F: Konserwacja systemu, serwis i pomoc	
F.1 Konserwacja — informacje ogólne)
F.2 Czyszczenie monitora i modułów	
F.3 Czyszczenie przewodów platformy	2
F.3.1 Czyszczenie przewodu do oksymetrii HemoSphere	2
F.3.2 Czyszczenie przewodu CCO i złącza pacjenta	2
F.3.3 Czyszczenie przewodu ciśnienia	;
F.3.4 Czyszczenie modułu oksymetru tkankowego ForeSight Elite	;
F.4 Serwis i pomoc	ŀ
F.5 Lokalizacje oddziałów firmy Edwards Lifesciences	;
F.6 Utylizacja monitora	Ś
F.6.1 Recykling baterii)
F.7 Konserwacja zapobiegawcza	Ś
F.7.1 Konserwacja baterii)
F.7.1.1 Formatowanie baterii)
)
F.8 Testowanie sygnalow alarmowych	-
F.9 Gwarancja	'
Dodatek G. wytyczne i deklaracja producenta	
G.1 Zgodnosc elektromagnetyczna	5
G.2 Instrukcja obsługi)
G.3 Informacja o technologii bezprzewodowej)
G.3.1 Jakość obsługi technologii bezprzewodowej	;
G.3.2 Srodki bezpieczenstwa w sieciach bezprzewodowych	,
bezorzewodowych)
G.3.4 Oświadczenie o spełnieniu wymogów Federalnei Komisii	
Łączności (FCC) odnośnie do zaklóceń)
G.3.5 Oświadczenia o spełnieniu wymogów Ministerstwa Przemysłu Kanady310)
G.3.6 Dyrektywa R&TTE Unii Europejskiej	
Dodatek H: Słownik	

Lista rysunków

Rysunek 1-1 Złącza technologii hemodynamicznej zaawansowanego monitora HemoSphere 27
Rysunek 3-1 Zaawansowany monitor HemoSphere — widok z przodu 57
Rysunek 3-2 Zaawansowany monitor HemoSphere — widok z tylu
(z modułem HemoSphere Swan-Ganz)
Rysunek 3-3 Zaawansowany monitor HemoSphere — prawy panel
Rysunek 3-4 Zaawansowany monitor HemoSphere — lewy panel (widok bez modułów) \ldots 58
Rysunek 3-5 Obudowa wejść zasilania zaawansowanego monitora HemoSphere —
położenie śrub
Rysunek 3-6 Ekran rozruchowy
Rysunek 3-7 Ekran wyboru języka 64
Rysunek 4-1 Przegląd połączeń do monitorowania za pomocą modułu
HemoSphere Swan-Ganz
Rysunek 4-2 Opis podłączania przewodu ciśnienia
Rysunek 4-3 Podłączanie urządzeń do oksymetrii — przegląd 71
Rysunek 4-4 Przegląd połączeń modułu do oksymetrii tkankowej HemoSphere
Rysunek 5-1 Funkcje ekranu zaawansowanego monitora HemoSphere
Rysunek 5-2 Pasek nawigacji
Rysunek 5-3 Przykład okna wyboru ekranu monitorowania
Rysunek 5-4 Przykład menu konfiguracji kafelka wyboru kluczowego parametru
Rysunek 5-5 Kafelek parametru
Rysunek 5-6 Główny widok monitorowania
Rysunek 5-7 Ekran trendu graficznego
Rysunek 5-8 Trend graficzny — okno interwencji
Rysunek 5-9 Ekran trendów graficznych — dodatkowe pole informacyjne o interwencji 89
Rysunek 5-10 Ekran tabeli trendów
Rysunek 5-11 Okno podręczne Przedział czasowy 90
Rysunek 5-12 Ekran stanu fizjologicznego podczas monitorowania za pomocą
modułu HemoSphere Swan-Ganz
Rysunek 5-13 Ekran kokpitu
Rysunek 5-14 Ekran zależności fizjologicznych podczas monitorowania za pomocą
modulu HemoSphere Swan-Ganz
Rysunek 5-15 Ekran historycznych danych zależności fizjologicznych
Rysunek 5-16 Okna parametrów zależności fizjologicznych
Rysunek 5-17 Okno podręczne wartości docelowych/wejściowych zależności fizjologicznych 97
Rysunek 5-18 Ekran pozycjonowania celu
Rysunek 5-19 Zogniskowany kafelek parametru

Rysunek 12-8 Przegląd połączeń modułu do oksymetrii tkankowej HemoSphere 192
Rysunek 12-9 Dioda LED stanu modułu ForeSight Elite 194
Rysunek 12-10 Zdejmowanie warstwy ochronnej z czujnika 198
Rysunek 12-11 Umieszczenie czujnika (w obrębie mózgu) 199
Rysunek 12-12 Umieszczenie czujnika (w miejscach innych niż okolica mózgu) 200
Rysunek 12-13 Podłączanie czujnika do przewodu przedwzmacniacza 202
Rysunek 12-14 Podłączanie czujnika do przewodu przedwzmacniacza 202
Rysunek 12-15 Ekrany stanu fizjologicznego w trybie oksymetrii tkankowej
Rysunek 13-1 Kafelek parametru kluczowego HPI 214
Rysunek 13-2 Ekran kokpitu parametru kluczowego HPI
Rysunek 13-3 Pasek informacji z parametrem HPI
Rysunek 13-4 Ustawienia parametru — wskaźnik predykcji niedociśnienia 216
Rysunek 13-5 Ekran podręczny alertu wysokiej wartości HPI
Rysunek 13-6 Dodatkowy ekran HPI
Rysunek 13-7 Dodatkowy ekran HPI — wyświetlanie wartości w postaci trendu graficznego 219
Rysunek 13-8 Ekran menu GDT — wybór kluczowego parametru
Rysunek 13-9 Ekran menu GDT — wybór wartości docelowej
Rysunek 13-10 Aktywne śledzenie GDT
Rysunek 13-11 Test odpowiedzi na podane płyny – ekran Nowy test 233
Rysunek 13-12 Test odpowiedzi na podane płyny – ekran wyników 235
Rysunek 14-1 Wskaźniki LED zaawansowanego monitora HemoSphere
Rysunek 14-2 Dioda LED przewodu ciśnienia
Rysunek 14-3 Wskaźniki LED na module oksymetru tkankowego ForeSight Elite $\ldots\ldots 240$

Lista tabel

Tabela 1-1 Wykaz dostępnych parametrów w przypadku modułu HemoSphere Swan-Ganz 23
Tabela 1-2 Wykaz dostępnych parametrów w przypadku przewodu do oksymetrii HemoSphere 24
Tabela 1-3 Wykaz dostępnych parametrów w przypadku modułu HemoSphere Swan-Ganz z
kablem do oksymetrii
Tabela 1-4 Wykaz dostępnych parametrów w przypadku przewodu ciśnienia HemoSphere $\ .\ .\ 25$
Tabela 1-5 Wykaz dostępnych parametrów w przypadku stosowania przewodu
ciśnienia HemoSphere z przewodem do oksymetrii
Tabela 1-6 Wykaz dostępnych parametrów w przypadku modułu do oksymetrii tkankowej
HemoSphere
Tabela 1-7 Opis parametrów modułu HemoSphere Swan-Ganz 28
Tabela 1-8 Opis kluczowych parametrów przewodu ciśnienia HemoSphere 29
Tabela 1-9 Opis parametrów przewodu do oksymetrii HemoSphere 30
Tabela 1-10 Opis parametrów modulu do oksymetrii tkankowej HemoSphere
Tabela 1-11 Konwencje stosowane w podręczniku operatora
Tabela 1-12 Akronimy, skróty 33
Tabela 2-1 Symbole wyświetlacza monitora 48
Tabela 2-2 Symbole na etykietach produktu 51
Tabela 2-3 Obowiązujące normy 52
Tabela 3-1 Elementy składowe zaawansowanego systemu do monitorowania HemoSphere 54
Tabela 3-2 Przewody i cewniki wymagane do monitorowania parametrów za pomocą modulu
HemoSphere Swan-Ganz
Tabela 3-3 Opcje czujników do monitorowania parametrów za pomocą przewodu ciśnienia
HemoSphere
Tabela 3-4 Cewniki wymagane do monitorowania parametrów za pomocą przewodu
do oksymetrii HemoSphere
Tabela 3-5 Akcesoria wymagane do monitorowania parametrów za pomocą modulu
do oksymetru tkankowej HemoSphere
Tabela 5-1 Szybkości przewijania trendów graficznych 87
Tabela 5-2 Zdarzenia interwencji 88
Tabela 5-3 Szybkości przewijania tabeli trendów 91
Tabela 5-4 Przegląd zdarzeń 105
Tabela 5-5 Stan naładowania baterii 109
Tabela 6-1 Poziomy hasła zaawansowanego monitora HemoSphere 113
Tabela 6-2 Nawigacja w menu Zaawansowana konfiguracja i ochrona haslem tego menu \dots 114
Tabela 6-3 Nawigacja w menu Eksport danych i ochrona haslem tego menu 114
Tabela 6-4 Czas uśredniania CO/ciśnienia i częstotliwość aktualizacji wyświetlacza —
tryb monitorowania miniminanie inwazyjnego 122

Tabela 6-5 Zakresy wartości parametru analogowego sygnału wejściowego 124
Tabela 7-1 Kolory wskaźnika alarmu wizualnego 128
Tabela 7-2 Kolory wskaźników stanu wartości docelowych
Tabela 7-3 Domyślne wartości docelowe 131
Tabela 8-1 Stan połączenia Wi-Fi 141
Tabela 8-2 Stan lączności systemu HIS 142
Tabela 9-1 Dostępne parametry i wymagane połączenia modułu HemoSphere Swan-Ganz 147
Tabela 9-2 Opóźnienie czasowe komunikatów o alertach i usterkach CO w przypadku
niestabilnego sygnalu termicznego
Tabela 10-1 Wykaz konfiguracji przewodu ciśnienia HemoSphere oraz dostępnych
parametrów kluczowych
Tabela 11-1 Opcje kalibracji in vitro 180
Tabela 11-2 Opcje kalibracji in vivo 181
Tabela 11-3 Poziomy wskaźnika jakości sygnału 182
Tabela 12-1 Miejsca zamocowania czujnika do oksymetrii tkankowej 194
Tabela 12-2 Matryca wyboru czujnika 197
Tabela 12-3 Metodologia walidacji StO2 204
Tabela 13-1 Konfiguracje wyświetlania HPI 210
Tabela 13-2 Elementy graficzne oraz sygnały dźwiękowe dotyczące wartości HPI 211
Tabela 13-3 HPI a inne parametry kluczowe: podobieństwa i różnice 213
Tabela 13-4 Kolory stanu parametru HPI 214
Tabela 13-5 Dane demograficzne pacjentów (leczonych chirurgicznie) 222
Tabela 13-6 Dane demograficzne pacjentów (nieleczonych chirurgicznie)
Tabela 13-7 Charakterystyka pacjentów nieleczonych chirurgicznie (N=298) 223
Tabela 13-8 Charakterystyka pacjentów nieleczonych chirurgicznie (N=228) 224
Tabela 13-9 Kliniczne badania walidacyjne* (pacjenci leczeni chirurgicznie)
Tabela 13-10 Kliniczne badania walidacyjne* (pacjenci nieleczeni chirurgicznie)
Tabela 13-11 Walidacja kliniczna (pacjenci leczeni chirurgicznie [N=52]) 226
Tabela 13-12 Walidacja kliniczna (pacjenci nieleczeni klinicznie [N=298]) 227
Tabela 13-13 Kolory wskaźnika stanu wartości docelowej GDT 231
Tabela 14-1 Wzrokowy wskaźnik alarmu zaawansowanego monitora HemoSphere 238
Tabela 14-2 Światło zasilania zaawansowanego monitora HemoSphere
Tabela 14-3 Światło komunikacji przewodu ciśnienia 239
Tabela 14-4 Sposób świecenia komunikacyjnej diody LED na module ForeSight Elite 240
Tabela 14-5 Usterki/alerty systemu
Tabela 14-6 Ostrzeżenia zaawansowanego monitora HemoSphere
Tabela 14-7 Blędy klawiatury numerycznej 244
Tabela 14-8 Usterki/alerty CO modulu HemoSphere Swan-Ganz
Tabela 14-9 Usterki/alerty EDV i SV modułu HemoSphere Swan-Ganz
Tabela 14-10 Usterki/alerty iCO modułu HemoSphere Swan-Ganz

Tabela 14-11 Usterki/alerty SVR modulu HemoSphere Swan-Ganz 249
Tabela 14-12 Rozwiązywanie problemów ogólnych związanych z przewodem
ciśnienia HemoSphere
Tabela 14-13 Ogólne usterki/alerty przewodu ciśnienia HemoSphere 251
Tabela 14-14 Usterki/alerty CO przewodu ciśnienia HemoSphere 253
Tabela 14-15 Usterki/alerty SVR przewodu ciśnienia HemoSphere 255
Tabela 14-16 Usterki/alerty MAP przewodu ciśnienia HemoSphere 256
Tabela 14-17 Rozwiązywanie problemów ogólnych związanych z przewodem ciśnienia HemoSphere 257
Tabela 14.18 Usterki/alerty oksymetrij žylnej 258
Tabele 14-10 Osteracionia oksymetrii żylnoj
Tabela 14-19 Ostrzezenia oksynictii zynicji 200 Tabela 14-20 Bourgiourgio problem św. osólawała dotycznawała oksymetrii indusi. 260
Tabela 14-20 Kozwiązywanie problemow ogoinych dotyczących oksymetrii zymej
Tabela 14-21 Osterki/ alerty oksymetrii tkankowej
Tabela 14-22 Kozwiązywanie problemow ogolnych dotyczących oksymetrii tkankowej 205
1 abela A-1 Funkcjonowanie zasadnicze zaawansowanego monitora HemoSphere —
Tabela A-2 Fizyczne i mechaniczne dane techniczne
zaawansowanego monitora HemoSphere
Tabela A-3 Środowiskowe dane techniczne zaawansowanego monitora HemoSphere 267
Tabela A-4 Środowiskowe dane techniczne dotyczące transportu
zaawansowanego monitora HemoSphere
Tabela A-5 Dane techniczne zaawansowanego monitora HemoSphere 267
Tabela A-6 Fizyczne dane techniczne akumulatora HemoSphere 269
Tabela A-7 Środowiskowe dane techniczne akumulatora HemoSphere 269
Tabela A-8 Dane techniczne akumulatora HemoSphere 269
Tabela A-9 Fizyczne dane techniczne modułu HemoSphere Swan-Ganz 269
Tabela A-10 Dane techniczne modulu HemoSphere Swan-Ganz dotyczące pomiaru
parametrów
Tabela A-11 Dane fizyczne przewodu ciśnienia HemoSphere
Tabela A-12 Dane techniczne przewodu ciśnienia HemoSphere dotyczące pomiaru
parametrów
Tabela A-13 Dane techniczne przewodu do oksymetrii HemoSphere 271
Tabela A-14 Dane techniczne przewodu do oksymetrii HemoSphere dotyczące pomiaru
parametrów
Tabela A-15 Fizyczne dane techniczne modułu do oksymetrii tkankowej HemoSphere 272
Tabela A-16 Fizyczne dane techniczne modułu oksymetru tkankowego ForeSight Elite \ldots . 273
Tabela A-17 Dane techniczne modułu do oksymetrii tkankowej HemoSphere
dotyczące pomiaru parametrów
Tabela B-1 Elementy zaawansowanego monitora HemoSphere 274
Tabela C-1 Równania dotyczące badań serca i natleniania
Tabela D-1 Informacje dla pacjenta 282
Tabela D-2 Wartości domyślne parametrów trendu graficznego

Tabela D-3 Konfigurowalne alarmy parametrów i zakresy wyświetlania	283
Tabela D-4 Ustawienia domyślne wartości docelowych i czerwonej strefy alarmowej	
parametrów	285
Tabela D-5 Priorytety alertów, usterek i alarmów parametrów	286
Tabela D-6 Domyślne ustawienia języka	287
Tabela E-1 Stałe obliczeniowe dlasondy do pomiaru temperatury w łaźni	288
Tabela E-2 Stałe obliczeniowe dla sondy temperatury in-line	289
Tabela G-1 Emisje elektromagnetyczne	300
Tabela G-2 Wytyczne i deklaracja producenta — odporność na działanie bezprzewodowych urządzeń do komunikacji radiowej	301
Tabela G-3 Zalecane odleglości pomiędzy przepośnymi i mobilnymi urządzeniami	501
do komunikacji radiowej a zaawansowanym monitorem HemoSphere	302
Tabela G-4 Koegzystencja w tym samym paśmie bezprzewodowym —	
próg zaklóceń (ang. threshold of interference, Tol) i próg komunikacji (ang. threshold	
of communication, ToC) między zaawansowanym monitorem HemoSphere,	
będącym testowanym sprzętem (ang. equipment-under-test, EUI), a urządzeniami	202
	303
Tabela G-5 Odpornosc elektromagnetyczna (ESD, EFT, przepięcie, spadki napięcia	204
The pole magnetyczne)	304
Tabela G-6 Odporność elektromagnetyczna (promieniowana i przewodzona energia RF)	. 305
Tabela G-7 Dane łączności bezprzewodowej zaawansowanego monitora HemoSphere	306

1

Wprowadzenie

Spis treści

Cel niniejszego podręcznika	.20
Wskazania do stosowania	.20
Przeciwwskazania	.22
Deklarowane przeznaczenie	.22
Oczekiwana korzyść kliniczna	.27
Złącza technologii hemodynamicznej zaawansowanego monitora HemoSphere	.27
Konwencje stosowane w podręczniku	.32
Skróty stosowane w niniejszym podręczniku	.33

1.1 Cel niniejszego podręcznika

W niniejszym podręczniku opisano funkcje i opcje monitorowania zaawansowanego monitora HemoSphere firmy Edwards. Zaawansowany monitor HemoSphere jest urządzeniem modułowym wyświetlającym dane monitorowania uzyskane za pomocą technologii hemodynamicznych firmy Edwards.

Niniejszy podręcznik został przygotowany do wykorzystania z zaawansowanym monitorem HemoSphere firmy Edwards przez przeszkolonych lekarzy pracujących na oddziałach intensywnej opieki medycznej, pielęgniarki oraz lekarzy pracujących w placówkach świadczących usługi w zakresie intensywnej opieki medycznej.

Podręcznik dostarcza operatorowi zaawansowanego monitora HemoSphere instrukcji dotyczących konfiguracji i obsługi, informacji o procedurach dotyczących współpracy z innymi urządzeniami oraz o ograniczeniach.

1.2 Wskazania do stosowania

1.2.1 Zaawansowany monitor HemoSphere z modułem HemoSphere Swan-Ganz

Zaawansowany monitor HemoSphere w połączeniu z modulem HemoSphere Swan-Ganz i cewnikami Edwards Swan-Ganz jest przeznaczony do stosowania u dorosłych i dzieci wymagających intensywnej opieki medycznej, u których konieczne jest monitorowanie pojemności minutowej serca (ciągłej [CO] i chwilowej [iCO]) oraz pochodnych parametrów hemodynamicznych w warunkach szpitalnych. Zestaw ten może służyć w warunkach szpitalnych do monitorowania parametrów hemodynamicznych w połączeniu z protokołem leczenia okołooperacyjnego ukierunkowanego na cel. Informacje na temat populacji pacjentów, dla której przeznaczony jest dany cewnik, zawierają wskazania do stosowania cewników Edwards Swan-Ganz.

Pełną listę mierzonych i pochodnych parametrów dostępnych dla każdej populacji pacjentów można znaleźć w punkcie Deklarowane przeznaczenie.

1.2.2 Zaawansowany monitor HemoSphere z przewodem do oksymetrii HemoSphere

Zaawansowany monitor HemoSphere w połączeniu z przewodem do oksymetrii HemoSphere i cewnikami oksymetrycznymi firmy Edwards jest przeznaczony do stosowania u dorosłych i dzieci wymagających intensywnej opieki medycznej, u których konieczne jest monitorowanie wysycenia tlenem krwi żylnej (SvO₂ i ScvO₂) oraz pochodnych parametrów hemodynamicznych w warunkach szpitalnych. Informacje na temat populacji pacjentów, dla której przeznaczony jest dany cewnik, zawierają wskazania do stosowania cewników oksymetrycznych firmy Edwards.

Pelną listę mierzonych i pochodnych parametrów dostępnych dla każdej populacji pacjentów można znaleźć w punkcie Deklarowane przeznaczenie.

1.2.3 Zaawansowany monitor HemoSphere z przewodem ciśnienia HemoSphere

Zaawansowany monitor HemoSphere w połączeniu z przewodem ciśnienia HemoSphere wskazany jest do stosowania u pacjentów wymagających intensywnej opieki medycznej, u których konieczna jest ciągła ocena równowagi między czynnością serca, stanem płynów, oporem naczyniowym i ciśnieniem. Zestaw ten może służyć w warunkach szpitalnych do monitorowania parametrów hemodynamicznych w połączeniu z protokołem leczenia okołooperacyjnego ukierunkowanego na cel. Informacje na temat populacji pacjentów, dla której przeznaczony jest dany czujnik/przetwornik, zawarte są we wskazaniach do stosowania czujników FloTrac, Acumen IQ oraz TruWave DPT firmy Edwards.

Funkcja Wskaźnik predykcji niedociśnienia (Acumen HPI) firmy Edwards umożliwia lekarzowi wgląd w parametry fizjologiczne w celu oszacowania prawdopodobieństwa wystąpienia w przyszłości u pacjenta zdarzenia niedociśnienia (zdefiniowanego jako średnie ciśnienie tętnicze < 65 mmHg przez co najmniej minutę) oraz powiązanych parametrów hemodynamicznych. Funkcja Acumen HPI jest przeznaczona do stosowania u leczonych chirurgicznie lub nieleczonych chirurgicznie pacjentów, u których prowadzone jest zaawansowane monitorowanie parametrów hemodynamicznych. Funkcja Acumen HPI dostarcza dodatkowych danych ilościowych dotyczących stanu fizjologicznego pacjenta wyłącznie do celów informacyjnych; nie należy podejmować żadnych decyzji terapeutycznych wyłącznie w oparciu o wartość parametru Wskaźnik predykcji niedociśnienia (Acumen HPI).

Pełną listę mierzonych i pochodnych parametrów dostępnych dla każdej populacji pacjentów można znaleźć w punkcie Deklarowane przeznaczenie.

1.2.4 Zaawansowany monitor HemoSphere z modułem do oksymetrii tkankowej HemoSphere

Nieinwazyjny moduł oksymetru tkankowego ForeSight Elite jest przeznaczony do stosowania jako pomocniczy monitor bezwzględnego regionalnego wysycenia hemoglobiny tlenem we krwi pod czujnikami u osób zagrożonych stanami niedokrwiennymi z powodu obniżonego przepływu krwi lub jego braku. Moduł oksymetru tkankowego ForeSight Elite umożliwia wyświetlanie wartości parametru StO₂ na zaawansowanym monitorze HemoSphere.

 W przypadku użycia z dużymi czujnikami moduł oksymetru tkankowego ForeSight Elite jest wskazany do stosowania u osób dorosłych i nastolatków w wieku przejściowym o masie ciała ≥ 40 kg.

- W przypadku użycia ze średnimi czujnikami moduł oksymetru tkankowego ForeSight Elite jest wskazany do stosowania u pacjentów pediatrycznych o masie ciała ≥ 3 kg.
- W przypadku użycia z małymi czujnikami moduł oksymetru tkankowego ForeSight Elite jest wskazany do zastosowań w okolicy mózgu u pacjentów pediatrycznych o masie ciała < 8 kg i zastosowań w innych miejscach niż okolica mózgu u pacjentów pediatrycznych o masie ciała < 5 kg.

Pełną listę mierzonych i pochodnych parametrów dostępnych dla każdej populacji pacjentów można znaleźć w punkcie Deklarowane przeznaczenie.

1.3 Przeciwwskazania

Nie ma przeciwwskazań do stosowania zaawansowanego monitora HemoSphere.

1.4 Deklarowane przeznaczenie

Zaawansowana platforma monitorowania HemoSphere jest przeznaczona do stosowania przez wykwalifikowany personel lub przeszkolonych lekarzy w środowisku intensywnej opieki medycznej w warunkach szpitalnych.

Zaawansowana platforma monitorowania HemoSphere jest przeznaczona do użytku ze zgodnymi cewnikami Swan-Ganz i cewnikami oksymetrycznymi firmy Edwards, a także z czujnikami FloTrac, Acumen IQ, TruWave DPT i ForeSight Elite firmy Edwards.

Pelną listę parametrów dostępnych podczas monitorowania przy użyciu zaawansowanego monitora HemoSphere z podłączonym modułem HemoSphere Swan-Ganz zawiera poniższa tabela 1-1. Dla populacji pacjentów pediatrycznych dostępne są wyłącznie parametry iCO, iCI, iSVR oraz iSVRI.

Skrót	Definicja	Zastoso- wana technologia podsystemu	Populacja pacjentów	Warunki szpitalne	
СО	Ciągła pojemność minutowa serca				
sCO	Pojemność minutowa serca (STAT)				
CI	Ciągły wskaźnik sercowy				
sCl	Wskaźnik sercowy (STAT)				
EDV	Objętość późnorozkurczowa prawej komory				
sEDV	Objętość późnorozkurczowa prawej komory (STAT)				
EDVI	Wskaźnik objętości późnorozkurczowej prawej komory				
sEDVI	Wskaźnik objętości późnorozkurczowej prawej komory (STAT)			Sala operacyjna, oddział intensywnej	
HR _{śr.}	Uśredniona częstość akcji serca	Moduł	Tylko dorośli		
LVSWI	Wskaźnik pracy wyrzutowej lewej komory				
PVR	Opór naczyń płucnych				
PVRI	Wskaźnik oporu naczyń płucnych	Swan-Ganz			
RVEF	Frakcja wyrzutowa prawej komory			terapii, izba	
sRVEF	Frakcja wyrzutowa prawej komory (STAT)			przyjęc	
RVSWI	Wskaźnik pracy wyrzutowej prawej				
	komory				
SV	Objętość wyrzutowa				
SVI	Wskaźnik objętości wyrzutowej				
SVR	Systemowy opór naczyniowy				
SVRI	Wskaźnik systemowego oporu				
	naczyniowego				
iCO	Chwilowa pojemność minutowa serca				
iCl	Chwilowy wskaźnik sercowy				
iSVR	Chwilowy systemowy opór naczyniowy	Doro	Dorośli i dzieci		
iSVRI	Wskaźnik chwilowego systemowego oporu naczyniowego				

Tabela 1-1 Wykaz dostępnych parametrów w przypadku modułu HemoSphere Swan-Ganz

Pełną listę parametrów dostępnych dla populacji pacjentów dorosłych i pediatrycznych podczas monitorowania przy użyciu zaawansowanego monitora HemoSphere z podłączonym kablem do oksymetrii HemoSphere zawiera poniższa tabela 1-2.

Skrót	Definicja	Zastoso- wana technologia podsystemu	Populacja pacjentów	Warunki szpitalne
SvO ₂	Wysycenie tlenem krwi żylnej mieszanej	Przewód do oksymetrii HemoSphere		Sala operacyjna,
ScvO ₂	Wysycenie krwi tlenem w żyłach centralnych		Dorośli i dzieci	oddział intensywnej terapii, izba przyjęć

Tabela 1-2 Wykaz dostępnych parametrów w przypadku przewodu do oksymetrii HemoSphere

Pełną listę parametrów dostępnych dla populacji pacjentów dorosłych i pediatrycznych podczas monitorowania przy użyciu zaawansowanego monitora HemoSphere z podłączonym modułem HemoSphere Swan-Ganz i kablem do oksymetrii zawiera poniższa tabela 1-3.

Tabela 1-3 Wykaz dostępnych parametrów w przypadku modułu HemoSphere Swan-Ganz z kablem do oksymetrii

Skrót	Definicja	Zastoso- wana technologia podsystemu	Populacja pacjentów	Warunki szpitalne
DO ₂	Podaż tlenu			
DO ₂ I	Wskaźnik podaży tlenu	Madul		Sala
VO ₂	Zużycie tlenu	HemoSphere		operacyjna,
VO ₂ e	Szacowane zużycie tlenu podczas monitorowania ScvO ₂	Swan-Ganz i przewód	Dorośli i dzieci	oddział intensywnej
VO ₂ I	Wskaźnik zużycia tlenu	HemoSphere		przyjęć
VO ₂ le	Wskaźnik szacowanego zużycia tlenu podczas monitorowania ScvO ₂			

Pełną listę parametrów dostępnych podczas monitorowania przy użyciu zaawansowanego monitora HemoSphere z podłączonym przewodem ciśnienia HemoSphere zawiera poniższa tabela 1-4.

Skrót	Definicja	Zastosowana technologia podsystemu	Populacja pacjentów	Warunki szpitalne
СО	Ciągła pojemność minutowa serca ¹			
CI	Ciągły wskaźnik sercowy ¹			
CVP	Ośrodkowe ciśnienie żylne			
DIA _{ART}	Systemowe rozkurczowe ciśnienie tętnicze			
DIA _{PAP}	Ciśnienie rozkurczowe w tętnicy płucnej			
dP/dt	Nachylenie fali skurczowej ²			
Ea _{dyn}	Podatność dynamiczna tętnic ²			
MAP	Średnie ciśnienie tętnicze			Sala
MPAP	Średnie ciśnienie w tętnicy płucnej	Demovié d		operacyjna,
PPV	Wahanie ciśnienia tętniczego ¹	ciśnienia	Tylko dorośli	oddział
PR	Częstość tętna	HemoSphere	- jiii uu uu	intensywnej teranji oddział
SV	Objętość wyrzutowa ¹			ratunkowy
SVI	Wskaźnik objętości wyrzutowej ¹			
SVR	Systemowy opór naczyniowy ¹			
SVRI	Wskaźnik systemowego oporu naczyniowego ¹			
SVV	Zmienna objętości wyrzutowej ¹			
SYS _{ART}	Systemowe skurczowe ciśnienie tętnicze			
SYS _{PAP}	Ciśnienie skurczowe w tętnicy płucnej			
HPI	Wskaźnik predykcji niedociśnienia ²			
¹ Parametry FloTrac są dostępne podczas korzystania z czujnika FloTrac/Acumen IQ i gdy funkcja FloTrac jest włączona. ² Parametry HPI są dostępne podczas korzystania z czujnika Acumen IQ i gdy funkcja HPI jest aktywowana. Aktywacja dostępna jest wyłącznie w określonych obszarach. W celu uzyskania dodatkowych informacji na temat włączania tej zaawansowanej funkcji należy skontaktować się z lokalnym przedstawicielem firmy Edwards.				

Tabela 1-4 Wykaz dostępnych parametrów w przypadku przewodu ciśnienia HemoSphere

Pełną listę parametrów dostępnych dla populacji pacjentów dorosłych podczas monitorowania przy użyciu zaawansowanego monitora HemoSphere z podłączonym zarówno przewodem ciśnienia HemoSphere, jak i przewodem do oksymetrii zawiera poniższa tabela 1-5.

Skrót	Definicja	Zastoso- wana technologia podsystemu	Populacja pacjentów	Warunki szpitalne
DO ₂	Podaż tlenu			
DO ₂ I	Wskaźnik podaży tlenu	Drzowód		Solo
VO ₂	Zużycie tlenu	ciśnienia		operacyjna,
VO ₂ e	Szacowane zużycie tlenu podczas monitorowania ScvO ₂	HemoSphere i przewód	Tylko dorośli	oddział intensywnej toropii izbo
VO ₂ I	Wskaźnik zużycia tlenu	HemoSphere		przyjęć
VO ₂ le	Wskaźnik szacowanego zużycia tlenu podczas monitorowania ScvO ₂			

Tabela 1-5 Wykaz dostępnych parametrów w przypadku stosowania przewodu ciśnienia HemoSphere z przewodem do oksymetrii

Wysycenie tkanek tlenem — parametr StO₂ — można monitorować za pomocą zaawansowanego monitora HemoSphere, podłączonego modułu do oksymetrii tkankowej HemoSphere oraz modułu oksymetru tkankowego ForeSight Elite — zgodnie z informacjami, które zawiera poniższa tabela 1-6.

Tabela 1-6 Wykaz dostępnych parametrów w przypadku modułu do oksymetrii tkankowej HemoSphere

Akronim	Definicja	Zastosowana technologia podsystemu	Populacja pacjentów	Warunki szpitalne
StO ₂	Wysycenie tkanek tlenem	Moduł do oksymetrii tkankowej HemoSphere	Dorośli i dzieci	Sala operacyjna, oddział intensywnej terapii, oddział ratunkowy

UWAGAParametry oksymetrii tkankowej dostępne są podczas korzystania z czujnika
i modułu ForeSight Elite, jeśli włączona jest funkcja oksymetrii tkankowej.
Aktywacja dostępna jest wyłącznie w określonych obszarach. W celu uzyskania
dodatkowych informacji na temat włączania tej zaawansowanej funkcji należy
skontaktować się z lokalnym przedstawicielem firmy Edwards.

OSTRZEŻENIE Niewłaściwe używanie zaawansowanego monitora HemoSphere może stanowić zagrożenie dla pacjenta. Przed rozpoczęciem korzystania z platformy należy dokładnie przeczytać część "Ostrzeżenia" w rozdziale 2 niniejszego podręcznika. Zaawansowany monitor HemoSphere jest przeznaczony wyłącznie do oceny stanu pacjenta. Musi być używany łącznie z przyłóżkowym monitorem parametrów fizjologicznych i/lub obserwacją klinicznych objawów przedmiotowych i podmiotowych pacjenta. Jeżeli wartości hemodynamiczne uzyskane z urządzenia nie są zgodne ze stanem klinicznym pacjenta, należy rozważyć przeprowadzenie procedury rozwiązywania problemów przed wdrożeniem leczenia.

Sygnał wejściowy EKG i wszystkie parametry uzyskiwane dzięki pomiarom częstości akcji serca nie były oceniane u dzieci i dlatego nie są dostępne dla tej populacji pacjentów.

1.5 Oczekiwana korzyść kliniczna

Zaawansowana platforma monitorowania HemoSphere umożliwia wyświetlanie parametrów hemodynamicznych pacjenta oraz reagowanie na te parametry. W połączeniu ze zgodnymi czujnikami i oprogramowaniem predykcyjnym wspomagającym podejmowanie decyzji modularna platforma HemoSphere ułatwia proaktywne podejmowanie decyzji klinicznych i uzyskiwanie informacji o przebiegu spersonalizowanej opieki nad pacjentem.

1.6 Złącza technologii hemodynamicznej zaawansowanego monitora HemoSphere

Zaawansowany monitor HemoSphere jest wyposażony w trzy gniazda modułów rozszerzających (dwa o standardowych rozmiarach i jedno duże [L-Tech]) oraz dwa porty przewodów. Punkty połączenia przewodów i modułów są umieszczone na panelu po lewej stronie. Patrz rysunek 1-1.

Rysunek 1-1 Złącza technologii hemodynamicznej zaawansowanego monitora HemoSphere

Każdy modul/przewód jest powiązany z wyjątkową technologią monitorowania hemodynamicznego firmy Edwards. Aktualnie dostępne moduły to moduł HemoSphere Swan Ganz, przedstawiony poniżej i opisany szczegółowo w rozdziale 9, *Monitorowanie za pomocą modułu HemoSphere Swan-Ganz*, a także zaawansowany moduł do oksymetrii tkankowej HemoSphere, przedstawiony poniżej i opisany szczegółowo w rozdziale 12, *Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere*. Aktualnie dostępne przewody to przewód ciśnienia HemoSphere, przedstawiony poniżej i opisany szczegółowo w rozdziale 10, *Monitorowanie za pomocą przewodu ciśnienia HemoSphere*, a także przewód do oksymetrii HemoSphere, przedstawiony poniżej i opisany szczegółowo w rozdział 11, *Monitorowanie oksymetrii żylnej*.

1.6.1 Moduł HemoSphere Swan-Ganz

Moduł HemoSphere Swan-Ganz umożliwia monitorowanie ciąglej (CO) oraz chwilowej pojemności minutowej serca (iCO) za pomocą przewodu CCO pacjenta firmy Edwards i zgodnego cewnika Swan-Ganz. Monitorowanie objętości późnorozkurczowej prawej komory (EDV) jest dostępne za

pomocą danych dotyczących częstości akcji serca (HR śr.) uzyskiwanych z przyłóżkowego monitora pacjenta. Moduł HemoSphere Swan-Ganz pasuje do standardowego gniazda modułu. Więcej informacji — patrz rozdział 9, *Monitorowanie za pomocą modułu HemoSphere Swan-Ganz*. Tabela 1-7 zawiera parametry dostępne w trakcie korzystania z modułu HemoSphere Swan-Ganz.

Parametr	Opis	Technologia
Ciągła pojemność minutowa serca (CO)	Ciągła ocena objętości krwi pompowanej przez serce uzyskiwana za pomocą zaawansowanej technologii termodylucji, mierzona w litrach na minutę	Cewniki Swan-Ganz CCO i CCOmbo
Ciągły wskaźnik sercowy (CI)	Ciągła pojemność minutowa serca względem pola powierzchni ciała (BSA)	Cewniki Swan-Ganz CCO i CCOmbo
Chwilowa pojemność minutowa serca (iCO)	Chwilowa ocena objętości krwi pompowanej przez serce uzyskiwana za pomocą metody termodylucji z bolusem, mierzona w litrach na minutę	Cewniki Swan-Ganz do termodylucji
Chwilowy wskaźnik sercowy (iCI)	Chwilowa pojemność minutowa serca względem pola powierzchni ciała (BSA)	Cewniki Swan-Ganz do termodylucji
Frakcja wyrzutowa prawej komory (RVEF)	Ciągła ocena procentu krwi wyrzucanej z prawej komory podczas skurczu przeprowadzana za pomocą zaawansowanej technologii termodylucji i analizy opartej na algorytmach	Cewniki Swan-Ganz CCOmbo V z sygnałem wejściowym EKG
Objętość późnorozkurczowa prawej komory (EDV)	Ciągła ocena objętości krwi w prawej komorze pod koniec rozkurczu obliczana przez podzielenie objętości wyrzutowej (ml/uderzenie) przez RVEF(%)	Cewniki Swan-Ganz CCOmbo V z sygnałem wejściowym EKG
Objętość wyrzutowa (SV)	Ilość krwi wyrzucanej z komór przy każdym skurczu uzyskana poprzez ocenę CO i częstości akcji serca (SV = CO/HR × 1000)	Cewniki Swan-Ganz CCO, CCOmbo i CCOmbo V z sygnałem wejściowym EKG
Wskaźnik objętości wyrzutowej (SVI)	Objętość wyrzutowa względem pola powierzchni ciała (BSA)	Cewniki Swan-Ganz CCO, CCOmbo i CCOmbo V z sygnałem wejściowym EKG
Systemowy opór naczyniowy (SVR)	Pochodna miara oporu przepływu krwi z lewej komory (obciążenie następcze)	Cewniki Swan-Ganz CCO i CCOmbo z analogowym wejściem sygnału ciśnienia MAP i CVP
Wskaźnik systemowego oporu naczyniowego (SVRI)	Systemowy opór naczyniowy względem pola powierzchni ciała (BSA)	Cewniki Swan-Ganz CCO i CCOmbo z analogowym wejściem sygnału ciśnienia MAP i CVP

Tabela 1-7 Opis parametrów modułu HemoSphere Swan-Ganz

1.6.2 Przewód ciśnienia HemoSphere

Przewód ciśnienia HemoSphere umożliwia monitorowanie ciśnienia tętniczego za pomocą kompatybilnego przetwornika ciśnienia/czujnika i cewnika firmy Edwards. Podłączony czujnik FloTrac lub Acumen IQ zapewnia ciągły pomiar pojemności minutowej serca (CO) i związanych z nią parametrów hemodynamicznych. Podłączony przetwornik TruWave dostarcza informacje o ciśnieniu wewnątrznaczyniowym w danym miejscu. Przewód ciśnienia

HemoSphere jest podłaczany do portu przewodu do monitorowania. Więcej informacji — patrz rozdział 10, *Monitorowanie za pomocą przewodu ciśnienia HemoSphere*. Tabela 1-8 zawiera parametry dostępne podczas korzystania z przewodu ciśnienia HemoSphere.

Parametr	Opis	Technologia
Ciągła pojemność minutowa serca (CO)	Ciągła ocena objętości krwi pompowanej przez serce mierzona w litrach na minutę z wykorzystaniem istniejącej krzywej ciśnienia tętniczego i algorytmu systemu FloTrac	Czujnik FloTrac lub Acumen IQ
Ciągły wskaźnik sercowy (CI)	Ciągła pojemność minutowa serca względem pola powierzchni ciała (BSA)	Czujnik FloTrac lub Acumen IQ
Ośrodkowe ciśnienie żylne (CVP)	Ośrodkowe ciśnienie żylne krwi	Przetwornik ciśnienia TruWave w linii cewnika ośrodkowego ciśnienia żylnego
Ciśnienie rozkurczowe krwi (DIA _{ART} /DIA _{PAP})	Ciśnienie rozkurczowe krwi mierzone w tętnicy płucnej (PAP) lub tętnicy obwodowej (ART)	Czujnik FloTrac, czujnik Acumen IQ lub przetwornik ciśnienia TruWave
Nachylenie fali skurczowej (dP/dt)*	Maksymalne odchylenie w górę krzywej ciśnienia tętniczego mierzone w tętnicy obwodowej*	Czujnik Acumen IQ
Podatność dynamiczna tętnic (Ea _{dyn})*	Miernik obciążenia następczego lewej komory przez układ tętniczy (elastancja tętnic) w stosunku do elastancji lewej komory*	Czujnik Acumen IQ
Wskaźnik predykcji niedociśnienia (Acumen HPI)*	Wskaźnik określający prawdopodo- bieństwo wystąpienia u pacjenta zdarzenia niedociśnienia (MAP < 65 mmHg przez co najmniej minutę).*	Czujnik Acumen IQ
Średnie ciśnienie tętnicze (MAP)	Uśrednione systemowe ciśnienie krwi w ciągu jednego cyklu pracy serca	Czujnik FloTrac, czujnik Acumen IQ lub przetwornik ciśnienia TruWave
Średnie ciśnienie w tętnicy płucnej (MPAP)	Średnie ciśnienie krwi w tętnicy płucnej w ciągu jednego cyklu pracy serca	Przetwornik ciśnienia TruWave w linii cewnika tętnicy płucnej
Wahanie ciśnienia tętniczego (PPV)	Różnica procentowa między PPmin a PPmaks względem PPśr, gdzie PP = SYS-DIA	Czujnik FloTrac lub Acumen IQ
Częstość tętna (PR)	Liczba impulsów ciśnienia tętniczego krwi na minutę	Czujnik FloTrac, czujnik Acumen IQ lub przetwornik ciśnienia TruWave
Objętość wyrzutowa (SV)	Objętość krwi wypompowywanej przy każdym uderzeniu serca	Czujnik FloTrac lub Acumen IQ

Tabela 1-8 Opis kluczowych parametrów przewodu ciśnienia HemoSphere

Tabela 1-8 Opis kluczowych parametrów przewodu ciśnienia HemoSphere (ciąg dalszy)

Parametr	Opis	Technologia
Wskaźnik objętości wyrzutowej (SVI)	Objętość wyrzutowa względem pola powierzchni ciała (BSA)	Czujnik FloTrac lub Acumen IQ
Systemowy opór naczyniowy (SVR)	Pochodna miara oporu przepływu krwi z lewej komory (obciążenie następcze)	Czujnik FloTrac lub Acumen IQ
Wskaźnik systemowego oporu naczyniowego (SVRI)	Systemowy opór naczyniowy względem pola powierzchni ciała (BSA)	Czujnik FloTrac lub Acumen IQ
Zmienna objętości wyrzutowej (SVV)	Różnica procentowa między SVmin z SVmaks względem SVśr	Czujnik FloTrac lub Acumen IQ
Ciśnienie skurczowe (SYS _{ART} /SYS _{PAP})	Ciśnienie skurczowe krwi mierzone w tętnicy płucnej (PAP) lub tętnicy obwodowej (ART)	Czujnik FloTrac, czujnik Acumen IQ lub przetwornik ciśnienia TruWave
* Parametry HPI są dostępne podczas korzystania z czujnika Acumen IQ i gdy funkcja HPI jest aktywowana. Aktywacja dostępna jest wyłącznie w określonych obszarach. W celu uzyskania dodatkowych informacji na temat włączania tej zaawansowanej funkcji należy skontaktować się z lokalnym przedstawicielem firmy Edwards.		

UWAGA

Pojemność minutowa serca wyliczona przy użyciu przewodu ciśnienia HemoSphere może różnić się od tej wyliczonej za pomocą modułu HemoSphere Swan-Ganz z powodu różnic metodologicznych i algorytmicznych.

1.6.3 Przewód do oksymetrii HemoSphere

Przewód do oksymetrii HemoSphere umożliwia monitorowanie wysycenia tlenem krwi żylnej mieszanej (SvO₂) lub wysycenia tlenem w żylach centralnych (ScvO₂) z użyciem zgodnego cewnika do oksymetrii firmy Edwards. Przewód do oksymetrii HemoSphere jest podłączany do portu przewodu monitorowania i może być używany w połączeniu z innymi technologiami monitorowania hemodynamicznego. Więcej informacji na temat

monitorowania oksymetrii — patrz rozdział 11, *Monitorowanie oksymetrii żylnej*. Tabela 1-9 zawiera parametry dostępne podczas korzystania z przewodu do oksymetrii HemoSphere.

Parametr	Opis
Oksymetria żył centralnych (ScvO ₂)	Wysycenie tlenem krwi żylnej mierzone w żyle głównej górnej
Oksymetria krwi żylnej mieszanej (SvO ₂)	Wysycenie tlenem krwi żylnej mierzone w tętnicy płucnej
Zużycie tlenu (VO ₂)	llość tlenu zużywanego przez ciało w ciągu minuty
Szacowane zużycie tlenu (VO ₂ e)	Szacowana ilość tlenu zużywana przez ciało w ciągu minuty (ScvO ₂ ; wyłącznie monitorowanie)
Wskaźnik zużycia tlenu (VO ₂ I)	llość tlenu zużywana przez ciało w ciągu minuty względem pola powierzchni ciała (BSA)
Wskaźnik szacowanego zużycia tlenu (VO ₂ le)	Szacowana ilość tlenu zużywana przez ciało w ciągu minuty względem pola powierzchni ciała (BSA)

Tabela 1-9 O	ois p	arametrów	przewodu	do o	ksvmetrii	HemoSi	ohere
			p. 2011 0 4 4				

1.6.4 Moduł do oksymetrii tkankowej HemoSphere

Moduł do oksymetrii tkankowej HemoSphere umożliwia monitorowanie oksymetrii tkankowej (StO₂) za pomocą modułu oksymetru tkankowego ForeSight Elite (FSM) oraz zgodnych czujników do oksymetrii tkankowej. Moduł do

oksymetrii tkankowej HemoSphere pasuje do standardowego gniazda modulu. Monitorowanie za pomocą modulu do oksymetrii tkankowej HemoSphere to funkcja zaawansowana. Aktywacja dostępna jest wyłącznie w określonych obszarach. W celu uzyskania dodatkowych informacji na temat włączania tej zaawansowanej funkcji należy skontaktować się z lokalnym przedstawicielem firmy Edwards. Więcej informacji — patrz rozdział 12, *Monitorowanie za pomocą modulu do oksymetrii tkankowej HemoSphere*. Tabela 1-10 zawiera parametry dostępne w trakcie korzystania z modułu do oksymetrii tkankowej HemoSphere.

Tabela 1-10 Opis parametrów modułu do oksymetrii tkankowej HemoSphere

Parametr	Opis	Technologia
Oksymetria tkankowa (StO ₂)	Bezwzględne wysycenie tkanek tlenem mierzone na powierzchni struktury anatomicznej poniżej czujnika	Wykrywanie odbitego światła w zakresie bliskiej podczerwieni za pomocą czujnika medycznego CAS

1.6.5 Dokumentacja i materiały szkoleniowe

Dostępna dokumentacja i materiały szkoleniowe dotyczące zaawansowanego monitora HemoSphere obejmują:

- Podręcznik operatora zaawansowanego monitora HemoSphere
- Skrócony przewodnik do zaawansowanego monitora HemoSphere
- Instrukcja obsługi przewodu wyjściowego sygnału ciśnienia HemoSphere
- Instrukcja obsługi akumulatora HemoSphere
- Instrukcja obsługi stojaka na kółkach HemoSphere
- Instrukcja obsługi uchwytu do oksymetrii HemoSphere

Instrukcje obsługi są dołączone do elementów zaawansowanego monitora HemoSphere. Patrz tabela B-1 "Elementy zaawansowanego monitora HemoSphere" na stronie 274. W celu uzyskania dalszych informacji na temat dostępnej dokumentacji i szkoleń dotyczących zaawansowanego monitora HemoSphere należy skontaktować się z lokalnym przedstawicielem firmy Edwards lub z działem pomocy technicznej firmy Edwards. Patrz dodatek F, *Konserwacja systemu, serwis i pomoc.*

1.7 Konwencje stosowane w podręczniku

Tabela 1-11 zawiera konwencje stosowane w niniejszym podręczniku.

Konwencja	Opis	
Pogrubienie	Tekst zapisany pogrubioną czcionką wskazuje termin dotyczący oprogramowania. To słowo lub fraza wyświetli się na ekranie w pokazany sposób.	
Pogrubiony przycisk	Przycisk na ekranie dotykowym umożliwiający dostęp do opcji wyświetlanej pogrubioną czcionką. Na przykład przycisk Przegląd wyświetla się na ekranie jako: Przegląd	
→	Strzałka wyświetla się między dwoma opcjami menu na ekranie, które są kolejno wybierane przez operatora.	
Č.	Ikona umożliwia dostęp na ekranie dotykowym do menu lub wyświetlanych graficznych elementów nawigacji. Pełna lista ikon wyświetlanych przez zaawansowany monitor HemoSphere — patrz tabela 2-1 na stronie 48.	
Ikona Kalibracja oksymetrii	Pogrubiony tekst ikony menu wskazuje, że ikona jest skojarzona z terminem lub wyrażeniem dotyczącym oprogramowania wyświetlanym na ekranie. Na przykład ikona Kalibracja oksymetrii pojawia się na ekranie jako: Kalibracja oksymetrii	

Tabela 1-11 Konwencje stosowane w podręczniku operatora

1.8 Skróty stosowane w niniejszym podręczniku

Tabela 1-12 Akronimy, skróty

Skrót	Definicja
A/D	Analogowy/cyfrowy
ART	Systemowe ciśnienie tętnicze
BSA	Pole powierzchni ciała
BT	Temperatura krwi
CaO ₂	Zawartość tlenu we krwi tętniczej
CI	Wskaźnik sercowy
CO	Pojemność minutowa serca
ссо	Ciągła pojemność minutowa serca (stosowana podczas opisywania określonych cewników Swan-Ganz i przewodu CCO pacjenta)
CPI	Wskaźnik wydajności serca
СРО	Moc pojemności minutowej
CVP	Ośrodkowe ciśnienie żylne
DIA _{ART}	Systemowe rozkurczowe ciśnienie tętnicze
DIA _{PAP}	Ciśnienie rozkurczowe w tętnicy płucnej
DO ₂	Podaż tlenu
DO ₂ I	Wskaźnik podaży tlenu
dP/dt	Nachylenie fali skurczowej (maksymalne odchylenie w górę krzywej ciśnienia tętniczego)
DPT	Przetwornik ciśnienia do jednorazowego użytku
Ea _{dyn}	Podatność dynamiczna tętnic
EDV	Objętość późnorozkurczowa
EDVI	Wskaźnik objętości późnorozkurczowej
ESV	Objętość późnoskurczowa
ESVI	Wskaźnik objętości późnoskurczowej
efu	Jednostka frakcji wyrzutowej
FSE	ForeSight Elite
FSM	Moduł ForeSight Elite
FRT	Test odpowiedzi na podane płyny
FT-CO	Pojemność minutowa serca automatycznie skalibrowana w oparciu o pomiar ciśnienia tętniczego przy użyciu czujnika FloTrac
GDT	Leczenie ukierunkowane na cel
Hct	Hematokryt
HIS	Szpitalne systemy informacyjne
HGB	Hemoglobina
HPI	Acumen Hypotension Prediction Index (Wskaźnik predykcji niedociśnienia)
HR	Częstość akcji serca
HR śr.	Średnia częstość akcji serca

Tabela 1-12 Akronimy, skróty (ciąg dalszy)

Skrót	Definicja
IA	Analiza interwencji
iCl	Chwilowy wskaźnik sercowy
iCO	Przerywana pojemność minutowa serca
IEC	Międzynarodowa Komisja Elektrotechniczna
IT	Temperatura iniektatu
LED	Dioda elektroluminescencyjna
LVSWI	Wskaźnik pracy wyrzutowej lewej komory
MAP	Średnie ciśnienie tętnicze
MPAP	Średnie ciśnienie w tętnicy płucnej
OR	Sala operacyjna
PA	Tętnica płucna
PAP	Ciśnienie w tętnicy płucnej
PaO ₂	Ciśnienie parcjalne tlenu we krwi tętniczej
PAWP	Ciśnienie zaklinowania tętnicy płucnej
PPV	Wahanie ciśnienia tętniczego
PR	Częstość tętna
POST	Test poprawności działania systemu
PvO ₂	Ciśnienie parcjalne tlenu we krwi żylnej
PVR	Opór naczyń płucnych
PVRI	Wskaźnik oporu naczyń płucnych
RV	Prawa komora
RVEF	Frakcja wyrzutowa prawej komory
RVSWI	Wskaźnik pracy wyrzutowej prawej komory
sCl	Wskaźnik sercowy (STAT)
sCO	Pojemność minutowa serca (STAT)
ScvO ₂	Oksymetria żył centralnych
sEDV	Objętość późnorozkurczowa (STAT)
sEDVI	Wskaźnik objętości późnorozkurczowej (STAT)
SpO ₂	Wysycenie krwi tlenem w pulsoksymetrii
SQI	Wskaźnik jakości sygnału
sRVEF	Frakcja wyrzutowa prawej komory (STAT)
ST	Temperatura powierzchni
STAT	Szybkie oszacowanie wartości parametru
StO ₂	Wysycenie tkanek tlenem
SV	Obietość wyrzutowa
SVI	Wskaźnik obietości wyrzutowej
SvO ₂	Wysycenie tlenem krwi żylnej mieszanej
SVR	Systemowy opór paczyniowy
SVRI	Wskaźnik systemowego oporu naczyniowego
SVV	Zmienność objetości wyrzutowei

Tabela 1-12 Akronimy, skróty (ciąg dalszy)

Skrót	Definicja
SYS _{ART}	Systemowe skurczowe ciśnienie tętnicze
SYS _{PAP}	Ciśnienie skurczowe w tętnicy płucnej
Dotknięcie	Interakcja z zaawansowanym monitorem HemoSphere przez dotknięcie ekranu.
TD	Termodylucja
USB	Uniwersalna magistrala szeregowa
VO ₂	Zużycie tlenu
VO ₂ I	Wskaźnik zużycia tlenu
VO ₂ e	Szacowane zużycie tlenu
VO ₂ le	Wskaźnik szacowanego zużycia tlenu

2

Bezpieczeństwo i symbole

Spis treści

Definicje wyrażeń wskazujących zagrożenie	.35
Ostrzeżenia	.36
Przestrogi	.43
Symbole interfejsu użytkownika	.48
Symbole na etykietach produktu	.51
Obowiązujące normy	.52
Funkcjonowanie zasadnicze zaawansowanego monitora HemoSphere	.53

2.1 Definicje wyrażeń wskazujących zagrożenie

2.1.1 Ostrzeżenie

Ostrzeżenie informuje o pewnych działaniach lub sytuacjach, które mogłyby spowodować obrażenia ciała lub śmierć.

OSTRZEŻENIE W ten sposób ostrzeżenia występują w tekście podręcznika.

2.1.2 Przestroga

Przestroga informuje o pewnych działaniach lub sytuacjach, które mogą uszkodzić sprzęt, dostarczyć niedokładnych danych lub unieważnić procedurę.

PRZESTROGA W ten sposób przestrogi występują w tekście podręcznika.

2.1.3 Uwaga

Uwaga służy do podkreślenia przydatnych informacji dotyczących funkcji lub procedury.

UWAGA W ten sposób uwagi występują w tekście podręcznika.

2.2 Ostrzeżenia

Poniżej przedstawiono ostrzeżenia stosowane w instrukcji obsługi zaawansowanego monitora HemoSphere. Znajdują się tam, gdzie jest to uzasadnione ze względu na opisywaną funkcję lub procedurę.

- Przed użyciem zaawansowanego monitora HemoSphere firmy Edwards należy uważnie przeczytać niniejszą instrukcję obsługi.
- Należy również zapoznać się z instrukcjami użytkowania dołączonymi do wszystkich zgodnych akcesoriów przed ich użyciem z zaawansowanym monitorem HemoSphere.
- Aby zapobiec powstaniu obrażeń ciała pacjenta lub użytkownika, uszkodzeniu platformy oraz niedokładnym pomiarom, nie należy stosować żadnych uszkodzonych ani niezgodnych z platformą akcesoriów, elementów ani przewodów.
- Niewłaściwe używanie zaawansowanego monitora HemoSphere może stanowić zagrożenie dla pacjenta. Przed rozpoczęciem korzystania z platformy należy dokładnie przeczytać część "Ostrzeżenia" w rozdziale 2 niniejszego podręcznika. (rozdział 1)
- Zaawansowany monitor HemoSphere jest przeznaczony wyłącznie do oceny stanu pacjenta. Musi być używany łącznie z przyłóżkowym monitorem parametrów fizjologicznych i/lub obserwacją klinicznych objawów przedmiotowych i podmiotowych pacjenta. Jeżeli wartości hemodynamiczne uzyskane z urządzenia nie są zgodne ze stanem klinicznym pacjenta, należy rozważyć przeprowadzenie procedury rozwiązywania problemów przed wdrożeniem leczenia. (rozdział 1)
- Sygnał wejściowy EKG i wszystkie parametry uzyskiwane dzięki pomiarom częstości akcji serca nie były oceniane u dzieci i dlatego nie są dostępne dla tej populacji pacjentów. (rozdział 1)
- Ryzyko porażenia prądem elektrycznym! Nie podejmować prób podłączania lub odłączania przewodów systemu mokrymi rękami. Przed odłączeniem przewodów systemu należy upewnić się, że ręce są suche. (rozdział 3)
- Zagrożenie wybuchem! Nie używać zaawansowanego monitora HemoSphere w obecności mieszanki łatwopalnych środków znieczulających z powietrzem, tlenem lub podtlenkiem azotu. (rozdział 3)
- Ten produkt zawiera elementy metalowe. NIE używać w środowisku rezonansu magnetycznego (RM). (rozdział 3)
- Należy upewnić się, że zaawansowany monitor HemoSphere jest bezpiecznie ustawiony lub zamontowany oraz że odpowiednio rozmieszczono wszystkie przewody urządzenia i akcesoriów, aby zminimalizować ryzyko wystąpienia obrażeń ciała pacjentów i użytkowników oraz uszkodzenia sprzętu. (rozdział 3)
- Nie stawiać dodatkowego sprzętu ani przedmiotów na wierzchu zaawansowanego monitora HemoSphere. (rozdział 3)
- Monitor HemoSphere należy ustawić w pozycji pionowej, aby zapewnić stopień ochrony IPX1. (rozdział 3)
- Nie dopuszczać do zachlapania ekranu monitora cieczą. Nagromadzona ciecz może całkowicie uniemożliwić działanie ekranu dotykowego. (rozdział 3)
- Nie ustawiać monitora w sposób utrudniający dostęp do portów na tylnym panelu ani przewodu zasilania. (rozdział 3)
- Sprzęt jest przeznaczony do użytku z urządzeniami chirurgicznymi o wysokiej częstotliwości. Nieprawidłowe pomiary parametrów mogą być spowodowane zakłóceniami pochodzącymi z urządzeń chirurgicznych o wysokiej częstotliwości. W celu zmniejszenia zagrożeń, jakie mogą wynikać z używania sprzętu chirurgicznego o wysokiej częstotliwości, należy używać wyłącznie nieuszkodzonych przewodów pacjenta i akcesoriów podłączonych zgodnie z niniejszą instrukcją obsługi. (rozdział 3)
- System ten jest przeznaczony do użytku z defibrylatorami. Aby zapewnić prawidłowe działanie zabezpieczone przed wyładowaniami podczas defibrylacji, należy używać wyłącznie nieuszkodzonych przewodów pacjenta i akcesoriów podłączonych zgodnie z niniejszą instrukcją obsługi. (rozdział 3)
- Wszystkie urządzenia wskazane w normie IEC/EN 60950, w tym drukarki, należy ustawić w odległości co najmniej 1,5 metra od łóżka pacjenta. (rozdział 3)
- Upewnić się, że bateria jest w pełni umieszczona, a klapka komory baterii odpowiednio zatrzaśnięta. Jeśli bateria wypadnie, może spowodować obrażenia ciała pacjenta lub lekarza. (rozdział 3)
- W zaawansowanym monitorze HemoSphere należy używać wyłącznie baterii zatwierdzonych przez firmę Edwards. Nie ładować zestawu baterii poza monitorem. Może to spowodować uszkodzenie baterii lub obrażenia ciała użytkownika. (rozdział 3)
- Zaleca się korzystanie z zaawansowanego monitora HemoSphere z włożoną baterią, aby zapobiec przerwaniu monitorowania w przypadku utraty zasilania sieciowego. (rozdział 3)
- Jeśli dojdzie do utraty zasilania lub bateria się wyczerpie, monitor przeprowadzi kontrolowaną procedurę wyłączania. (rozdział 3)
- Nie używać zaawansowanej platformy do monitorowania HemoSphere, jeśli osłona wejścia przewodu zasilania nie jest przymocowana. Niespełnienie tego warunku może spowodować wniknięcie płynu. (rozdział 3)
- Nie używać przedłużaczy ani listew z wieloma gniazdami do podłączania przewodu zasilania. Nie używać innych niż dostarczony odłączalnych przewodów zasilania. (rozdział 3)
- Aby uniknąć ryzyka porażenia prądem elektrycznym, zaawansowany monitor HemoSphere można podłączać wyłącznie do sieci zasilania z uziemieniem. Nie używać adapterów zasilania z trzech bolców na dwa bolce. (rozdział 3)
- Niezawodność uziemienia można osiągnąć wyłącznie po podłączeniu urządzenia do gniazd oznaczonych jako "hospital only", "hospital grade" lub równoważnego gniazda odpowiedniego do stosowania w placówkach szpitalnych. (rozdział 3)
- Odłączyć monitor od źródła zasilania prądem przemiennym, wyjmując wtyczkę przewodu zasilania z gniazda sieciowego. Naciśnięcie przycisku Włącz/Wyłącz na monitorze nie odłącza systemu od źródła zasilania prądem przemiennym. (rozdział 3)
- Stosować wyłącznie akcesoria, przewody i elementy zaawansowanego monitora HemoSphere, które zostały dostarczone i oznakowane przez firmę Edwards. Używanie innych nieoznakowanych akcesoriów, przewodów i elementów może wpłynąć na bezpieczeństwo pacjenta i dokładność pomiaru. (rozdział 3)
- Po rozpoczęciu nowej sesji pacjenta należy sprawdzić domyślne zakresy wysokich/niskich wartości alarmów fizjologicznych, aby upewnić się, że są one odpowiednie dla tego pacjenta. (rozdział 6)

- Po podłączeniu nowego pacjenta do zaawansowanego monitora HemoSphere należy użyć polecenia Nowy pacjent lub wyczyścić profil danych pacjenta. W przeciwnym wypadku na ekranach historii mogą wyświetlić się dane poprzedniego pacjenta. (rozdział 6)
- Analogowe porty komunikacyjne zaawansowanego monitora HemoSphere znajdują się na jednej płaszczyźnie odizolowanej od elektronicznych części interfejsu cewnika. W przypadku podłączania kilku urządzeń do zaawansowanego monitora HemoSphere wszystkie urządzenia powinny być wyposażone w izolację zasilania, aby nie naruszyć izolacji elektrycznej żadnego z nich. (rozdział 6)
- Ryzyko i prąd upływowy ostatecznej konfiguracji systemu muszą być zgodne z normą IEC 60601-1:2005/A1:2012. Zapewnienie tej zgodności jest obowiązkiem użytkownika. (rozdział 6)
- Sprzęt dodatkowy podłączony do monitora musi spełniać wymogi normy IEC/EN 60950 dla sprzętu do przetwarzania danych lub normy IEC 60601-1:2005/A1:2012 dla sprzętu elektromedycznego. Wszystkie konfiguracje sprzętu muszą być zgodne z wymogami systemowymi określonymi w normie IEC 60601-1:2005/A1:2012. (rozdział 6)
- Przełączając się na inny monitor przyłóżkowy, należy zawsze sprawdzić, czy wymienione wartości domyślne są nadal prawidłowe. W razie konieczności można przeprowadzić kalibrację lub ponownie skonfigurować zakres napięcia i odpowiadający mu zakres parametrów. (rozdział 6)
- Nie należy wyłączać alarmów dźwiękowych w sytuacji, gdy mogłoby to narazić pacjenta na niebezpieczeństwo. (rozdział 7)
- Nie obniżać głośności alarmu do poziomu uniemożliwiającego odpowiednie śledzenie alarmów.
 W przeciwnym razie można narazić pacjenta na niebezpieczeństwo. (rozdział 7)
- Wizualne i dźwiękowe alarmy fizjologiczne są aktywowane wyłącznie, gdy parametr został skonfigurowany na ekranach jako kluczowy (parametry 1–8 wyświetlane na kafelkach parametrów). Jeśli parametr nie został wybrany i wyświetlony jako kluczowy, nie będą dla niego wyzwalane fizjologiczne alarmy dźwiękowe ani wizualne. (rozdział 7)
- Należy upewnić się, że tryb demonstracyjny nie jest włączony tw warunkach klinicznych, aby nie dopuścić do pomylenia danych symulowanych z danymi klinicznymi. (rozdział 7)
- Nie używać zaawansowanego monitora HemoSphere jako części rozproszonego systemu alarmowego. Zaawansowany monitor HemoSphere nie obsługuje systemów zdalnego monitorowania alarmów ani zarządzania alarmami. Dane są rejestrowane i przesyłane wyłącznie w celu dokumentowania danych klinicznych. (rozdział 8)
- Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy moduł HemoSphere Swan-Ganz (podłączany do części aplikacyjnej, odpornej na defibrylację) jest podłączony do zgodnej platformy do monitorowania. Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób nieopisany w niniejszej instrukcji może nie spełniać wymogów tej normy. Stosowanie urządzenia niezgodnie z instrukcją może zwiększyć ryzyko porażenia prądem elektrycznym pacjenta/operatora. (rozdział 9)
- Nie modyfikować w żaden sposób, nie naprawiać produktu ani nie wprowadzać w nim zmian. Naprawianie, modyfikowanie lub wprowadzanie zmian może wpływać na bezpieczeństwo pacjenta/operatora i/lub na działanie produktu. (rozdział 9)

•

- Monitorowanie pojemności minutowej serca należy zawsze przerwać w sytuacji zatrzymania przepływu krwi wokół włókna termicznego. Sytuacje kliniczne, w których należy przerwać monitorowanie CCO, obejmują między innymi następujące stany: • okresy, w których u pacjenta jest stosowane krążenie pozaustrojowe; • częściowe wycofanie cewnika w taki sposób, że termistor nie znajduje się w tętnicy plucnej lub • usunięcie cewnika z ciała pacjenta. (rozdział 9)
- PACJENCI ZE STYMULATOREM SERCA mierniki częstości mogą nadal rejestrować częstość stymulatora podczas zatrzymania akcji serca lub niektórych arytmii. Wyświetlana częstość akcji serca nie jest całkowicie miarodajna. Konieczna jest ścisła obserwacja pacjentów ze stymulatorem serca. Tabela A-5 na stronie 267 zawiera opis wyświetlania funkcji odrzucania odczytu tętna za pomocą tego przyrządu. (rozdział 9)
- W przypadku pacjentów wymagających stymulacji wewnętrznej lub zewnętrznej nie należy stosować zaawansowanej platformy monitorowania HemoSphere do pozyskiwania częstości akcji serca i jej parametrów pochodnych w poniższych warunkach: wartości wyjściowe tętna zsynchronizowane ze stymulatorem wskazywane przez monitor przyłóżkowy uwzględniają odczyt tętna ze stymulatora, ale charakterystyka wykracza poza dane techniczne funkcji odrzucania odczytu tętna ze stymulatora serca przedstawione w tabela A-5; nie można określić charakterystyki wartości wyjściowych tętna zsynchronizowanych ze stymulatorem z monitora przyłóżkowego. (rozdział 9)
- Interpretując parametry pochodne, takie jak SV, EDV, RVEF, i związane z nimi wskaźniki, należy zwrócić uwagę na wszelkie rozbieżności w częstości akcji serca (HRśr) między wartością HR monitora pacjenta a wyświetlonym zapisem EKG. (rozdział 9)
- Nie wolno wyjaławiać ani ponownie wykorzystywać żadnego czujnika FloTrac, Acumen IQ, przetwornika TruWave ani cewnika; należy zapoznać się z instrukcją stosowania cewnika. (rozdział 10)
- Nie wolno używać czujnika FloTrac, Acumen IQ, przetwornika TruWave ani cewnika, który jest uszkodzony lub ma odsłonięte styki elektryczne. (rozdział 10)
- W celu uzyskania szczegółowych instrukcji dotyczących umieszczenia i stosowania cewnika oraz zapoznania się z odpowiednimi OSTRZEŻENIAMI, PRZESTROGAMI i specyfikacjami należy zapoznać się z instrukcją użytkowania dołączoną do każdego cewnika. (rozdział 10)
- W przypadku niekorzystania z przewodu ciśnienia należy chronić odsłonięte złącze przewodu przed stycznością z płynami. Zawilgocenie złącza może prowadzić do nieprawidłowego działania lub niedokładnych pomiarów ciśnienia. (rozdział 10)
- Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy przewód ciśnienia HemoSphere (wyposażenie dodatkowe części aplikacyjnej, odporne na defibrylację) jest podłączony do zgodnej platformy do monitorowania. Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób nieopisany w niniejszej instrukcji może nie spełniać wymogów tej normy. Stosowanie urządzenia niezgodnie z instrukcją może zwiększyć ryzyko porażenia prądem elektrycznym pacjenta/operatora. (rozdział 10)
- Platformy zaawansowanego monitorowania HemoSphere nie należy używać jako monitora częstości tętna ani ciśnienia krwi. (rozdział 10)

- Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy przewód do oksymetrii HemoSphere (wyposażenie dodatkowe części aplikacyjnej, odpornej na defibrylację) jest podłączony do zgodnej platformy do monitorowania. Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób nieopisany w niniejszej instrukcji może nie spełniać wymogów tej normy. Stosowanie urządzenia niezgodnie z instrukcją może zwiększyć ryzyko porażenia prądem elektrycznym pacjenta/operatora. (rozdział 11)
- Nie owijać tkaniną korpusu przewodu do oksymetrii ani nie umieszczać go bezpośrednio na skórze pacjenta. Powierzchnia nagrzewa się (do 45°C) i musi oddawać ciepło, aby utrzymać poziom temperatury wewnętrznej. Jeżeli temperatura wewnętrzna przekroczy ustalony limit, wygenerowany zostanie stan usterki oprogramowania. (rozdział 11)
- Przed dotknięciem opcji Tak w celu przywołania danych oksymetrii należy potwierdzić, że wyświetlone dane należą do bieżącego pacjenta. Przywołanie niepoprawnych danych kalibracyjnych oksymetrii oraz danych demograficznych pacjenta będzie skutkować niedokładnymi pomiarami. (rozdział 11)
- Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy moduł do oksymetrii tkankowej HemoSphere (podłączany do części aplikacyjnej, odporny na defibrylację) jest podłączony do zgodnej platformy do monitorowania. Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób nieopisany w niniejszej instrukcji może nie spełniać wymogów tej normy. Stosowanie urządzenia niezgodnie z instrukcją może zwiększyć ryzyko porażenia prądem elektrycznym pacjenta/operatora. (rozdział 12)
- Przed podłączeniem należy sprawdzić wszystkie przewody modulu ForeSight Elite pod kątem uszkodzeń. W przypadku zauważenia jakichkolwiek uszkodzeń nie wolno używać modułu do czasu przeprowadzenia jego serwisu lub wymiany. Skontaktować się z działem pomocy technicznej firmy Edwards. Istnieje ryzyko, że uszkodzone części mogą obniżyć wydajność modułu lub spowodować zagrożenie bezpieczeństwa. (rozdział 12)
- Aby wyeliminować jakiekolwiek ryzyko przenoszenia zanieczyszczeń między pacjentami, moduł ForeSight Elite oraz przewody należy czyścić każdorazowo po zakończeniu stosowania tych elementów u konkretnego pacjenta. (rozdział 12)
- W przypadku poważnego zanieczyszczenia modulu lub przewodów krwią albo innymi płynami ustrojowymi w celu ograniczenia ryzyka przenoszenia zanieczyszczeń i zakażeń krzyżowych te elementy należy zdezynfekować. Jeśli nie można zdezynfekować modułu ForeSight Elite lub przewodów, wówczas należy je poddać serwisowaniu, wymienić albo wyrzucić. Skontaktować się z działem pomocy technicznej firmy Edwards. (rozdział 12)
- Aby ograniczyć ryzyko uszkodzenia elementów wewnętrznych zespołów przewodów w module ForeSight Elite, należy unikać nadmiernego pociągania i zginania przewodów modułu oraz poddawania ich innym rodzajom obciążeń. (rozdział 12)
- Nie modyfikować w żaden sposób, nie naprawiać produktu ani nie wprowadzać w nim zmian. Naprawianie, modyfikowanie lub wprowadzanie zmian może wpływać na bezpieczeństwo pacjenta/operatora i/lub na działanie produktu. (rozdział 12)
- Czujniki nie są sterylne i dlatego nie należy ich umieszczać na skórze z otarciami, skórze popękanej ani poranionej. Zaleca się ostrożność w przypadku nakładania czujników na miejsca z delikatną skórą. Umieszczanie czujników, przyklejanie plastra lub przyciskanie takiego miejsca może zmniejszyć krążenie i/lub spowodować pogorszenie stanu skóry. (rozdział 12)

- Nie umieszczać czujników na miejscach ze słabą perfuzją. Aby zapewnić najlepsze przyleganie czujnika, należy unikać powierzchni skóry z nierównościami. Nie umieszczać czujników nad miejscami z wodobrzuszem, zapaleniem tkanki łącznej, odmą czaszkową ani obrzękiem. (rozdział 12)
- Jeśli będą wykonywane zabiegi elektrokauteryzacji, wówczas czujniki i elektrody elektrokauteryzacyjne należy umieszczać w jak największych odstępach, aby zapobiec niepożądanym oparzeniom skóry. Zaleca się zachowanie odległości co najmniej 15 cm (6 cali). (rozdział 12)
- Z modulem ForeSight Elite można używać wyłącznie akcesoria dostarczone przez firmę Edwards. Akcesoria firmy Edwards zapewniają bezpieczeństwo pacjenta i zachowują integralność, dokładność i kompatybilność elektromagnetyczną modulu ForeSight Elite. Podłączenie czujnika innego niż wyprodukowany przez firmę Edwards spowoduje odpowiedni alert w tym kanale, a ponadto nie zostanie zarejestrowana żadna wartość StO2. (rozdział 12)
- Czujniki są przeznaczone do użytku u jednego pacjenta i nie mogą być przygotowywane do ponownego użycia — ponownie użyte czujniki stwarzają zagrożenie przeniesienia zanieczyszczeń lub zakażenia. (rozdział 12)
- Dla każdego pacjenta należy używać nowego czujnika, a po użyciu należy go wyrzucić. Utylizacja powinna odbywać się zgodnie z przepisami obowiązującymi lokalnie w szpitalu i instytucji. (rozdział 12)
- Jeśli czujnik jest w jakikolwiek sposób uszkodzony, nie wolno go używać. (rozdział 12)
- Zawsze należy zapoznać się z informacjami na opakowaniu czujnika. (rozdział 12)
- Podczas nakładania czujników zachować najwyższą ostrożność. Obwody czujników są wykonane z materiałów przewodzących i nie mogą się stykać z żadnymi innymi uziemionymi częściami przewodzącymi — mogą się stykać wyłącznie z monitorami EEG lub monitorami entropii. Takie zetknięcie przerywa izolację pacjenta i likwiduje ochronę zapewnianą przez czujnik. (rozdział 12)
- Nieprawidłowe nałożenie czujników może spowodować niedokładne pomiary. Czujniki niewłaściwie nałożone lub częściowo zerwane mogą spowodować albo zwiększenie, albo zmniejszenie odczytywanego poziomu wysycenia tlenem. (rozdział 12)
- Czujnika nie należy umieszczać w takim miejscu, w którym będzie obciążany masą ciała pacjenta. Przedłużone okresy nacisku (spowodowane na przykład umieszczeniem przylepca na czujniku albo tym, że pacjent obciąża czujnik, leżąc na nim) powodują nacisk czujnika na skórę, co może prowadzić do obrażeń skóry i obniżenia sprawności czujnika. (rozdział 12)
- Miejsca zamocowania czujników należy sprawdzać nie rzadziej niż co 12 godzin w celu zmniejszenia ryzyka nieprawidłowego przyklejenia czujnika, upośledzenia krążenia i naruszenia ciągłości skóry. Jeśli stan krążenia lub ciągłość skóry zostały naruszone, czujnik należy umieścić w innym miejscu. (rozdział 12)
- Do modułu ForeSight Elite nie należy podłączać więcej niż jednego pacjenta, ponieważ takie podłączenie przerywa izolację pacjenta i likwiduje ochronę zapewnianą przez czujnik. (rozdział 12)

- Moduł został zaprojektowany w taki sposób, aby sprzyjać zapewnianiu bezpieczeństwa pacjenta. Wszystkie części modułu są "odpornymi na defibrylację częściami aplikacyjnymi typu BF", są chronione przed skutkami wyładowania defibrylatora i mogą pozostać przyczepione do ciała pacjenta. W trakcie wyładowania defibrylatora i nie dłużej niż dwadzieścia (20) sekund po nim odczyty modułu mogą być niedokładne. (rozdział 12)
- W przypadku korzystania z tego sprzętu z defibrylatorem nie jest wymagane podejmowanie żadnych osobnych działań, ale w celu zapewnienia odpowiedniej ochrony przed skutkami działania defibrylatora należy używać wyłącznie czujników dostarczanych przez firmę Edwards. (rozdział 12)
- Podczas defibrylacji nie należy dotykać ciała pacjenta, ponieważ może to spowodować poważne obrażenia lub zgon. (rozdział 12)
- Jeśli dokładność jakiejkolwiek wartości wyświetlanej na monitorze budzi wątpliwości, należy w inny sposób określić parametry życiowe pacjenta. Działanie systemu alarmowego związanego z monitorowaniem pacjenta musi być regularnie sprawdzane oraz zawsze w przypadku wątpliwości dotyczących integralności produktu. (rozdział 12)
- Działanie modułu ForeSight Elite należy testować co najmniej raz na 6 miesięcy zgodnie z podręcznikiem serwisowym HemoSphere. Nieprzestrzeganie tego zalecenia może prowadzić do obrażeń ciała. Jeśli moduł nie odpowiada, nie wolno go używać do czasu przeprowadzenia jego przeglądu lub wymiany. Dane kontaktowe działu pomocy technicznej znajdują się na wewnętrznej stronie okładki. (rozdział 12)
- Funkcja Wskaźnik predykcji niedociśnienia (Acumen HPI) nie powinna być jedyną podstawą leczenia pacjentów. Przed rozpoczęciem leczenia zaleca się sprawdzenie stanu hemodynamicznego pacjenta. (rozdział 13)
- Stosować wyłącznie zatwierdzone akcesoria, przewody i elementy zaawansowanego monitora HemoSphere, które zostały dostarczone i oznakowane przez firmę Edwards. Używanie niezatwierdzonych akcesoriów, przewodów i elementów może wpłynąć na bezpieczeństwo pacjenta i dokładność pomiaru. (dodatek B)
- Zaawansowany monitor HemoSphere nie zawiera części przeznaczonych do serwisowania przez użytkownika. Zdjęcie osłony lub demontaż jakichkolwiek elementów spowoduje narażenie na działanie niebezpiecznego napięcia. (dodatek F)
- Ryzyko porażenia prądem elektrycznym lub pożaru! Nie zanurzać zaawansowanego monitora HemoSphere, modułów ani przewodów platformy w jakimkolwiek ciekłym roztworze. Nie dopuszczać do przedostania się jakiegokolwiek płynu do wnętrza przyrządu. (dodatek F)
- W żadnym wypadku nie wolno czyścić ani przeprowadzać prac konserwacyjnych modułu FSM, kiedy jest on używany do monitorowania pacjenta. Moduł musi być wyłączony, a przewód zasilający zaawansowanego monitora HemoSphere odłączony, lub moduł musi być odłączony od monitora, a czujniki wyjęte z ciała pacjenta. (dodatek F)
- Przed rozpoczęciem czyszczenia lub konserwacji sprawdzić moduł FSM, przewody, czujniki i inne akcesoria pod kątem uszkodzeń. Sprawdzić przewody pod kątem pęknięć oraz wystrzępień, a także wygiętych lub złamanych wtyków. W przypadku zauważenia jakichkolwiek uszkodzeń nie wolno używać modułu do czasu przeprowadzenia jego przeglądu, naprawy lub wymiany. Skontaktować się z działem pomocy technicznej firmy Edwards. (dodatek F)
- Nieprzestrzeganie tej procedury grozi poważnymi obrażeniami ciała lub zgonem. (dodatek F)

- Zagrożenie wybuchem! Nie otwierać baterii, nie wrzucać jej do ognia, nie przechowywać w wysokiej temperaturze ani nie powodować zwarcia. Mogłoby to doprowadzić do zapłonu baterii, eksplozji, wycieku elektrolitu lub silnego nagrzania, powodując poważne obrażenia ciała lub zgon. (dodatek F)
- Zastosowanie akcesoriów, czujników lub przewodów innych niż podano może skutkować zwiększeniem poziomu emisji elektromagnetycznej lub obniżeniem odporności elektromagnetycznej. (dodatek G)
- Zabronione są jakiekolwiek modyfikacje zaawansowanego monitora HemoSphere. (dodatek G)
- Przenośne i mobilne urządzenia do komunikacji radiowej oraz inne źródła zakłóceń elektromagnetycznych, takie jak wykrywacze metalu, urządzenia do diatermii, litotrypsji i identyfikacji radiowej, a także elektromagnetyczne systemy przeciwkradzieżowe, mogą potencjalnie wpływać na cały elektroniczny sprzęt medyczny, w tym na zaawansowany monitor HemoSphere. Wytyczne odnośnie do odpowiedniej odległości urządzeń do komunikacji od zaawansowanego monitora HemoSphere zawiera tabela G-3. Oddziaływanie innych nadajników RF nie jest znane i może zakłócać funkcjonowanie i zmniejszać bezpieczeństwo platformy do monitorowania HemoSphere. (dodatek G)

2.3 Przestrogi

Poniżej przedstawiono przestrogi stosowane w instrukcji obsługi zaawansowanego monitora HemoSphere. Znajdują się tam, gdzie jest to uzasadnione ze względu na opisywaną funkcję lub procedurę.

- Prawo federalne (USA) zezwala na sprzedaż niniejszego wyrobu tylko przez lekarzy lub na ich zlecenie.
- Przed użyciem zaawansowanego monitora HemoSphere oraz wszystkich akcesoriów i urządzeń wykorzystywanych razem z monitorem należy je skontrolować pod kątem uszkodzeń. Do uszkodzeń można zaliczyć pęknięcia, rysy, wgniecenia, odkryte styki elektryczne oraz wszelkie inne oznaki, że stan obudowy przewodu mógł się pogorszyć.
- Podczas podłączania lub odłączania przewodów zawsze chwytać za wtyczkę, a nie za przewód. Nie skręcać ani nie zginać złączy. Przed użyciem potwierdzić, że wszystkie czujniki oraz przewody są odpowiednio i całkowicie podłączone. (rozdział 3)
- Aby uniknąć uszkodzenia danych w zaawansowanym monitorze HemoSphere, należy zawsze odłączać przewód CCO pacjenta oraz przewód do oksymetrii przed użyciem defibrylatora. (rozdział 3)
- Nie wystawiać zaawansowanego monitora HemoSphere na działanie skrajnych temperatur. Dane techniczne dotyczące środowiska pracy zawiera dodatek A. (rozdział 3)
- Nie pozostawiać zaawansowanego monitora HemoSphere w brudnym lub zakurzonym otoczeniu. (rozdział 3)
- Nie zasłaniać otworów wentylacyjnych zaawansowanego monitora HemoSphere. (rozdział 3)
- Nie używać zaawansowanego monitora HemoSphere w otoczeniu, w którym silne światło utrudnia odczytanie ekranu LCD. (rozdział 3)
- Nie używać monitora jako urządzenia przenośnego. (rozdział 3)
- Podczas przenoszenia urządzenia upewnić się, że wyłączono zasilanie, a wtyczkę przewodu zasilania odłączono od gniazda. (rozdział 3)

- W przypadku podłączania zaawansowanego monitora HemoSphere do urządzeń zewnętrznych należy zapoznać się z instrukcjami obsługi tych urządzeń. Przed zastosowaniem klinicznym należy zweryfikować prawidłowe działanie systemu. (rozdział 6)
- Kalibrację portów analogowych zaawansowanego monitora HemoSphere powinien przeprowadzać wyłącznie właściwie przeszkolony personel. (rozdział 6)
- Dokładność ciąglego pomiaru wartości SVR w przypadku monitorowania za pomocą modułu HemoSphere Swan-Ganz zależy od jakości i dokładności danych MAP i CVP przesyłanych z monitorów zewnętrznych. Ponieważ jakość sygnału analogowego MAP i CVP z monitora zewnętrznego nie może zostać zwalidowana w zaawansowanym monitorze HemoSphere, rzeczywiste wartości oraz wartości (w tym wszystkie pochodne parametry) wyświetlane przez zaawansowany monitor HemoSphere mogą być niespójne. W związku z tym dokładność pomiaru wartości SVR w przypadku ciągłego monitorowania nie może zostać zagwarantowana. Aby ułatwić określenie jakości sygnałów analogowych, należy regularnie porównywać wartości MAP i CVP wyświetlane na monitorze zewnętrznym z wartościami wyświetlanymi na ekranie zależności fizjologicznych zaawansowanego monitora HemoSphere. Szczegółowe informacje na temat dokładności pomiarów, kalibracji i innych zmiennych mogących wpływać na analogowy sygnał wyjściowy z monitora zewnętrznego zamieszczono w podręczniku operatora zewnętrznego urządzenia do wprowadzania danych. (rozdział 6)
- Przed podłączeniem jakiegokolwiek urządzenia USB przeprowadzić skanowanie antywirusowe, aby zapobiec zainfekowaniu przez wirusy lub złośliwe oprogramowanie. (rozdział 8)
- Nie wprowadzać modulu do otworu na silę. Należy przyłożyć równomierny nacisk, aby wsunąć moduł, a następnie zablokować w odpowiednim położeniu, czemu będzie towarzyszyć dźwięk kliknięcia. (rozdział 9)
- Niedokładne pomiary pojemności minutowej serca spowodowane przez: Nieprawidłowe umiejscowienie lub niewłaściwe położenie cewnika. Nadmierne odchylenia temperatury krwi w tętnicy płucnej. Przykładowe sytuacje, które powodują odchylenia temperatury krwi, to m.in.: * stan po zabiegu z zastosowaniem krążenia pozaustrojowego, * podanie przez cewnik centralny schłodzonych lub podgrzanych roztworów produktów krwiopochodnych, * stosowanie wyrobów wywierających stopniowany ucisk. Powstanie skrzepliny na termistorze. Nieprawidłowości w budowie anatomicznej (na przykład przecieki wewnątrzsercowe). Nadmierna ruchomość pacjenta. Zakłócenia wywołane przez urządzenie do elektrokauteryzacji lub elektrochirurgii.
 Szybkie zmiany pojemności minutowej serca. (rozdział 9)
- W celu sprawdzenia, czy stała obliczeniowa jest taka sama, jak określona w ulotce do opakowania cewnika, należy zapoznać się z Załącznikiem E. Jeśli stała obliczeniowa różni się, należy wprowadzić żądaną stałą obliczeniową ręcznie. (rozdział 9)
- Nagle zmiany temperatury krwi w tętnicy płucnej, na przykład spowodowane ruchami ciała
 pacjenta albo podaniem leku w bolusie, mogą spowodować wyliczenie wartości iCO lub iCI.
 W celu uniknięcia fałszywego wyzwalania krzywych należy przeprowadzić iniekcję jak najszybciej
 po wyświetleniu komunikatu Wstrzyknij. (rozdział 9)
- Nie wolno używać żadnych czujników FloTrac ani przetworników TruWave po oznaczonym terminie ważności. Stosowanie produktów po upływie tego terminu może się wiązać z gorszym działaniem przetwornika i drenów lub naruszeniem jałowości. (rozdział 10)
- Zbyt częste upuszczanie przewodu ciśnienia HemoSphere może spowodować uszkodzenie przewodu lub jego nieprawidłowe działanie. (rozdział 10)

- Nie badano skuteczności pomiarów FT-CO u pacjentów pediatrycznych. (rozdział 10)
- Niedokładność pomiarów FT-CO może być spowodowana następującymi czynnikami: •
 Nieprawidłowo wyzerowany i/lub wypoziomowany czujnik/przetwornik Nadmiernie lub niewystarczająco tłumione linie ciśnienia Nadmierne odchylenia ciśnienia krwi. Do niektórych warunków powodujących odchylenia ciśnienia krwi należą m.in.: * Wewnątrzaortalne pompy balonowe Wszelkie sytuacje kliniczne, w których pomiar ciśnienia tętniczego zostaje uznany za niedokładny lub niereprezentatywny dla ciśnienia aortalnego, w tym m.in.: * Skrajny skurcz naczyniowy prowadzący do deformacji przebiegu krzywej ciśnienia w tętnicy promieniowej * Warunki hiperdynamiczne, na przykład po przeszczepie wątroby Nadmierna ruchliwość pacjenta Zakłócenia wywołane przez urządzenie do elektrokauteryzacji lub elektrochirurgii Fala zwrotna przez zastawkę aortalną może skutkować przeszacowaniem wartości objętości wyrzutowej/pojemności minutowej serca obliczanej w zależności od rozległości zaburzeń zastawkowych i objętości krwi odpływającej z powrotem do lewej komory. (rozdział 10)
- Podczas podłączania lub odłączania przewodu zawsze należy chwytać za wtyczkę, a nie za przewód. (rozdział 10)
- Nie skręcać ani nie zginać złączy. (rozdział 10)
- Nie naciskać na siłę przycisku zerowania przewodu ciśnienia, aby nie uszkodzić przewodu. (rozdział 10)
- Należy się upewnić, że przewód do oksymetrii jest dobrze ustabilizowany, aby zapobiec niepotrzebnym ruchom przyłączonego cewnika. (rozdział 11)
- Nie należy dopuścić do zwilżenia końcówki cewnika ani miseczki kalibracyjnej przed kalibracją in vitro. Należy przepłukać kanał cewnika dopiero po zakończeniu kalibracji in vitro. (rozdział 11)
- Wykonywanie kalibracji in vitro po umieszczeniu cewnika do oksymetrii w ciele pacjenta będzie skutkowało niedokładną kalibracją. (rozdział 11)
- Czasami stosowanie urządzeń elektrochirurgicznych wpływa na sygnał SQI. O ile jest to możliwe, należy odsunąć sprzęt do elektrokoagulacji i przewody od zaawansowanego monitora HemoSphere i podłączyć przewody zasilające do osobnych obwodów prądu przemiennego. Jeśli problemy z jakością sygnału będą się utrzymywały, należy skontaktować się z lokalnym przedstawicielem firmy Edwards w celu uzyskania pomocy. (rozdział 11)
- Nie należy odłączać przewodu do oksymetrii, gdy trwa kalibracja lub przywoływanie danych. (rozdział 11)
- Jeżeli przewód do oksymetrii jest przenoszony z zaawansowanego monitora HemoSphere do innego zaawansowanego monitora HemoSphere, przed rozpoczęciem monitorowania należy sprawdzić, czy wzrost pacjenta, waga i BSA są prawidłowe. Jeśli to konieczne, ponownie wprowadzić dane pacjenta. (rozdział 11)
- Należy unikać umieszczania modułu ForeSight Elite w miejscu, w którym dioda LED nie jest łatwo widoczna. (rozdział 12)
- Zastosowanie zbyt dużej siły może spowodować wyłamanie zaczepu mocującego, co może spowodować ryzyko upadku modułu na pacjenta, osobę postronną lub operatora. (rozdział 12)
- Nie należy w żaden sposób podnosić ani pociągać modułu ForeSight Elite za żaden jego przewód ani ustawiać modułu w żadnym położeniu, które może spowodować ryzyko upadku modułu na pacjenta, osobę postronną lub operatora. (rozdział 12)

- Unikać umieszczania modułu ForeSight Elite pod prześcieradłem bądź kocem, który mógłby ograniczać przepływ powietrza wokół modułu, ponieważ może to spowodować wzrost temperatury obudowy modułu i wywołać zagrożenie obrażeniami ciała. (rozdział 12)
- Nie wprowadzać modulu do gniazda na siłę. Należy przyłożyć równomierny nacisk, aby wsunąć moduł, a następnie zablokować w odpowiednim położeniu, czemu będzie towarzyszyć dźwięk kliknięcia. (rozdział 12)
- Czujników nie należy umieszczać na obszarach o dużym zagęszczeniu włosów. (rozdział 12)
- Czujnik musi być umieszczony na czystej, suchej skórze. Obecność zanieczyszczeń, płynu, olejku, pudru, potu lub włosów, które mogą pogorszyć dobry kontakt między czujnikiem a skórą, wpłynie na poprawność pobranych danych i może skutkować wystąpieniem komunikatu alarmowego. (rozdział 12)
- W przypadku użytkowania w otoczeniach z oświetleniem diodowym może pojawić się konieczność zasłonięcia czujników przed podłączeniem do przewodu, ponieważ niektóre systemy o wysokim natężeniu światła mogą zakłócać działanie funkcji czujnika, która polega na wykrywaniu światła w zakresie bliskiej podczerwieni. (rozdział 12)
- Nie należy w żaden sposób podnosić ani pociągać modulu ForeSight Elite za żaden jego przewód, ani ustawiać modulu ForeSight Elite w żadnym położeniu, które może spowodować ryzyko upadku modulu na pacjenta, osobę postronną lub operatora. (rozdział 12)
- Po rozpoczęciu monitorowania pacjenta nie należy wymieniać czujnika ani odłączać czujnika na dłużej niż 10 minut, aby uniknąć ponownego uruchomienia początkowego obliczenia StO2. (rozdział 12)
- Obecność źródła silnego pola elektromagnetycznego (np. aparatury elektrochirurgicznej) może mieć negatywny wpływ na pomiary. Podczas użytkowania takiego sprzętu pomiary mogą być niedokładne. (rozdział 12)
- Podwyższone poziomy karboksyhemoglobiny (ang. carboxyhemoglobin, COHb) lub methemoglobiny (ang. methemoglobin, MetHb) mogą prowadzić do niedokładnych lub błędnych pomiarów, podobnie jak barwniki wewnątrznaczyniowe oraz wszelkie substancje zawierające barwniki, które zmieniają zwykłe zabarwienie krwi. Do innych czynników, które mogą wpływać na dokładność pomiaru, należą między innymi: mioglobina, hemoglobinopatie, niedokrwistość, lokalne nagromadzenie się krwi pod skórą, zakłócenia wynikające z ciał obcych na ścieżce czujnika, bilirubinemia, barwniki zastosowane zewnętrznie (tatuaże), wysoki poziom Hgb lub HCt i znamiona. (rozdział 12)
- W przypadku użytkowania w otoczeniach z oświetleniem diodowym może pojawić się konieczność zasłonięcia czujników przed podłączeniem do przewodu, ponieważ niektóre systemy o wysokim natężeniu światła mogą zakłócać działanie funkcji czujnika, która polega na wykrywaniu światła w zakresie bliskiej podczerwieni. (rozdział 12)
- Efektywność parametru HPI ustalono na podstawie danych dotyczących krzywej ciśnienia tętnicy promieniowej. Nie oceniano efektywności parametru HPI na podstawie wartości ciśnienia tętniczego mierzonego w innych miejscach (np. w tętnicy udowej). (rozdział 13)

- Na podstawie parametru HPI nie zawsze można otrzymać z wyprzedzeniem ostrzeżenie o trendzie wskazującym na możliwość wystąpienia zdarzenia niedociśnienia w sytuacjach, w których interwencja kliniczna skutkuje nagłym niefizjologicznym zdarzeniem niedociśnienia. W razie takiej sytuacji funkcja HPI spowoduje natychmiastowo: wyświetlenie ekranu podręcznego alertu wysokiej wartości, wystąpienie alarmu o wysokim priorytecie oraz wyświetlenie wartości HPI równej 100 informującej o tym, że u pacjenta właśnie trwa zdarzenie niedociśnienia. (rozdział 13)
- Zachować ostrożność podczas korzystania ze wskaźnika dP/dt u pacjentów z ciężką stenozą aorty, ponieważ stenoza może ograniczać połączenie między lewą komorą a obciążeniem następczym. (rozdział 13)
- Chociaż parametr dP/dt jest w głównej mierze uzależniony od zmian kurczliwości lewej komory, może na niego wpływać obciążenie następcze podczas stanów wazoplegicznych (braku oddziaływania żylno-tętniczego). W tych okresach parametr dP/dt może nie odzwierciedlać zmian kurczliwości lewej komory. (rozdział 13)
- Informacje dotyczące parametru HPI, które zawierają tabela 13-11 i tabela 13-12, przedstawiono jako wytyczne ogólne i nie mogą być traktowane jako dane przypadków indywidualnych. Przed rozpoczęciem leczenia zaleca się sprawdzenie stanu hemodynamicznego pacjenta. Patrz Zastosowanie kliniczne na stronie 219. (rozdział 13)
- Po każdym użyciu wyczyścić przyrządy i akcesoria, a następnie odłożyć na swoje miejsce. (dodatek F)
- Nie wylewać ani nie rozpylać cieczy na żadną część zaawansowanego monitora HemoSphere, jego akcesoriów, modułów ani przewodów. (dodatek F)
- Zaawansowane moduły monitorowania HemoSphere i przewody platformy są wrażliwe na wyładowania elektrostatyczne (ang. electrostatic discharge, ESD). Nie podejmować prób otwierania obudowy modułu i kabla ani nie korzystać z niego, jeśli obudowa jest uszkodzona. (dodatek F)
- Nie stosować żadnych innych roztworów dezynfekcyjnych niż określono. (dodatek F)
- NIE NALEŻY: Dopuszczać do kontaktu jakiejkolwiek cieczy ze złączem zasilania Dopuszczać do
 przedostania się jakiejkolwiek cieczy do złączy lub otworów w obudowie monitora i modulach Jeśli
 dojdzie do kontaktu jakiejkolwiek cieczy z jednym z powyższych elementów, NIE NALEŻY
 podejmować prób korzystania z monitora. Natychmiast odłączyć zasilanie i wezwać pracownika
 oddziału biomedycznego placówki lub lokalnego przedstawiciela firmy Edwards. (dodatek F)
- Należy okresowo kontrolować wszystkie przewody pod kątem ewentualnych uszkodzeń. Nie zwijać mocno przewodów na czas przechowywania. (dodatek F)
- Przewodu do oksymetrii HemoSphere nie należy sterylizować parą wodną, przez napromienianie ani za pomocą tlenku etylenu. Nie zanurzać przewodu do oksymetrii HemoSphere. (dodatek F)
- Nie stosować żadnych innych środków czyszczących, nie rozpylać ani nie wylewać roztworów czyszczących bezpośrednio na przewody platformy. Przewodów platformy nie należy sterylizować parą wodną, przez napromienianie ani za pomocą tlenku etylenu. Nie wolno zanurzać przewodów platformy w płynach. (dodatek F)
- Jeśli jakikolwiek roztwór elektrolitowy, np. mleczan Ringera, przedostanie się do złączy przewodu, gdy są podłączone do monitora, a monitor jest włączony, napięcie wzbudzenia może spowodować korozję elektrolityczną oraz szybkie zużycie styków elektrycznych. (dodatek F)
- Nie zanurzać żadnych złączy przewodów w środkach czyszczących, alkoholu izopropylowym ani aldehydzie glutarowym. (dodatek F)
- Nie suszyć złączy przewodów pistoletem do suszenia gorącym powietrzem. (dodatek F)

- Baterię litowo-jonową należy przekazać do recyklingu lub zutylizować, przestrzegając wszystkich przepisów krajowych i lokalnych. (dodatek F)
- Przyrząd został zbadany zgodnie z normą IEC 60601-1-2 i spełnia określone w niej wymagania odnośnie do wartości granicznych. Ma to zapewnić racjonalną ochronę przeciwko szkodliwym zakłóceniom w typowej lokalizacji medycznej. Niniejszy sprzęt generuje, wykorzystuje i może emitować energię o częstotliwości radiowej, a także, jeśli zostanie zainstalowany i będzie używany niezgodnie z niniejszym podręcznikiem, może powodować szkodliwe zakłócenia pracy innych urządzeń znajdujących się w pobliżu. Nie ma jednak gwarancji, że w przypadku określonej lokalizacji zakłócenia nie wystąpią. Jeżeli niniejszy sprzęt spowoduje szkodliwe zakłócenia pracy innych urządzeń, co można ustalić poprzez wyłączenie i ponowne włączenie sprzętu, zalecane jest, aby użytkownik spróbował usunąć zakłócenia, stosując jeden lub kilka z poniższych środków zaradczych: · Zmienić ustawienie urządzenia odbiorczego lub przestawić je w inne miejsce. · Zwiększyć odległość pomiędzy sprzętem a urządzeniem. · Zwrócić się do producenta o pomoc. (dodatek G)

2.4 Symbole interfejsu użytkownika

Poniżej przedstawiono ikony występujące na ekranie zaawansowanego monitora HemoSphere. Aby uzyskać więcej informacji na temat wyglądu ekranu i nawigacji, patrz rozdział 5, *Nawigacja w obrębie zaawansowanego monitora HemoSphere*. Pewne ikony są wyświetlane jedynie podczas monitorowania z zastosowaniem określonych modulów lub przewodów wykorzystujących technologię hemodynamiczną.

Tabela 2-1 Symbole wyświetlacza monitora

Symbol	Opis		
	lkony paska nawigacji		
* 1 **	wybór trybu monitorowania		
Rozpocznij	rozpoczęcie monitorowania parametru CO (moduł HemoSphere Swan-Ganz)		
0:19	zatrzymanie monitorowania CO za pomocą czasomierza CO (patrz <i>Czasomierz CO</i> na stronie 152) (moduł HemoSphere Swan-Ganz)		
	wyzeruj i krzywa (przewód ciśnienia HemoSphere)		
\odot	monitorowanie GDT		
Š	menu ustawień		
	ekran główny (powrót do głównego ekranu monitorowania)		

Tabela 2-1 Symbole wyświetlacza monitora (ciąg dalszy)

Symbol	Opis	
${\rm end}$	wyświetlanie krzywej ciśnienia	
$\overline{\mathcal{M}}$	ukrycie krzywej ciśnienia	
	wyciszanie alarmów dźwiękowych	
1:49 Alarmy wstrzymane	alarmy wstrzymane (wyciszone) z zastosowaniem czasomierza (Patrz <i>Wyciszanie alarmów dźwiękowych</i> na stronie 80)	
00:00:47	wznowienie monitorowania wraz z czasem, który upłynął od rozpoczęcia przerwy w monitorowaniu	
lkony menu narzędzi klinicznych		
	wybór trybu monitorowania	
$(\mathbf{x}_{\mathbf{x}})$	iCO (chwilowa pojemność minutowa serca) (moduł HemoSphere Swan-Ganz)	

Tabela 2-1 Symbole wyświetlacza monitora (ciąg dalszy)

Symbol	Opis
	kalibracja oksymetrii (przewód do oksymetrii HemoSphere)
R	Wprowadzić parametr ośrodkowego ciśnienia żylnego (CVP)
	kalkulator wartości wyliczanej
Q	przegląd zdarzeń
	wyzeruj i krzywa (przewód ciśnienia HemoSphere)
	test przewodu CCO pacjenta (moduł HemoSphere Swan-Ganz)
品	dodatkowy ekran HPI (przewód ciśnienia HemoSphere)
	test odpowiedzi na podane płyny (funkcja zaawansowana)
	lkony menu nawigacji
	powrót do głównego ekranu monitorowania
\leftarrow	powrót do poprzedniego menu
\mathbf{x}	anulowanie
	przewijanie do następnego elementu na liście pionowej
	przewijanie strony pionowo
	przewijanie w poziomie
Ð	wprowadzanie
ч	klawisz enter klawiatury
$\langle \times $	klawisz backspace klawiatury

Tabela 2-1 Symbole wyświetlacza monitora (ciąg dalszy)

Symbol	Opis	
↓	przesunięcie kursora w lewo o 1 znak	
+	przesunięcie kursora w prawo o 1 znak	
X	klawisz anuluj klawiatury	
\bigcirc	element włączony	
	element niewłączony	
	zegar/krzywa — umożliwia użytkownikowi wyświetlanie historycznych lub przerywanych danych	
	lkony kafelków parametrów	
	menu Alarmy/wartości docelowe: włączony wskaźnik dźwiękowy alarmu dotyczącego parametru	
	menu Alarmy/wartości docelowe: wyłączony wskaźnik dźwiękowy alarmu dotyczącego parametru	
1	pasek wskaźnikowy jakości sygnału Patrz <i>Wskaźnik jakości sygnału</i> na stronie 181 (przewód do oksymetrii HemoSphere)	
	wskaźnik przekroczenia filtrowania SVV: wysoka zmienność częstości tętna może mieć wpływ na wartości zmienności objętości wyrzutowej (SVV)	
	Kalibracja oksymetrii (nie skalibrowano) (przewód do oksymetrii HemoSphere)	
	Kalibracja oksymetrii (skalibrowano) (przewód do oksymetrii HemoSphere)	
lkony paska informacji		
9	pasek informacji: ikona połączenia HIS Patrz tabela 8-2 na stronie 142	
	zdjęcie (zrzut ekranu)	
	pasek informacji: ikony żywotności baterii Patrz tabela 5-5 na stronie 109	
Ū.	jasność ekranu	
)	głośność alarmu	

Tabela 2-1 Symbole wyświetlacza monitora (ciąg dalszy)

Symbol	Opis	
	blokada ekranu	
(i)	skrót menu pomocy	
E	przegląd zdarzeń	
v	ciągły pomiar częstości akcji serca na każdy cykl pracy serca (moduł HemoSphere Swan-Ganz z wejściem EKG)	
() ()	sygnał Wi-Fi Patrz tabela 8-1 na stronie 141	
Ikony analizy interwencji		
$\left(\begin{array}{c} \\ \nabla \end{array}\right)$	przycisk analizy interwencji	
V	wskaźnik typu analizy interwencji dla zdarzenia niestandardowego (szary)	
V	wskaźnik typu analizy interwencji dla problemu związanego z pozycją (fioletowy)	
\checkmark	wskaźnik typu analizy interwencji dla problemu związanego z płynami (niebieski)	
\blacktriangleright	wskaźnik typu analizy interwencji dla interwencji (zielony)	
	wskaźnik typu analizy interwencji dla oksymetrii (czerwony)	
\checkmark	wskaźnik typu analizy interwencji dla zdarzenia (żółty)	

Tabela 2-1 Symbole wyświetlacza monitora (ciąg dalszy)

Symbol	Opis	
Ø	ikona edycji w dodatkowym polu informacyjnym o interwencji	
	ikona klawiatury do wprowadzania uwag na ekranie edycji interwencji	
Ikony monitorowania GDT		
\oplus	przycisk dodawania wartości docelowej na ekranie monitorowania GDT	
≥72	przycisk wartości docelowej na ekranie monitorowania GDT	
	przycisk zamknięcia wyboru wartości docelowej na ekranie monitorowania GDT	
(61)	przycisk edycji wartości docelowej na ekranie monitorowania GDT	
0	symbol Time-in-Target (wartość docelowa czasu trwania) na ekranie monitorowania GDT	
Ikony HPI		
머리	klawisz skrótu dodatkowego ekranu HPI	

2.5 Symbole na etykietach produktu

W tej części przedstawiono symbole znajdujące się na zaawansowanym monitorze HemoSphere i innych dostępnych akcesoriach platformy do monitorowania HemoSphere.

Symbol	Opis
	Producent
	Data produkcji
Rx only	Przestroga: Prawo federalne (USA) zezwala na sprzedaż niniejszego wyrobu tylko przez lekarzy lub na ich zlecenie
IPX1	Zapewnia standard IPX1 ochrony przed kroplami wody spadającymi pionowo
IPX4	Standard IPX4 ochrony przed bryzgami wody z dowolnego kierunku
	Zgodnie z dyrektywą Wspólnoty Europejskiej 2012/19/EU należy osobno utylizować sprzęt elektryczny i elektroniczny
9	Spełnia ograniczenie dotyczące substancji niebezpiecznych (RoHS) — tylko Chiny
FC	Zgodność z przepisami FCC (Federal Communications Commission) — tylko USA
	Urządzenie jest wyposażone w nadajnik promieniowania niejonizującego, który może powodować zakłócenia o częstotliwości radiowej w innych urządzeniach znajdujących się w pobliżu
eifu.edwards.com + 1 888 570 4016	Patrz instrukcja obsługi na stronie eifu.edwards.com
	Instrukcja obsługi w formie elektronicznej jest dostępna za pośrednictwem telefonu lub adresu strony internetowej
contented us Intertek	Intertek ETL
REF	Numer katalogowy
SN	Numer seryjny
EC REP	Autoryzowany przedstawiciel na terenie Wspólnoty Europejskiej
	Użytkowanie produktu w środowisku RM nie jest bezpieczne

Tabela 2-2 Symbole na etykietach produktu

Tabela 2-2 Symbole na etykietach produktu (ciąg dalszy)

Symbol	Opis
CE 0123	Oznaczenie CE zgodne z Dyrektywą Rady Europy 93/42/EWG z dnia 14 czerwca 1993 r. dotyczącą urządzeń medycznych
CE	Deklaracja zgodności z dyrektywami Unii Europejskiej
LOT	Kod partii
PN	Numer części
#	llość
Pb	Nie zawiera ołowiu
c AL ^I us	Znak certyfikacji produktu przez Underwriters Laboratories
Li-ion	Bateria litowo-jonowa nadająca się do recyklingu
	Oznaczenie zgodności technicznej (Japonia)
\bigotimes	Nie demontować
X	Nie spalać
MD	Wyrób medyczny
E	tykiety identyfikacyjne złączy
\bigtriangledown	Trzpień przyłączeniowy wyrównania potencjałów
•	USB 2.0
SS←	USB 3.0
윰	Połączenie sieci Ethernet
	Wejście analogowe 1

Tabela 2-2 Symbole na etykietach produktu (ciąg dalszy)

Symbol	Opis
	Wejście analogowe 2
\bigcirc	Wyjście ciśnienia DPT
⊣♥⊢	Część aplikacyjna lub połączenie typu CF odporne na defibrylację
ECG	Sygnał wejściowy EKG z monitora zewnętrznego
ноті	Wyjście HDMI
\longleftrightarrow	Złącze: szeregowe wyjście COM (RS232)
Doe	datkowe etykiety na opakowaniu
Ť	Chronić przed wilgocią
	Delikatne, obchodzić się ostrożnie

Tabela 2-2 Symbole na etykietach produktu (ciąg dalszy)

Symbol	Opis
	Tą stroną w górę
	Nie stosować, jeżeli opakowanie jest uszkodzone
20	Opakowanie z kartonu nadającego się do recyklingu
×	Chronić przed światłem słonecznym.
x	Zakres temperatury (X = dolna granica, Y = górna granica)
x_x	Zakres wilgotności (X = dolna granica, Y = górna granica)

UWAGA

W przypadku wszystkich etykiet akcesoriów należy zapoznać się z tabelą symboli znajdującą się w instrukcji użytkowania akcesorium.

2.6 Obowiązujące normy

Tabela 2-3 Obowiązujące normy

Norma	Tytuł
IEC 60601-1:2005 / A1:2012	Medyczne urządzenia elektryczne — Część 1: Wymagania ogólne dotyczące bezpieczeństwa podstawowego oraz funkcjonowania zasadniczego + poprawka 1 (2012)
IEC 60601-1-2:2014	Medyczne urządzenia elektryczne — Część 1-2: Wymagania ogólne dotyczące bezpieczeństwa podstawowego oraz funkcjonowania zasadniczego — Norma uzupełniająca: Kompatybilność elektromagnetyczna — wymagania i testy
IEC 60601-2-34:2011	Medyczne urządzenia elektryczne — Część 2-34: Wymagania szczegółowe dotyczące bezpieczeństwa podstawowego oraz funkcjonowania zasadniczego urządzeń do monitorowania ciśnienia krwi metodą inwazyjną

Norma	Tytuł
IEC 60601-2-49:2011	Wymagania szczegółowe dotyczące bezpieczeństwa podstawowego oraz funkcjonowania zasadniczego urządzeń do wielofunkcyjnego monitorowania pacjenta
IEEE 802.11 b/g/n	Telekomunikacja i wymiana informacji pomiędzy systemami Lokalne i miejskie sieci komputerowe — wymagania specjalne Część 11: Specyfikacje sieci bezprzewodowej LAN: warstwa kontroli dostępu mediów (ang. Medium Access Control, MAC) i warstwa fizyczna (ang. Physical Layer, PHY)

Tabela 2-3 Obowiązujące normy (ciąg dalszy)

2.7 Funkcjonowanie zasadnicze zaawansowanego monitora HemoSphere

Platforma zapewnia wyświetlanie ciągłej i chwilowej pojemności minutowej serca (CO) przy zastosowaniu zgodnego cewnika Swan-Ganz, zgodnie z danymi technicznymi przedstawionymi w Dodatku A. Platforma zapewnia wyświetlanie wewnątrznaczyniowego ciśnienia krwi przy zastosowaniu zgodnego czujnika FloTrac lub Acumen IQ bądź zgodnego jednorazowego przetwornika ciśnienia (DPT) TruWave, zgodnie z danymi technicznymi, które zawiera Dodatek A. Platforma zapewnia wyświetlanie parametru SvO₂/ScvO₂ przy zastosowaniu zgodnego cewnika do oksymetrii, zgodnie z danymi technicznymi, które zawiera Dodatek A. Platforma zapewnia wyświetlanie parametru SvO₂/ScvO₂ przy zastosowaniu zgodnego cewnika do oksymetrii, zgodnie z danymi technicznymi, które zawiera Dodatek A. Platforma zapewnia wyświetlanie parametru StO₂ ze zgodnym czujnikiem i modułem do oksymetrii, zgodnie z danymi technicznymi, które zawiera Dodatek A. Platforma zapewnia alarmy, alerty, wskaźniki i/lub informacje o stanie systemu, gdy niemożliwe jest dostarczenie dokładnego pomiaru odpowiedniego parametru hemodynamicznego. Więcej informacji — patrz *Charakterystyka funkcjonowania zasadniczego* na stronie 264.

Działanie urządzenia, z uwzględnieniem jego charakterystyki funkcjonalnej, zostało zweryfikowane za pomocą serii wszechstronnych testów w celu zapewnienia bezpieczeństwa i odpowiedniego działania urządzenia stosowanego zgodnie z jego przeznaczeniem i z instrukcjami obsługi.

3

Instalacja i konfiguracja

Spis treści

Rozpakowywanie	54
Porty przyłączeniowe zaawansowanego monitora HemoSphere	56
Instalacja zaawansowanego monitora HemoSphere	59
Pierwsze uruchomienie	53

3.1 Rozpakowywanie

Sprawdzić zawartość opakowania transportowego pod kątem ewentualnych uszkodzeń, które mogły nastąpić w trakcie transportu. Jeżeli zostanie wykryte jakieś uszkodzenie, należy sfotografować opakowanie i skontaktować się z działem pomocy technicznej firmy Edwards w celu uzyskania wsparcia. Nie używać, jeśli opakowanie lub jego zawartość są uszkodzone. Do uszkodzeń można zaliczyć pęknięcia, rysy, wgniecenia oraz wszelkie inne oznaki, że stan monitora, modułów lub obudowy przewodów mógł się pogorszyć. Zgłosić wszelkie oznaki uszkodzeń zewnętrznych.

3.1.1 Zawartość opakowania

Zaawansowana platforma do monitorowania HemoSphere jest urządzeniem modulowym i w związku z tym układ opakowań będzie się różnił w zależności od zamówionego zestawu. Zaawansowany system do monitorowania HemoSphere, który jest podstawą konfiguracji zestawu, zawiera zaawansowany monitor HemoSphere, przewód zasilania sieciowego, osłonę wejścia zasilania, zestaw baterii HemoSphere, dwa moduły rozszerzające, jeden moduł rozszerzający L-Tech, skrócony przewodnik oraz pamięć przenośną USB zawierającą podręcznik operatora. Patrz tabela 3-1. Dodatkowe elementy, które mogą być dołączone i dostarczone z innymi zestawami, obejmują moduł HemoSphere Swan-Ganz, przewód CCO pacjenta oraz przewód do oksymetrii HemoSphere. Elementy jednorazowe i akcesoria mogą być dostarczane osobno. Zaleca się potwierdzenie odbioru całego zamówionego sprzętu. Pełną listę dostępnych akcesoriów zawiera dodatek B: *Akcesoria*.

Tabela 3-1 Elementy składowe zaawansowanego systemu
do monitorowania HemoSphere

Z	aawansowany system do monitorowania HemoSphere (zestaw podstawowy)
•	Zaawansowany monitor HemoSphere
•	Zestaw baterii HemoSphere
•	Przewód zasilania sieciowego
•	Osłona wejścia zasilania
•	Moduł rozszerzający L-Tech
•	Moduł rozszerzający (2)
•	Skrócony przewodnik
•	Podręcznik operatora (w pamięci przenośnej USB)

3.1.2 Wymagane akcesoria modułów platformy i przewodów

W poniższych tabelach wymienione zostały akcesoria wymagane do wyświetlenia konkretnych monitorowanych i obliczonych parametrów dla określonych modułów lub przewodów wykorzystujących technologię hemodynamiczną:

	Ра	rametry	monitor	owane i	oblicza	ne
Wymagany przewód/cewnik	CO	EDV	RVEF	SVR	iCO	SV
Przewód CCO pacjenta (Kabel CCO dla pacjent)	•	•	•	•	•	•
Przewód EKG		•	•			•
Przewód(-ody) ciśnienia z wejściem analogowym				•		
Sonda temperatury iniektatu					•	
Cewnik Swan-Ganz do termodylucji					•	
Cewnik Swan-Ganz CCO lub cewnik Swan-Ganz CCOmbo	•			•	•	•
Cewnik Swan-Ganz CCOmbo V	•	•	•	•	•	•

Tabela 3-2 Przewody i cewniki wymagane do monitorowania parametrówza pomocą modułu HemoSphere Swan-Ganz

UWAGA

Nie wszystkie parametry mogą być monitorowane lub obliczane u pacjentów pediatrycznych. Listę dostępnych parametrów zawiera tabela 1-1 na stronie 23.

Tabela 3-3 Opcje czujników do monitorowania parametrów za pomocą przewodu ciśnienia HemoSphere

		Parametry monitorowane i obliczane							
Opcje czujnika ciśnienia/ przetwornika ciśnienia	СО	SV	SVV/ PPV	SVR	PR	SYS/ DIA/ MAP	MPAP	CVP	HPI/ dP/dt/ Ea _{dyn}
Czujnik FloTrac	•	•	•	*	•	•			
Przetwornik TruWave					٠	•	•	•	
Czujnik Acumen IQ	•	٠	•	*	٠	•			•

*UWAGA

Do obliczenia wartości SVR potrzebny jest analogowy sygnał wejściowy CVP, monitorowanie CVP lub ręczne wprowadzenie wartości CVP.

	Parametry monitorowane i obliczane		
Wymagany cewnik	ScvO ₂	SvO ₂	
Cewnik do oksymetrii PediaSat lub zgodny centralny cewnik żylny do oksymetrii	•		
Cewnik Swan-Ganz do oksymetrii		•	

Tabela 3-4 Cewniki wymagane do monitorowania parametrówza pomocą przewodu do oksymetrii HemoSphere

Tabela 3-5 Akcesoria wymagane do monitorowania parametrówza pomocą modułu do oksymetrii tkankowej HemoSphere

Wymagane akcesorium	Oksymetria tkankowa (StO ₂)
Moduł ForeSight Elite	•
Czujnik ForeSight Elite	•

OSTRZEŻENIE Ryzyko porażenia prądem elektrycznym! Nie podejmować prób podłączania lub odłączania przewodów systemu mokrymi rękami. Przed odłączeniem przewodów systemu należy upewnić się, że ręce są suche.

PRZESTROGA Podczas podłączania lub odłączania przewodów zawsze chwytać za wtyczkę, a nie za przewód. Nie skręcać ani nie zginać złączy. Przed użyciem potwierdzić, że wszystkie czujniki oraz przewody są odpowiednio i całkowicie podłączone.

Aby uniknąć uszkodzenia danych w zaawansowanym monitorze HemoSphere, należy zawsze odłączać przewód CCO pacjenta oraz przewód do oksymetrii przed użyciem defibrylatora.

3.2 Porty przyłączeniowe zaawansowanego monitora HemoSphere

Poniższe ilustracje przedstawiają porty przyłączeniowe i inne główne funkcje panelu przedniego, tylnego oraz paneli bocznych zaawansowanego monitora HemoSphere.

3.2.1 Przód monitora

Rysunek 3-1 Zaawansowany monitor HemoSphere — widok z przodu

3.2.2 Tył monitora

Rysunek 3-2 Zaawansowany monitor HemoSphere — widok z tyłu (z modułem HemoSphere Swan-Ganz)

3.2.3 Prawy panel monitora

Rysunek 3-3 Zaawansowany monitor HemoSphere — prawy panel

3.2.4 Lewy panel monitora

Rysunek 3-4 Zaawansowany monitor HemoSphere lewy panel (widok bez modułów)

3.3 Instalacja zaawansowanego monitora HemoSphere

3.3.1 Możliwości i zalecenia dotyczące montażu

Zaawansowany monitor HemoSphere powinien być umieszczony na stabilnej plaskiej powierzchni lub bezpiecznie zamontowany na zgodnym stojaku odpowiednio do zasad stosowanych w placówce. Podczas korzystania z monitora operator powinien znajdować się przed nim, w niedużej odległości od niego. Urządzenie może być używane jednocześnie tylko przez jednego użytkownika. Stojak na kółkach do zaawansowanego monitora HemoSphere jest dostępny jako akcesorium dodatkowe. Więcej informacji patrz *Opis dodatkowych akcesoriów* na stronie 275. Należy skontaktować się z lokalnym przedstawicielem firmy Edwards, aby otrzymać zalecenia dotyczące dodatkowych możliwości montażu.

OSTRZEŻENIE Zagrożenie wybuchem! Nie używać zaawansowanego monitora HemoSphere w obecności mieszanki łatwopalnych środków znieczulających z powietrzem, tlenem lub podtlenkiem azotu.

Ten produkt zawiera elementy metalowe. NIE używać w środowisku rezonansu magnetycznego (RM).

Należy upewnić się, że zaawansowany monitor HemoSphere jest bezpiecznie ustawiony lub zamontowany oraz że odpowiednio rozmieszczono wszystkie przewody urządzenia i akcesoriów, aby zminimalizować ryzyko wystąpienia obrażeń ciała pacjentów i użytkowników oraz uszkodzenia sprzętu.

Nie stawiać dodatkowego sprzętu ani przedmiotów na wierzchu zaawansowanego monitora HemoSphere.

Monitor HemoSphere należy ustawić w pozycji pionowej, aby zapewnić stopień ochrony IPX1.

Nie dopuszczać do zachlapania ekranu monitora cieczą. Nagromadzona ciecz może całkowicie uniemożliwić działanie ekranu dotykowego.

Nie ustawiać monitora w sposób utrudniający dostęp do portów na tylnym panelu ani przewodu zasilania.

Sprzęt jest przeznaczony do użytku z urządzeniami chirurgicznymi o wysokiej częstotliwości. Nieprawidłowe pomiary parametrów mogą być spowodowane zakłóceniami pochodzącymi z urządzeń chirurgicznych o wysokiej częstotliwości. W celu zmniejszenia zagrożeń, jakie mogą wynikać z używania sprzętu chirurgicznego o wysokiej częstotliwości, należy używać wyłącznie nieuszkodzonych przewodów pacjenta i akcesoriów podłączonych zgodnie z niniejszą instrukcją obsługi.

System ten jest przeznaczony do użytku z defibrylatorami. Aby zapewnić prawidłowe działanie zabezpieczone przed wyładowaniami podczas defibrylacji, należy używać wyłącznie nieuszkodzonych przewodów pacjenta i akcesoriów podłączonych zgodnie z niniejszą instrukcją obsługi.

Wszystkie urządzenia wskazane w normie IEC/EN 60950, w tym drukarki, należy ustawić w odległości co najmniej 1,5 metra od łóżka pacjenta.

PRZESTROGA	Nie wystawiać zaawansowanego monitora HemoSphere na działanie skrajnych temperatur. Dane techniczne dotyczące środowiska pracy zawiera dodatek A.
	Nie pozostawiać zaawansowanego monitora HemoSphere w brudnym lub zakurzonym otoczeniu.
	Nie zasłaniać otworów wentylacyjnych zaawansowanego monitora HemoSphere.
	Nie używać zaawansowanego monitora HemoSphere w otoczeniu, w którym silne światło utrudnia odczytanie ekranu LCD.
	Nie używać monitora jako urządzenia przenośnego.

3.3.2 Instalacja baterii

Otworzyć klapkę komory baterii (rysunek 3-3) i włożyć baterię do wnęki, upewniając się, że jest w pełni umieszczona i osadzona. Zamknąć klapkę komory baterii i upewnić się, że zatrzask jest dobrze zamknięty. Postępować zgodnie z poniższymi instrukcjami, aby podłączyć przewód zasilania i w pełni naładować baterię. Nie używać nowego zestawu baterii jako źródła zasilania, zanim nie zostanie w pełni naładowany.

UWAGA	Aby upewnić się, że poziom naładowania baterii wyświetlany na monitorze jest właściwy, należy przed pierwszym użyciem ją sformatować. Informacje na temat konserwacji i formowania baterii — patrz <i>Konserwacja baterii</i> na stronie 296.					
	Zestaw baterii HemoSphere jest zapasowym źródłem zasilania wykorzystywanym w trakcie przerw w zasilaniu sieciowym i może być wykorzystywany do monitorowania jedynie przez ograniczony czas.					
OSTRZEŻENIE	Upewnić się, że bateria jest w pełni umieszczona, a klapka komory baterii odpowiednio zatrzaśnięta. Jeśli bateria wypadnie, może spowodować obrażenia ciała pacjenta lub lekarza.					
	W zaawansowanym monitorze HemoSphere należy używać wyłącznie baterii zatwierdzonych przez firmę Edwards. Nie ładować zestawu baterii poza monitorem. Może to spowodować uszkodzenie baterii lub obrażenia ciała użytkownika.					
	Zaleca się korzystanie z zaawansowanego monitora HemoSphere z włożoną baterią, aby zapobiec przerwaniu monitorowania w przypadku utraty zasilania sieciowego.					
	Jeśli dojdzie do utraty zasilania lub bateria się wyczerpie, monitor przeprowadzi kontrolowaną procedurę wyłączania.					

3.3.3 Podłączanie przewodu zasilania

Przed podłączeniem przewodu zasilania do tylnego panelu monitora należy sprawdzić, czy osłona wejścia przewodu jest zamontowana:

- 1 Jeżeli osłona wejścia przewodu jest już zamontowana, wyjąć dwie śruby (rysunek 3-5) mocujące osłonę do tylnego panelu monitora.
- 2 Podłączyć odłączalny przewód zasilania. Upewnić się, że wtyczka jest dobrze osadzona.
- **3** Umocować oslonę wejścia przewodu nad wtyczką, przeprowadzając przewód zasilania przez otwór oslony, a następnie dociskając oslonę i uszczelkę do tylnego panelu monitora tak, aby nalożyła się na oba otwory po śrubach.
- 4 Włożyć ponownie śruby, aby przykręcić osłonę do monitora.
- 5 Podłączyć przewód zasilania do gniazda ściennego klasy szpitalnej.

OSTRZEŻENIE Nie używać zaawansowanej platformy do monitorowania HemoSphere, jeśli osłona wejścia przewodu zasilania nie jest przymocowana. Niespełnienie tego warunku może spowodować wniknięcie płynu.

Rysunek 3-5 Obudowa wejść zasilania zaawansowanego monitora HemoSphere — położenie śrub

3.3.3.1 Połączenie wyrównawcze

Niniejszy monitor MUSI być uziemiony podczas pracy (urządzenie klasy I według normy IEC 60601-1). W przypadku braku dostępu do gniazda klasy szpitalnej lub gniazda trójstykowego należy zasięgnąć porady szpitalnego elektryka, aby zapewnić odpowiednie uziemienie. Na tylnym panelu monitora (rysunek 3-2) znajduje się przyłącze wyrównawcze, które należy podłączyć do systemu wyrównania potencjałów (przewód wyrównawczy).

OSTRZEŻENIE Nie używać przedłużaczy ani listew z wieloma gniazdami do podłączania przewodu zasilania. Nie używać innych niż dostarczony odłączalnych przewodów zasilania. Aby uniknąć ryzyka porażenia prądem elektrycznym, zaawansowany monitor HemoSphere można podłączać wyłącznie do sieci zasilania z uziemieniem. Nie używać adapterów zasilania z trzech bolców na dwa bolce.
 Niezawodność uziemienia można osiągnąć wyłącznie po podłączeniu urządzenia do gniazd oznaczonych jako "hospital only", "hospital grade" lub równoważnego gniazda odpowiedniego do stosowania w placówkach szpitalnych.

Odłączyć monitor od źródła zasilania prądem przemiennym, wyjmując wtyczkę przewodu zasilania z gniazda sieciowego. Naciśnięcie przycisku Włącz/Wyłącz na monitorze nie odłącza systemu od źródła zasilania prądem przemiennym.

PRZESTROGA Podczas przenoszenia urządzenia upewnić się, że wyłączono zasilanie, a wtyczkę przewodu zasilania odłączono od gniazda.

3.3.4 Podłączanie i odłączanie modułu do monitorowania hemodynamicznego

Zaawansowany monitor HemoSphere jest dostarczany z dwoma standardowymi modułami rozszerzającymi i jednym modułem rozszerzającym L-Tech. Przed umieszczeniem nowego modułu do monitorowania należy usunąć moduł rozszerzający, naciskając i zwalniając przycisk, aby odblokować i wysunąć zbędny moduł.

Przed zainstalowaniem nowego modułu sprawdzić, czy nie ma zewnętrznych uszkodzeń. Umieścić żądany moduł do monitorowania w otworze, wsuwając go z równomiernym naciskiem i zatrzaskując we właściwej pozycji.

3.3.5 Podłączanie i odłączanie przewodu do monitorowania hemodynamicznego

Oba porty przewodu do monitorowania są wyposażone w mechanizm zatrzasków magnetycznych. Przed podlączeniem sprawdzić, czy przewód nie jest uszkodzony. Przewód do monitorowania zatrzaśnie się w odpowiednim miejscu, jeśli zostanie właściwie osadzony w porcie. Aby odlączyć przewód, należy chwycić za wtyczkę i wyciągnąć ją z gniazda monitora.

3.3.6 Podłączanie przewodów urządzeń zewnętrznych

Zaawansowany monitor HemoSphere wykorzystuje pozyskane dane monitorowania do obliczania określonych parametrów hemodynamicznych. Zaliczają się do nich dane uzyskane z portów wejściowych ciśnienia i portu wejściowego monitora EKG. Wszystkie podrzędne połączenia przewodów są umieszczone na tylnym panelu monitora (rysunek 3-2). Patrz *Wymagane akcesoria modułów platformy i przewodów* na stronie 55 — znajduje się tam wykaz obliczonych parametrów dostępnych w przypadku określonych połączeń przewodów. Więcej informacji o konfigurowaniu analogowych portów ciśnienia — patrz *Analogowy sygnał wejściowy ciśnienia* na stronie 122.

WAŻNA INFORMACJA	Zaawansowany monitor HemoSphere jest zgodny z analogowymi
	podrzędnymi wejściami ciśnienia i EKG każdego zewnętrznego monitora
	pacjenta wyposażonego w analogowe podrzędne porty wyjściowe
	zgodne z danymi technicznymi dotyczącymi sygnału wejściowego
	zamieszczonymi w dodatku A, tabela A-5 tego podręcznika operatora.
	Dzięki temu można w wygodny sposób wykorzystać informacje z monitora
	pacjenta do obliczenia dodatkowych parametrów hemodynamicznych,
	które mają zostać wyświetlone. Jest to funkcja opcjonalna niemająca
	wpływu na podstawowe działanie zaawansowanego monitora
	HemoSphere polegające na monitorowaniu pojemności minutowej serca
	<u>(za pomocą modułu HemoSphere Swan-Ganz) lub wysycenia tlenem</u>
	<u>krwi żylnej (za pomocą kabla pulsoksymetru monitora HemoSphere).</u>

OSTRZEŻENIE Stosować wyłącznie akcesoria, przewody i elementy zaawansowanego monitora HemoSphere, które zostały dostarczone i oznakowane przez firmę Edwards. Używanie innych nieoznakowanych akcesoriów, przewodów i elementów może wpłynąć na bezpieczeństwo pacjenta i dokładność pomiaru.

3.4 Pierwsze uruchomienie

3.4.1 Procedura uruchamiania

Aby włączyć i wyłączyć monitor, należy nacisnąć przycisk zasilania umieszczony na przednim panelu. Po włączeniu monitora zostanie wyświetlony ekran z nazwą firmy Edwards, a następnie przeprowadzony test poprawności działania (ang. Power-On Self Test, POST). Dzięki testowi POST można sprawdzić, czy monitor spełnia podstawowe wymagania operacyjne, poprzez przetestowanie najważniejszych podzespołów sprzętowych. Test jest wykonywany po każdym włączeniu systemu. Komunikat stanu testu POST jest wyświetlany na ekranie rozruchowym razem z informacjami o systemie, takimi jak numery seryjne i numery wersji oprogramowania.

Rysunek 3-6 Ekran rozruchowy

UWAGA W przypadku wykrycia blędnego stanu przez test diagnostyczny zamiast ekranu rozruchowego zostanie wyświetlony ekran blędu systemu. Patrz rozdział 14: Rozwiązywanie problemów lub dodatek F: Konserwacja systemu, serwis i pomoc. W innym przypadku należy skontaktować się z przedstawicielem firmy Edwards Lifesciences w celu uzyskania pomocy.

3.4.2 Wybór języka

Po pierwszym uruchomieniu zaawansowanego monitora HemoSphere zostaną wyświetlone opcje językowe umożliwiające wybór języka wyświetlania, formatu daty i godziny oraz jednostek pomiarów. Ekran wyboru języka jest wyświetlany po zainicjowaniu oprogramowania i zakończeniu testu POST. Wybranie języka powoduje również ustawienie wartości jednostek oraz formatu godziny i daty domyślnych dla danego języka (patrz dodatek D: *Konfiguracja monitora i ustawienia domyślne*).

Wszystkie zależne od języka ustawienia można zmienić później na ekranie **Data/godzina** wywoływanym z poziomu ekranu **Ustawienia monitora** i w opcji języka dostępnej na ekranie **Ustawienia monitora** → **Ogólne**.

Po wyświetleniu ekranu wyboru języka należy dotknąć żądany język.

Rysunek 3-7 Ekran wyboru języka

UWAGA Przykładowe ekrany wyboru języka — rysunek 3-6 i rysunek 3-7.

4

Zaawansowany monitor HemoSphere – skrócony przewodnik

Spis treści

Monitorowanie pojemności wyrzutowej serca za pomocą modułu HemoSphere Swan-Ganz
Monitorowanie za pomocą przewodu ciśnienia HemoSphere
Monitorowanie za pomocą przewodu do oksymetrii HemoSphere
Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere

UWAGA Ten rozdział jest przeznaczony dla doświadczonych lekarzy. Zawarto w nim krótkie instrukcje dotyczące obsługi zaawansowanego monitora HemoSphere. Bardziej szczegółowe informacje, ostrzeżenia i przestrogi zamieszczono w odpowiednich rozdziałach podręcznika operatora.

4.1 Monitorowanie pojemności wyrzutowej serca za pomocą modułu HemoSphere Swan-Ganz

Złącza do monitorowania za pomocą modulu HemoSphere Swan-Ganz — patrz rysunek 4-1.

Rysunek 4-1 Przegląd połączeń do monitorowania za pomocą modułu HemoSphere Swan-Ganz

- 1 Wprowadzić moduł HemoSphere Swan-Ganz do monitora. Prawidłowo osadzony moduł zatrzaśnie się na miejscu.
- 2 Nacisnąć przycisk zasilania, aby włączyć zaawansowany monitor HemoSphere. Wszystkie funkcje są dostępne z poziomu ekranu dotykowego.
- **3** Wybrać przycisk **Kontynuuj dla tego samego pacjenta** lub przycisk **Nowy pacjent**, a następnie wprowadzić dane nowego pacjenta.
- 4 Podłączyć przewód CCO pacjenta do modułu HemoSphere Swan-Ganz.
- 5 W oknie Wybór trybu monitorowania wybrać przycisk trybu monitorowania Inwazyjny.
- 6 Dotknąć ikony Uruchomienie monitorowania, aby rozpocząć monitorowanie.

zadany whok extant monitorowania.

- 8 Dotknąć wewnątrz kafelka parametru, aby wybrać żądany kluczowy parametr w menu konfiguracji kafelka parametru.
- 9 Dotknąć kafelka parametru, aby dostosować Alarmy/wartości docelowe.
- 10 W zależności od rodzaju cewnika przejść do etapu 11 jednej z poniższych części:
 - część 4.1.1 w przypadku monitorowania CO,
 - część 4.1.2 w przypadku monitorowania iCO,
 - część 4.1.3 w przypadku monitorowania EDV.

4.1.1 Monitorowanie ciągłej pojemności minutowej serca

- **11** Podłączyć termistor ⁽¹⁾ i włókno termiczne ⁽²⁾ złączy cewnika CCO Swan-Ganz (rysunek 4-1) do przewodu CCO pacjenta.
- 12 Upewnić się, że cewnik jest prawidłowo umieszczony w ciele pacjenta.
- 13 Dotknąć ikony uruchomienia monitorowania 🚺 . Na ikonie zatrzymania monitorowania

pojawi się czasomierz wskazujący czas, jaki pozostał do wyświetlenia pierwszej wartości CO. Po upływie około 5 do 12 minut, kiedy zostanie zarejestrowana wystarczająca ilość danych, na kafelku parametru pojawi się wartość CO.

14 Czas do następnego pomiaru CO wyświetlany jest poniżej ikony zatrzymania monitorowania

🕖 . W celu uzyskania krótszych odstępów między obliczeniami należy jako kluczowy parametr

wybrać STAT CO (sCO). sCO stanowi szybkie oszacowanie wartości CO.

15 Dotknąć ikony zatrzymania monitorowania 🚺 , aby zatrzymać monitorowanie CO.

4.1.2 Monitorowanie chwilowej pojemności minutowej serca

Przed rozpoczęciem wykonać czynności opisane w etapach 1-10 (patrz część 4.1, początek).

- 11 Podłączyć złącze termistora cewnika Swan-Ganz (⁽¹⁾, rysunek 4-1) do przewodu CCO pacjenta.
- **12** Podłączyć sondę temperatury iniektatu do łącznika sondy temperatury iniektatu ③ na przewodzie CCO pacjenta. Typ systemu iniektatu (in-line lub łaźnia) jest wykrywany automatycznie.
- 13 Dotknąć ikony ustawień → zakladki Narzędzia kliniczne Narzędzia kliniczne → ikony iCO
- 14 Wybrać następujące ustawienia na ekranie konfiguracji nowego zestawu:
 - **Objętość iniektatu: 10 ml, 5 ml** lub **3 ml** (wyłącznie z sondą do pomiaru temperatury w łaźni)
 - Rozmiar cewnika: 5,5 F, 6 F, 7 F, 7,5 F lub 8 F
 - Obliczona stała: Auto; jeśli wybrano wprowadzanie ręczne, zostanie wyświetlona klawiatura

UWAGA Obliczona stała jest obliczana automatycznie na podstawie typu systemu iniektatu, objętości iniektatu i rozmiaru cewnika. Jeżeli obliczona stała jest wprowadzana ręcznie, wybór objętości iniektatu i rozmiaru cewnika zostaną ustawione na **Auto**.

• Tryb bolusa: Auto lub Ręczny

15 Dotknąć przycisku Uruchom zestaw.

- 16 W automatycznym trybie bolusa polecenie Czekaj jest podświetlone (Czekaj) do czasu uzyskania wartości wyjściowej warunków termicznych. W ręcznym trybie bolusa napis Gotowe (Gotowe) zostanie podświetlony po osiągnięciu wartości wyjściowej warunków termicznych. Dotknąć przycisku Wstrzyknij, aby rozpocząć procedurę podawania bolusa.
- 17 Kiedy przycisk Wstrzyknij podświetli się (wstrzyknij), zastosować szybką, płynną, ciągłą technikę, aby podać uprzednio wybraną objętość bolusa.

- **18** Podświetlana jest opcja **Wyliczanie** (**Wyliczanie**), a następnie jest wyświetlany wynik pomiaru iCO.
- 19 W zależności od potrzeb etapy 16–18 można powtórzyć maksymalnie sześć razy.
- 20 Dotknąć przycisku Przegląd i, jeśli to konieczne, wykonać edycję serii bolusa.
- 21 Dotknąć przycisku Akceptuj.

4.1.3 Monitorowanie ciągłej objętości późnorozkurczowej

Przed rozpoczęciem wykonać czynności opisane w etapach 1–10 (patrz część 4.1, początek). Do pozyskiwania parametrów EDV/RVEF należy stosować cewnik CCO Swan-Ganz z RVEDV.

- **11** Podłączyć termistor ^① i włókno termiczne ^② złączy cewnika wolumetrycznego Swan-Ganz (rysunek 4-1) do przewodu CCO pacjenta.
- 12 Upewnić się, że cewnik jest prawidłowo umieszczony w ciele pacjenta.
- **13** Podłączyć jeden koniec przewodu interfejsu EKG do panelu tylnego zaawansowanego monitora HemoSphere, a jego drugi koniec do wyjścia sygnalu EKG przyłóżkowego monitora EKG.
- 14 Dotknąć ikony uruchomienia monitorowania 🚺 , aby rozpocząć monitorowanie CO/EDV.
- 15 Na ikonie zatrzymania monitorowania 💟 pojawi się czasomierz wskazujący czas, jaki pozostał

do wyświetlenia pierwszej wartości CO/EDV. Po około 5 do 12 minut, kiedy zostanie zarejestrowana wystarczająca ilość danych, na skonfigurowanych kafelkach parametrów pojawi się wartość EDV i/lub RVEF.

- 16 Na pasku informacji wyświetlany jest czas do następnego pomiaru CO. W celu uzyskania dłuższych odstępów między obliczeniami jako kluczowe parametry należy wybrać parametry STAT (sCO, sEDV i sRVEF). Parametry sCO, sEDV i sRVEF stanowią szybkie oszacowanie parametrów CO, EDV i RVEF.
- 17 Dotknąć ikony zatrzymania monitorowania 🔽 , aby zatrzymać monitorowanie CO/EDV.

4.2 Monitorowanie za pomocą przewodu ciśnienia HemoSphere

- 1 Złącze czujnika/przetwornika ciśnienia
- ② Kolorowa wkładka oznaczająca typ ciśnienia
- ③ Przycisk zerowania/dioda LED stanu
- ④ Przewód ciśnienia HemoSphere
- S Zaawansowany monitor HemoSphere

Rysunek 4-2 Opis podłączania przewodu ciśnienia

4.2.1 Konfiguracja przewodu ciśnienia

- 1 Podłączyć koniec przewodu ciśnienia podłączany do monitora do zaawansowanego monitora HemoSphere.
- 2 Nacisnąć przycisk zasilania, aby włączyć zaawansowany monitor HemoSphere. Wszystkie funkcje są dostępne z poziomu ekranu dotykowego.
- **3** Wybrać przycisk **Kontynuuj dla tego samego pacjenta** lub przycisk **Nowy pacjent**, a następnie wprowadzić dane nowego pacjenta.
- 4 Wybrać przycisk monitorowania w trybie Minimalnie inwazyjna w oknie Wybór trybu monitorowania, a następnie dotknąć ikony Uruchomienie monitorowania. Zostanie wyświetlony ekran Wyzeruj i krzywa.
- **5** Podłączyć wypełniony czujnik ciśnienia do przewodu ciśnienia. Dioda LED otaczająca przycisk zerowania na przewodzie ciśnienia w pozycji [®] zacznie migać na zielono, co wskazuje wykrycie czujnika ciśnienia.
- **6** Należy przestrzegać wszystkich instrukcji dotyczących przygotowania i umieszczania cewnika do monitorowania ciśnienia zawartych w instrukcji obsługi cewnika.

Przed rozpoczęciem każdej sesji monitorowania przewód ciśnienia HemoSphere należy wyzerować.

4.2.2 Zerowanie przewodu ciśnienia

1 Dotknąć ikony Wyzeruj i krzywa znajdującej się na pasku nawigacji lub w menu Narzędzia kliniczne.

LUB

Nacisnąć fizyczny przycisk zerowania **-0-** bezpośrednio na przewodzie ciśnienia i przytrzymać go przez trzy sekundy (patrz rysunek 4-2).

- **2** Wybrać rodzaj/lokalizację używanego czujnika ciśnienia obok wyświetlonego **portu** podłączonego przewodu ciśnienia HemoSphere. Możliwe są następujące opcje:
 - ART
 - CVP
 - PAP

Ten etap można pominąć podczas monitorowania za pomocą czujnika FloTrac lub Acumen IQ. Jeśli podłączony jest czujnik FloTrac lub Acumen IQ, jedyną dostępną opcją ciśnienia jest **ART** i jest ona automatycznie wybierana.

- 3 Postępując zgodnie z instrukcją, wyrównać kranik czujnika z osią flebostatyczną pacjenta.
- 4 Otworzyć kranik czujnika w celu dokonania pomiaru warunków atmosferycznych.
- 5 Nacisnąć i przytrzymać fizyczny przycisk zerowania -O- bezpośrednio na przewodzie ciśnienia

lub dotknąć przycisku zerowania **-0-** widocznego na ekranie. Po zakończeniu zerowania rozlegnie się sygnał dźwiękowy i pojawi się komunikat "**Wyzerowane**" z godziną i datą. Po pomyślnym wykonaniu zerowania dioda LED wokół przycisku zerowania przestanie migać i wyłączy się.

- 6 Potwierdzić stabilność ciśnienia zerowego i przekręcić kranik tak, aby czujnik odczytywał ciśnienie wewnątrznaczyniowe pacjenta.
- 7 Dotknąć ikony ekranu głównego 🏠, aby rozpocząć monitorowanie.
- 8 Dotknąć ikony ustawień → zakładki Wybierz opcję Ekrany Wybierz opcję wybrać żądany widok ekranu monitorowania.
- **9** Dotknąć wnętrza kafelka parametru, aby wybrać żądany kluczowy parametr w menu konfiguracji kafelka parametru.
- 10 Dotknąć kafelka parametru, aby dostosować Alarmy/wartości docelowe.

UWAGA Nie można dostosowywać wartości granicznych alarmów dotyczących parametru Wskaźnik predykcji niedociśnienia (HPI).

4.3 Monitorowanie za pomocą przewodu do oksymetrii HemoSphere

Rysunek 4-3 Podłączanie urządzeń do oksymetrii - przegląd

- 1 Podłączyć przewód do oksymetrii HemoSphere z lewej strony zaawansowanego monitora HemoSphere. Patrz rysunek 4-3.
- 2 Nacisnąć przycisk zasilania, aby włączyć zaawansowany monitor HemoSphere. Wszystkie funkcje są dostępne z poziomu ekranu dotykowego.
- **3** Wybrać przycisk **Kontynuuj dla tego samego pacjenta** lub przycisk **Nowy pacjent**, a następnie wprowadzić dane nowego pacjenta.
- **4** W oknie Wybór trybu monitorowania wybrać przycisk trybu monitorowania **Inwazyjny** lub **Minimalnie inwazyjny** odpowiednio do potrzeb.
- 5 Dotknąć ikony Uruchomienie monitorowania.
- 6 Przewód do oksymetrii HemoSphere musi zostać skalibrowany przed każdą sesją monitorowania. Kontynuować, postępując zgodnie z instrukcjami kalibracji in vitro (patrz część 4.3.1) lub in vivo (patrz część 4.3.2).

4.3.1 Kalibracja in vitro

- 1 Zdjąć element pokrywy tacy cewnika, aby uwidocznić złącze optyczne.
- 2 Umieścić złącze optyczne cewnika "TOP" (górną) stroną w przewodzie do oksymetrii i zatrzasnąć zamknięcie obudowy.
- 3 Dotknąć ikony kalibracji oksymetrii Ana kafelku parametru ScvO₂/SvO₂ lub dotknąć ikony

- 4 Wybrać Rodzaj oksymetrii: ScvO₂ lub SvO₂.
- 5 Dotknąć przycisku Kalibracja in vitro.
- 6 Wprowadzić wartość hemoglobiny (HGB) albo hematokrytu (Hct) pacjenta. Można użyć wartości domyślnej, zanim będą dostępne wartości HGB lub Hct pacjenta.
- 7 Dotknąć przycisku Kalibruj.
- 8 Po pomyślnym zakończeniu kalibracji pojawi się następujący komunikat: Prawidłowy wynik kalibracji in vitro, wprowadź cewnik
- 9 Wprowadzić cewnik w sposób opisany we wskazówkach dotyczących stosowania.
- 10 Dotknąć przycisku Rozpocznij.
- **11** Jeśli **ScvO**₂/**SvO**₂ nie są aktualnymi kluczowymi parametrami, dotknąć wyświetlonej etykiety parametru umieszczonej wewnątrz któregokolwiek kafelka parametru, aby wybrać **ScvO**₂/**SvO**₂ jako kluczowe parametry w menu konfiguracji kafelka parametru.
- 12 Dotknąć kafelka parametru ScvO₂/SvO₂, aby dostosować Alarmy/wartości docelowe.

4.3.2 Kalibracja in vivo

- 1 Wprowadzić cewnik w sposób opisany we wskazówkach dotyczących stosowania.
- 2 Umieścić złącze optyczne cewnika "TOP" (górną) stroną w przewodzie do oksymetrii i zatrzasnąć zamknięcie obudowy.
- 3 Dotknąć ikony kalibracji oksymetrii Ana kafelku parametru ScvO₂/SvO₂ lub dotknąć ikony

ustawień \checkmark zakładki Narzędzia kliniczne \checkmark ikony Kalibracja oksymetrii

- 4 Wybrać Rodzaj oksymetrii: ScvO₂ lub SvO₂.
- 5 Dotknąć przycisku Kalibracja in vivo.

Jeżeli konfiguracja nie powiedzie się, wyświetli się jeden z poniższych komunikatów:

Ostrzeżenie: Wykryto klin lub artefakt ściany. Zmień położenie cewnika.

LUB

Ostrzeżenie: Niestabilny sygnał.
6 Jeżeli pojawi się komunikat "Wykryto klin lub artefakt ściany" lub "Niestabilny sygnał", należy podjąć próbę rozwiązania tego problemu zgodnie ze wskazówkami zawartymi w rozdziale 14: Rozwiązywanie problemów oraz dotknąć przycisku

Skalibruj ponownie, aby ponownie przeprowadzić konfigurację wyjściową.

LUB

Dotknąć przycisku Kontynuuj, aby rozpocząć pobieranie.

- 7 Jeśli kalibracja wyjściowa powiodła się, dotknąć przycisku **Pobierz**, a następnie pobrać próbkę krwi i przesłać ją do laboratorium w celu wykonania analizy pomiarów za pomocą CO-oksymetru.
- 8 Po otrzymaniu wyników badań wprowadzić HGB lub Hct oraz ScvO₂/SvO₂.
- 9 Dotknąć przycisku Kalibruj.
- 10 Dotknąć ikony ustawień 🏹 → zakładki Wybierz opcję Ekrany 🏹 Wybierz opcję wybrać żądany widok ekranu monitorowania.
- **11** Dotknąć wyświetlonej etykiety parametru umieszczonej wewnątrz któregokolwiek kafelka parametru, aby wybrać **ScvO**₂/**SvO**₂ jako kluczowe parametry w menu konfiguracji kafelka parametru.
- 12 Dotknąć kafelka parametru ScvO₂/SvO₂, aby dostosować Alarmy/wartości docelowe.

4.4 Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere

Moduł do oksymetrii tkankowej HemoSphere jest zgodny z modułem oksymetru tkankowego ForeSight Elite (modułem FSM) i z czujnikami do oksymetrii tkankowej ForeSight Elite (czujnikami FSE). Moduł do oksymetrii tkankowej HemoSphere pasuje do standardowego gniazda modułu.

4.4.1 Podłączanie modułu do oksymetrii tkankowej HemoSphere

Rysunek 4-4 Przegląd połączeń modułu do oksymetrii tkankowej HemoSphere

- 1 Wprowadzić moduł do oksymetrii tkankowej HemoSphere do monitora. Prawidłowo osadzony moduł zatrzaśnie się na miejscu.
- 2 Nacisnąć przycisk zasilania, aby włączyć zaawansowany monitor HemoSphere. Wszystkie funkcje są dostępne z poziomu ekranu dotykowego.
- **3** Wybrać przycisk **Kontynuuj dla tego samego pacjenta** lub przycisk **Nowy pacjent**, a następnie wprowadzić dane nowego pacjenta.
- **4** Poprawnie ustawić, a następnie podłączyć przewód host modułu ForeSight Elite (FSM) do modułu do oksymetrii tkankowej. Do każdego z modułów do oksymetrii tkankowej można podłączyć maksymalnie dwa moduły ForeSight Elite.
- 5 Podłączyć zgodny(-e) czujnik(i) ForeSight Elite (FSE) do modułu FSM. Do każdego z modułów FSM można podłączyć maksymalnie dwa czujniki FSE. Informacje dotyczące prawidłowego mocowania patrz "Mocowanie czujników na ciele pacjenta" na stronie 196 oraz instrukcja obsługi czujnika FSE.
- 6 W oknie Wybór trybu monitorowania wybrać przycisk trybu monitorowania Inwazyjny lub Minimalnie inwazyjna odpowiednio do potrzeb.
- 7 Dotknąć ikony Uruchomienie monitorowania.

- 8 Jeśli StO₂ nie jest aktualnym kluczowym parametrem, dotknąć wyświetlonej etykiety parametru umieszczonej wewnątrz dowolnego kafelka parametru, aby wybrać StO₂ <K> jako kluczowy parametr w karcie Wybierz parametr menu konfiguracji kafelka, gdzie <K> oznacza kanał czujnika. Kanały dostępne w przypadku modułu FSE A to A1 i A2, a w przypadku modułu FSE B B1 i B2.
- 9 Wskazanie kanału pojawi się w lewym górnym rogu kafelka parametru. Dotknąć ikony z sylwetką pacjenta w kafelku parametru, aby uzyskać dostęp do zakładki Lokalizacja czujnika menu konfiguracji kafelka.

* <u>StO</u>2

- 10 Wybrać tryb monitorowania pacjenta dorosłego 🥼 👔 lub dziecka 🥼
- **11** Wybrać miejsce zamocowania czujnika na ciele pacjenta. Listę dostępnych miejsc zamocowania czujników zawiera tabela 12-1 na stronie 194.
- 12 Dotknąć ikony ekranu głównego 🏠, aby powrócić do okna monitorowania.
- 13 Dotknąć w dowolnym miejscu kafelka parametru St $O_2 \rightarrow$ zakładki Lokalizacja czujnika

Lokalizacja czujnika, aby dostosować Przypomnienie o sprawdzeniu skóry lub Uśrednianie dla tego czujnika.

14 Dotknąć w dowolnym miejscu kafelka parametru St $O_2 \rightarrow$ zakładki Ustaw wartości docelowe

Ustaw wartości docelowe , aby dostosować Alarmy/wartości docelowe dla StO₂.

5

Nawigacja w obrębie zaawansowanego monitora HemoSphere

Spis treści

Wygląd ekranu zaawansowanego monitora HemoSphere	
Pasek nawigacji	
Widoki monitora	
Zogniskowany format monitorowania	
Narzędzia kliniczne	
Pasek informacji	
Pasek stanu	
Nawigacja w obrębie ekranu monitora	

5.1 Wygląd ekranu zaawansowanego monitora HemoSphere

Wszystkie funkcje monitorowania są inicjowane poprzez dotykanie odpowiedniego obszaru na ekranie dotykowym. Pasek nawigacji, znajdujący się po lewej stronie ekranu, zawiera różne elementy sterowania do zatrzymywania i uruchamiania monitorowania, przewijania i wyboru ekranów, wykonywania czynności klinicznych, dostosowywania ustawień systemu, przechwytywania zrzutów ekranu i wyciszania alarmów. Główne elementy składowe ekranu zaawansowanego monitora HemoSphere są przedstawione poniżej (patrz rysunek 5-1). W głównym oknie jest wyświetlany bieżący widok monitorowania lub ekran menu. Szczególowe informacje dotyczące rodzajów widoku monitorowania — patrz *Widoki monitora* na stronie 81. Szczególowe informacje na temat innych funkcji ekranu — wskazane obszary przedstawia rysunek 5-1.

Rysunek 5-1 Funkcje ekranu zaawansowanego monitora HemoSphere

5.2 Pasek nawigacji

Pasek nawigacji jest wyświetlany na większości ekranów. Wyjątek stanowią ekran startowy i ekrany wskazujące, że zaawansowany monitor HemoSphere zatrzymał monitorowanie.

Rysunek 5-2 Pasek nawigacji

Wybór trybu monitorowania. Tego pola należy dotknąć, aby przejść do obszaru przelączania trybów monitorowania. Patrz *Wybierz tryb monitorowania* na stronie 103.

Uruchamianie monitorowania CO. Podczas monitorowania za pomocą modulu HemoSphere Swan-Ganz ikona uruchamiania monitorowania CO pozwala użytkownikowi na rozpoczęcie monitorowania bezpośrednio z poziomu paska nawigacji. Patrz *Ciągła pojemność minutowa serca* na stronie 149.

Zatrzymanie monitorowania CO. Obecność ikony zatrzymania monitorowania wskazuje, że monitorowanie CO wykorzystujące moduł HemoSphere Swan-Ganz jest w toku. Użytkownik może natychmiast zatrzymać monitorowanie, dotykając tej ikony, a następnie przycisku **OK** w oknie podręcznym z potwierdzeniem.

Wyzeruj i krzywa. Ta ikona umożliwia użytkownikowi dostęp do ekranu **Wyzeruj i krzywa** bezpośrednio z paska nawigacji. Patrz *Ekran Wyzeruj i krzywa* na stronie 174. Ikona **Wyzeruj i krzywa** wyświetla się w trybie monitorowania z użyciem modułu z cewnikiem Swan-Ganz wyłącznie po podłączeniu przewodu ciśnienia HemoSphere.

Analiza interwencji. Ikona ta umożliwia użytkownikowi dostęp do menu Analiza interwencji. Można w nim zapisywać interwencje kliniczne. Patrz Zdarzenia interwencji na stronie 87.

Wyświetlanie krzywej ciśnienia krwi. Ikona ta umożliwia wyświetlanie krzywej ciśnienia krwi po podłączeniu przewodu ciśnienia HemoSphere i zgodnego czujnika. Patrz *Wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym* na stronie 89.

Monitorowanie GDT. Ikona ta wyświetla menu monitorowania GDT. Rozszerzone monitorowanie parametrów umożliwia użytkownikowi zarządzanie parametrami kluczowymi w optymalnym zakresie. Patrz Rozszerzone monitorowanie parametrów na stronie 229.

Ekran główny. Ikona ta umożliwia powrót do głównego ekranu monitorowania.

Ustawienia. Ikona ustawień zapewnia dostęp do czterech ekranów konfiguracji zawierających następujące opcje:

o Narzędzia kliniczne

Narzędzia kliniczne. Ekran czynności klinicznych zapewnia dostęp do następujących narzędzi klinicznych:

- Wybierz tryb monitorowania
- iCO (moduł HemoSphere Swan-Ganz)
- Wyzeruj i krzywa (przewód ciśnienia HemoSphere)
- Kalibracja oksymetrii (przewód do oksymetrii HemoSphere)
- Wprowadzić parametr ośrodkowego ciśnienia żylnego (CVP)
- Kalkulator wartości wyliczanej
- Przegląd zdarzeń
- **Test przewodu CCO pacjenta** (moduł HemoSphere Swan-Ganz)
- **Test odpowiedzi na podane płyny** (funkcja zaawansowana patrz *Test odpowiedzi na podane płyny* na stronie 233)
- Dane pacjenta (patrz Dane pacjenta na stronie 115)
- Dodatkowy ekran HPI (przewód ciśnienia HemoSphere funkcja zaawansowana)

UWAGA Dodatkowy ekran HPI jest dostępny po aktywacji funkcji Acumen HPI™. Aktywacja dostępna jest wyłącznie w określonych obszarach. Patrz Funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI) na stronie 208. W celu uzyskania dodatkowych informacji na temat włączania tej zaawansowanej funkcji należy skontaktować się z lokalnym przedstawicielem firmy Edwards.

Opis czynności klinicznych **Wybierz tryb monitorowania, Wprowadzanie CVP, Kalkulator wartości wyliczanej** i **Przegląd zdarzeń** znajduje się w tym rozdziale (patrz *Narzędzia kliniczne* na stronie 103). Pozostale informacje o wymienionych czynnościach klinicznych — patrz rozdział dotyczący wybranego modułu lub przewodu.

Wybierz opcję Ekrany. Zakładka wyboru ekranów pozwala użytkownikowi wybrać żądaną liczbę wyświetlanych monitorowanych parametrów i rodzaj widoku monitorowania użytego do ich wyświetlania, co jest podświetlone na kolorowo (patrz

rysunek 5-3, "Przykład okna wyboru ekranu monitorowania", na stronie 81). Wybranie widoku ekranu monitorowania spowoduje natychmiastowe wyświetlenie tego trybu.

Ustawienia. Ikona ustawień zapewnia dostęp do ekranów konfiguracji zawierających następujące opcje:

- Ogólne ustawienia monitora: patrz rozdział 6: Ustawienia interfejsu użytkownika
- Zaawansowana konfiguracja: patrz rozdział 7: Ustawienia zaawansowane, rozdział 7: Wyreguluj wagę oraz rozdział 8: Eksportowanie danych i ustawienia łączności
- Eksport danych: patrz rozdział 8: Eksportowanie danych i ustawienia łączności
- Tryb demonstracyjny: patrz rozdział 7: Tryb demonstracyjny

Zaawansowana konfiguracja i Eksport danych to opcje menu chronione hasłem. Patrz Ochrona hasłem na stronie 113.

Pomoc: patrz rozdział 14: Pomoc ekranowa

Wyciszanie alarmów dźwiękowych. Ikona ta wycisza wszystkie alarmy wskaźników dźwiękowych i wizualnych na maksymalnie pięć minut. Dostępne przedziały czasowe wstrzymania alarmu to 1, 2, 3, 4 i 5 min. Nowe alarmy fizjologiczne są wyciszane w czasie wstrzymywania alarmu. Po upływie tego czasu dźwięk alarmów zostanie przywrócony. Sygnały usterek są wyciszane do czasu wyczyszczenia i ponownego wystąpienia usterki. Jeśli pojawi się nowa usterka, dźwięk alarmu zostanie wznowiony.

Wyciszanie alarmów dźwiękowych. Wskazuje tymczasowe wyciszenie alarmów. Zostanie wyświetlony czasomierz i komunikat "**Alarmy wstrzymane**". Wskaźnik wstrzymania alarmu pojawi się na kafelku każdego parametru przekraczającego wartość alarmową.

Aby wyświetlić dodatkowe opcje wyciszania alarmów (poniżej), należy dotykać ikony wyciszonych alarmów dźwiękowych nieprzerwanie przez pięć sekund.

Trwale wyciszanie wszystkich alarmów. Dotknięcie tej ikony w rozwijanym menu alarmów powoduje wyciszenie wszystkich alarmów na czas nieokreślony. W celu wybrania tej opcji wyciszania alarmów wymagane jest wpisanie hasła **Administratora**. Patrz *Ochrona hasłem* na stronie 113.

Przerwa w monitorowaniu. Dotknięcie tej ikony powoduje przerwanie monitorowania. Pojawi się baner potwierdzający przerwę w monitorowaniu, co będzie oznaczało wstrzymanie monitorowania.

Wznów monitorowanie. Po potwierdzeniu przerwy w monitorowaniu na pasku nawigacji pojawi się ikona pozwalająca na wznowienie monitorowania oraz licznik upływającego czasu. Pojawi się baner "Przerwa w monitorowaniu". Aby powrócić do monitorowania, należy dotknąć ikony wznowienia monitorowania.

5.3 Widoki monitora

Dostępnych jest osiem klasycznych widoków monitorowania: trend graficzny, tabela trendów, podzielony ekran z trendem graficznym/tabelą trendów, fizjologia, kokpit, zależność fizjologiczna, pozycjonowanie celów i główny widok monitorowania podzielony na części obejmujące widok graficzny i typu kokpit. Zależnie od wybranego widoku monitorowania można wyświetlać maksymalnie osiem monitorowanych parametrów.

Oprócz klasycznych formatów widoków monitorowania dostępne są trzy dodatkowe, zogniskowane widoki monitorowania. Umożliwiają one użytkownikowi obserwację wartości ciśnienia tętniczego krwi w postaci trzech parametrów w uporządkowanym i zogniskowanym układzie ekranu. Patrz Zogniskowany ekran główny na stronie 100, Zogniskowany ekran trendu graficznego na stronie 101 i Zogniskowany ekran dokumentacji na stronie 102.

Aby przelączyć między widokami monitorowania, należy przesunąć trzema palcami po ekranie. Widok monitorowania można także wybrać, wykonując następujące czynności:

1 Dotknąć ikony ustawień \bigcirc \rightarrow zakładki **Wybierz opcję Ekrany** \bigcirc **Wybierz opcję Ekrany**

Menu wyboru ekranu monitora zawiera ikony odzwierciedlające wygląd ekranów monitorowania.

Rysunek 5-3 Przykład okna wyboru ekranu monitorowania

- **2** Dotknąć otoczonej kółkiem cyfry (**1**, **2**, **3** lub **4**), która przedstawia liczbę kluczowych parametrów do wyświetlenia w kafelkach parametrów na ekranach monitorowania. Wyświetlane u dołu ekranu wyboru ekrany zogniskowane zawsze wyświetlają 3 parametry kluczowe.
- **3** Wybrać i dotknąć przycisku widoku monitora, aby wyświetlić kluczowe parametry w tym formacie ekranu.

5.3.1 Kafelki parametrów

Kafelki parametrów znajdują się po prawej stronie większości ekranów monitorowania. Widok monitorowania typu kokpit składa się z kół parametrów o większym formacie, które działają identycznie jak opisano poniżej.

5.3.1.1 Zmiana parametrów

- 1 Dotknąć wyświetlonej etykiety parametru znajdującej się wewnątrz kafelka parametru, aby zmienić na inny parametr.
- 2 W menu konfiguracji kafelków wybrany parametr będzie podświetlony kolorem, a inne aktualnie wyświetlane parametry będą obramowane kolorem. Dostępne parametry są wyświetlane na ekranie bez podświetlenia. Rysunek 5-4 pokazuje zakładkę wyboru parametrów z menu konfiguracji kafelków, która wyświetla się przy wyborze ciągłych parametrów i monitorowania za pomocą modulu HemoSphere Swan-Ganz. Podczas monitorowania z użyciem innych modulów lub przewodów HemoSphere wygląd tego okna może różnić się od tego, który przedstawia rysunek 5-4.

Parametry są przydzielone do różnych kategorii. Dostępność kategorii zależy od bieżącego trybu monitorowania. Wymienione poniżej kategorie są pogrupowane w menu konfiguracji wyboru parametrów. Patrz rysunek 5-4.

PRZEPŁYW. Parametry przepływu mierzą przepływ krwi z lewego serca. Są to parametry CO, CI, SV, SVI i SVV.

OPÓR. Parametry oporu (SVR i SVRI) są związane z układowym oporem przepływu krwi.

FUNKCJA RV. Dostępne tu parametry EDV, EDVI i RVEF są wskaźnikami objętości prawej komory serca (ang. right ventricle, RV).

ACUMEN. Wymienione tutaj parametry są dostępne wyłącznie wtedy, gdy podłączony jest czujnik Acumen IQ i włączona jest funkcja HPI. Zaliczają się do nich HPI, Ea_{dvn} i dP/dt.

CIŚNIENIE. Parametry ciśnienia krwi obejmują wartości SYS, DIA, MAP, MPAP, PR, CVP oraz PPV.

OKSYMETRIA. Parametry oksymetrii obejmują oksymetrię żył $(SvO_2/ScvO_2)$ i oksymetrię tkankową (StO_2) , gdy są włączone.

Rysunek 5-4 Przykład menu konfiguracji kafelka wyboru kluczowego parametru

- 3 Dotknąć dostępnego parametru, aby wybrać parametr zastępczy.
- 4 Aby zmienić kolejność któregokolwiek kluczowego parametru, dotknąć kafelka parametru i przytrzymać, aż wokół kafelka pojawi się niebieskie obramowanie. Przeciągnąć kafelek parametru i upuścić go w nowym, żądanym położeniu, aby zaktualizować kolejność kluczowych parametrów.

5.3.1.2 Zmiana alarmu/wartości docelowej

Ekran **Alarmy/wartości docelowe** umożliwia użytkownikowi wyświetlenie i ustawienie alarmu i wartości docelowych dla wybranych parametrów lub włączanie/wyłączanie alarmu dźwiękowego i ustawień docelowych. Ponadto ustawienia docelowe można dopasowywać za pomocą klawiatury numerycznej lub przycisków przewijania, gdy potrzebna jest drobna korekta. Ten ekran jest dostępny po dotknięciu wartości parametru na kafelku parametru lub z poziomu ekranu ustawień parametru. Więcej informacji — patrz *Alarmy/wartości docelowe* na stronie 127.

UWAGA Z tym ekranem menu związany jest czasomierz dwuminutowej nieaktywności.

Nie można dostosowywać wartości granicznych alarmów ani zakresów docelowych dotyczących parametru Wskaźnik predykcji niedociśnienia (Acumen HPI).

5.3.1.3 Wskaźniki stanu

Kafelek parametru jest obramowany kolorem wskazującym bieżący stan pacjenta. Kolor zmienia się wraz ze zmianą stanu pacjenta. Można uzyskać dostęp do menu konfiguracji, dotykając podkreślonych elementów na kafelku. Na kafelkach mogą być wyświetlane dodatkowe informacje:

Rysunek 5-5 Kafelek parametru

Komunikaty na pasku stanu. Po wystąpieniu stanu usterki, alertu lub alarmu na pasku stanu zostaną wyświetlone komunikaty, które pozostaną tam do czasu usunięcia stanu. W przypadku wystąpienia więcej niż jednej usterki, alertu lub alarmu komunikat jest przelączany co dwie sekundy.

Po wystąpieniu usterki zostanie zatrzymane obliczanie parametrów, a na kafelkach poszczególnych parametrów, których stan dotyczy, wyświetlane będą ostatnia wartość oraz czas i data pomiaru parametru.

Interwał ciągłej zmiany. Na tym wskaźniku wyświetlony jest procent zmiany lub wartość bezwzględna zmiany, a następnie czas, po którym ta zmiana nastąpiła. Opcje konfiguracji — patrz *Odstępy czasu/ uśrednianie* na stronie 121.

Wskaźnik przekroczenia filtrowania SVV. Symbol wskaźnika przekroczenia filtrowania SVV () pojawia

się na kafelku parametru SVV, jeśli wykryty zostanie wysoki stopień zmienności tętna, który może mieć wpływ na wartość SVV.

Pasek SQI. Pasek SQI **m** jest odzwierciedleniem jakości sygnału podczas monitorowania oksymetrii. Jakość sygnału zależy od stanu cewnika i jego umieszczenia w naczyniu w przypadku oksymetrii wewnątrznaczyniowej lub wskaźnika perfuzji tkankowej dla światła w zakresie bliskiej podczerwieni w przypadku oksymetrii tkankowej. Informacje na temat poziomów wskaźnika — patrz tabela 11-3, "Poziomy wskaźnika jakości sygnału," na stronie 182. Wskaźniki stanu wartości docelowych. Kolorowy wskaźnik obramowujący każdy kafelek zawierający wartość monitorowanego parametru wskazuje stan kliniczny pacjenta. Informacje dotyczące kolorów wskaźników i wskazań klinicznych — patrz tabela 7-2, "Kolory wskaźników stanu wartości docelowych," na stronie 130.

UWAGA W przypadku korzystania z parametru Wskaźnik predykcji niedociśnienia (AcumenTM HPI) wskaźniki stanu pacjenta różnią się od opisanych. Informacje na temat wskaźników stanu pacjenta dostępnych podczas korzystania z funkcji Wskaźnik predykcji niedociśnienia AcumenTM — patrz Funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI) na stronie 208.

5.3.2 Główny widok monitorowania

Główny widok monitorowania to połączenie widoku monitorowania trendu graficznego (patrz *Widok monitorowania trendu graficznego* na stronie 85) i półkołowej odmiany widoku monitorowania kokpit (patrz *Ekran kokpitu* na stronie 93). Skala pomiarowa kokpitu, która pojawia się na dole głównego widoku monitorowania, wykorzystuje obszar półkołowej skali pomiarowej. Patrz rysunek 5-6. Parametry kluczowe wyświetlane na skalach pomiarowych parametrów na dole głównego widoku monitorowania mogą być dodatkowymi czterema kluczowymi parametrami poza tymi monitorowanymi na trendach graficznych i kafelkach parametrów wyświetlanych na ekranie. W głównym widoku monitorowania może być wyświetlonych maksymalnie osiem kluczowych parametrów. Położenie każdego parametru kluczowego na ekranie można przesunąć, przytrzymując kafelek parametru lub skalę pomiarową parametru, a następnie przeciągając i upuszczając w nowym, żądanym położeniu.

Rysunek 5-6 Główny widok monitorowania

5.3.3 Widok monitorowania trendu graficznego

Na ekranie trendu graficznego jest wyświetlany bieżący stan i historia monitorowanych parametrów. Zakres historii wyświetlanej dla monitorowanych parametrów można skonfigurować przez dostosowanie ram czasowych.

Gdy zakres docelowy dla parametru jest włączony, punkty przedstawione na wykresie są oznaczone różnymi kolorami: wartości w zakresie docelowym są wyświetlane w kolorze zielonym, wartości poza zakresem docelowym (ale w zakresie alarmu fizjologicznego) — w kolorze żółtym, natomiast wartości poza zakresem

alarmu — w kolorze czerwonym. Gdy zakres wartości docelowych jest wyłączony dla danego parametru, punkty wyświetlane na wykresie są białe. Tworzenie kolorowych wykresów można wyłączyć z poziomu ustawień ogólnych. Kolory są zgodne z kolorami wskaźników klinicznych wartości docelowych (obramowań kafelków parametrów) na kafelkach kluczowych parametrów wykresów trendów graficznych, gdy wartości docelowe są włączone dla tych parametrów. Progi alarmu dla każdego parametru są wyświetlane jako kolorowe strzałki na osi Y wykresu.

UWAGA Trend graficzny parametru Wskaźnik predykcji niedociśnienia (Acumen HPI) jest wyświetlany jako biała linia trendu poza zakresem wartości alarmowych oraz jako czerwona linia trendu w zakresie wartości alarmowych.

Rysunek 5-7 Ekran trendu graficznego

Aby zmienić skalę czasu wyświetlanych parametrów, dotknąć poza obszarem wykresu obok osi X lub Y, a zostanie wyświetlone menu podręczne. Nacisnąć stronę wartości przycisku **Czas graficznych trendów**, aby wybrać inny przedział czasu. Aby przesunąć kolejność wykresu trendu, przytrzymać wykres, a następnie przeciągnąć go i upuścić w nowym miejscu. Aby połączyć wykresy, upuścić wykres parametru na inny wykres trendu graficznego lub dotknąć ikony łączenia **v**znajdującej się między wykresami. Wartości na osi Y dla

drugiego parametru pojawią się po prawej stronie wykresu. Aby powrócić do oddzielnych wykresów trendów graficznych, dotknąć ikony rozszerzania .

5.3.3.1 Tryb przewijania trendów graficznych

Korzystając z przycisku przewijania wstecz, można przeglądać dane monitorowanych parametrów z maksymalnie 72 godzin. Aby rozpocząć przewijanie, należy przesunąć w prawo/lewo lub dotknąć odpowiedniego przycisku trybu przewijania w sposób przedstawiony powyżej. Aby zwiększyć szybkość przewijania, nacisnąć i przytrzymać przycisk trybu przewijania. Ekran powróci do trybu podglądu na żywo dwie minuty po dotknięciu przycisku przewijania lub po dotknięciu ikony anulowania Szybkość przewijania jest wyświetlana między przyciskami przewijania.

Ustawienie przewijania	Opis
>>>	Przewijanie z szybkością odpowiadającą dwukrotności bieżącej skali czasu
>>	Przewijanie z szybkością odpowiadającą bieżącej skali czasu (jedna szerokość wykresu)
	Przewijanie z szybkością odpowiadającą połowie bieżącej skali czasu (połowa szerokości wykresu)

Tabela 5-1 Szybkości przewijania trendów graficznych

W trybie przewijania użytkownik może przewijać do danych starszych niż obecnie wyświetlane na skali czasu.

UWAGA Nie ma możliwości dotknięcia danych po tych najnowszych zapisach ani danych przed najstarszymi zapisami. Przewijanie wykresu jest możliwe jedynie w zakresie dostępnych danych.

5.3.3.2 Zdarzenia interwencji

Wybranie ikony interwencji on a ekranie trendu graficznego lub w innych widokach monitorowania,

w których są wyświetlane wykresy trendów graficznych, takich jak główny widok monitorowania, umożliwia dostęp do menu typów interwencji, szczegółów i sekcji notatek.

Nowa interwencja	Wartości bieżące	Szczegół
Inotrope	Nieokr	eślony
Wazodylatator	Rozpocznij	Stop
Wazopresor		
▼	Zwiększenie	Obniżenie
Krwinki czerwone		
Koloid	Włącz	vvyłącz
Krystaloid	100 ml	750 ml
▼	250 ml	1000 ml
PEEP	500 ml	ml

Rysunek 5-8 Trend graficzny — okno interwencji

Aby wprowadzić nową wartość opcji Nowa interwencja:

- 1 Wybrać typ **interwencji** z menu **Nowa interwencja** po lewej stronie. Aby wyświetlić wszystkie dostępne typy **interwencji**, należy użyć strzałek przewijania w pionie.
- 2 Wybrać pozycję Szczegół na prawej karcie menu. Domyślnie ustawiona jest opcja Nieokreślony.
- **3** Wybrać ikonę klawiatury **1999**, aby wprowadzić uwagi (opcjonalnie).
- 4 Dotknąć ikony wprowadzania

Aby wprowadzić wcześniej użytą interwencję:

- 1 Wybrać interwencję na karcie listy Wartości bieżące.
- 2 Aby dodać, edytować lub usunąć uwagę, dotknąć ikony klawiatury

3 Dotknąć ikony wprowadzania

Tabela 5-2 Zdarzenia interwencji			
Interwencja	Wskaźnik	Тур	
Interwencja	(zielony)	Inotrope Wazodylatator Wazopresor	
Pozycyjny	(fioletowy)	Bierne uniesienie nóg Trendelenburg	
Płyny	(niebieski)	Krwinki czerwone Koloid Krystaloid Bolus płynowy*	
Oksymetria	(czerwony)	Kalibracja in vitro* Pobierz krew* Kalibracja in vivo* Aktualizuj HGB* Przywołaj dane oksymetrii*	
Zdarzenie	(żółty)	PEEP Indukcja Kaniulacja CPB Zacisk Kardioplegia Przepływ pompy Zatrzymanie krążenia Podniesienie temperatury Obniżenie temperatury Selektywna perfuzja mózgu	
Niestandardowy		Zdarzenie niestandardowe	
*Znaczniki generowane przez system			

...

UWAGA Interwencje inicjowane za pomocą menu narzędzi klinicznych, takie jak oksymetria lub testy odpowiedzi na podane płyny, są generowane przez system i nie można ich wprowadzić za pomocą menu analizy interwencji.

Po wyborze typu interwencji znaczniki wskazujące interwencję będą wyświetlane na wszystkich wykresach. Znaczniki te można wybierać w celu uzyskania dalszych informacji. Po dotknięciu znacznika pojawi się dodatkowe pole informacyjne. Patrz rysunek 5-9: "Ekran trendów graficznych - dodatkowe pole informacyjne o interwencji". Dymek informacyjny wyświetla określoną interwencję, datę, godzinę i uwagi odnoszące się do interwencji. Naciśnięcie przycisku edycji umożliwia użytkownikowi edycję godziny, daty i uwagi odnoszącej się do interwencji. Naciśnięcie przycisku wyjścia zamyka dodatkowe pole informacyjne. **UWAGA** Limit czasu wyświetlania dodatkowego pola informacyjnego o interwencji wynosi 2 minuty.

Edycja interwencji. Godzinę, datę i powiązaną uwagę dla każdej interwencji można poddawać edycji po dokonaniu początkowego wpisu:

- 1 Dotknąć wskaźnika zdarzenia interwencji powiązanego z interwencją, która ma zostać poddana edycji.
- 2 Dotknąć ikony edycji 🔊 zlokalizowanej na dodatkowym polu informacyjnym.
- **3** Aby zmienić czas wybranej interwencji, nacisnąć przycisk **Ustawienie czasu** i za pomocą klawiatury wprowadzić zaktualizowany czas.
- **4** Aby zmienić datę, nacisnąć przycisk **Ustawienie daty** i za pomocą klawiatury wprowadzić zaktualizowaną datę.

UWAGA Nie można edytować dat i godzin znaczników interwencji generowanych przez system.

- 5 Aby wprowadzić lub poddawać edycji uwagi, dotknąć ikony klawiatury 🔢
- 6 Dotknąć ikony wprowadzania 🕖

Rysunek 5-9 Ekran trendów graficznych — dodatkowe pole informacyjne o interwencji

5.3.3.3 Wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym

Aby wyświetlić krzywą ciśnienia krwi w czasie rzeczywistym w trybie monitorowania minimalnie

inwazyjnego, należy dotknąć na wyświetlaczu ikony krzywej ciśnienia $\bigwedge^* \bigwedge$. Ikona wyświetlania krzywej

pojawia się na pasku nawigacji podczas monitorowania za pomocą ekranu trendu graficznego lub głównego ekranu monitorowania. Panel wykresu krzywej ciśnienia w czasie rzeczywistym zostanie wyświetlony nad wykresem pierwszego monitorowanego parametru. Odczyt numeryczny z ciągłego pomiaru ciśnienia skurczowego, rozkurczowego i średniego ciśnienia tętniczego wykonywanego na każdy cykl pracy serca zostanie wyświetlony nad kafelkiem pierwszego monitorowanego parametru. Aby zmienić szybkość przemiatania (skalę osi X), należy dotknąć obszaru skali. Spowoduje to wyświetlenie menu podręcznego, umożliwiającego wprowadzenie nowej szybkości przemiatania. Jeśli podłączonych jest wiele przewodów ciśnienia, wówczas w celu przełączania krzywych monitorowanego ciśnienia należy dotknąć nazwy parametru na kafelku parametru krzywej.

Aby zakończyć wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym, dotknąć ikony ukrycia krzywej

UWAGA Jeśli w momencie naciśnięcia przycisku krzywej ciśnienia wyświetlane są 4 parametry kluczowe, wyświetlanie czwartego parametru kluczowego zostaje tymczasowo przerwane, a wykres krzywej ciśnienia krwi zostaje umieszczony powyżej wykresów trendu 3 pozostałych parametrów kluczowych.

5.3.4 Tabela trendów

Ekran tabeli trendów wyświetla wybrane kluczowe parametry i ich historię w formie tabelarycznej.

5 mir 129						
8.1 Vmin	8.2	8.1	8.8	9.4	8.0	6.6
5 mir 149						
7	7	8	8	7	6	7
5 mir 199						
118 ml/b	119	112	117	113	98	101
5 mir						
711 dyne-s/cm*	683	691	673	766	720	703
44	13:10	13:09	13:08	13:07	13:06	13:05

Rysunek 5-10 Ekran tabeli trendów

- 1 Aby zmienić odstęp między wartościami, dotknąć obszaru wewnątrz tabeli.
- 2 Wybrać wartość w oknie podręcznym **Przedział czasowy**.

Rysunek 5-11 Okno podręczne Przedział czasowy

>

5.3.4.1 Tryb przewijania tabeli trendów

Korzystając z przycisku przewijania wstecz, można przeglądać dane

z maksymalnie 72 godzin. Szybkość przewijania zdefiniowano w odniesieniu do liczby komórek. Dostępne są trzy szybkości przewijania: $1 \times, 6 \times i 40 \times$.

Podczas przewijania ekranu nad tabelą jest wyświetlana data. Jeśli przedział czasu zahacza o dwa dni, na ekranie są wyświetlane obie daty.

1 Aby rozpocząć przewijanie, nacisnąć i przytrzymać jedną z podwójnych strzałek poniżej kafelków parametrów. Szybkość przewijania jest wyświetlana między ikonami przewijania.

Ustawienie	Czas	Szybkość
$\left[\right> \right]$	jedna komórka	Wolno
>>	sześć komórek	Umiarkowanie
>>>	czterdzieści komórek	Szybko

Tabela 5-3 Szybkości przewijania tabeli trendów

2 Aby wyjść z trybu przewijania, puścić strzałkę przewijania lub dotknąć ikony anulowania

UWAGA Ekran powróci do trybu podglądu na żywo w ciągu dwóch minut po ostatnim dotknięciu ikony strzałki przewijania lub po dotknięciu ikony anulowania.

5.3.5 Podzielony ekran z trendem graficznym/tabelą trendów

Podzielony ekran z trendem graficznym/tabelą trendów to połączenie dwóch widoków monitorowania — trendu graficznego i tabeli trendów. Ekran ten może być wykorzystywany do równoczesnego przeglądania bieżącego statusu i historii wybranych monitorowanych parametrów w formie graficznej oraz innych wybranych monitorowanych parametrów w formie tabelarycznej.

Jeśli wybrano dwa parametry kluczowe, pierwszy parametr kluczowy wyświetlany jest w formie graficznej, a drugi — w formie tabelarycznej. Parametry kluczowe mogą być zmienione poprzez dotknięcie etykiety parametru znajdującej się na kafelku parametru. Jeśli wybrano więcej niż dwa parametry kluczowe, pierwsze dwa parametry wyświetlane są w formie graficznej, a trzeci i czwarty — jeśli wybrano czwarty parametr — w formie tabelarycznej. Skala czasu dla danych wyświetlanych jako kluczowe parametry w formie graficznej jest niezależna od skali czasu dla danych wyświetlanych w formie tabelarycznej. Aby uzyskać więcej informacji na temat widoku w formie trendu graficznego, patrz *Widok monitorowania trendu graficznego* na stronie 85. Aby uzyskać więcej informacji na temat widoku w formie tabeli trendów, patrz *Tabela trendów* na stronie 90.

5.3.6 Ekran stanu fizjologicznego

Ekran stanu fizjologicznego to animacja obrazująca wzajemne interakcje między sercem, krwią a układem krwionośnym. Wygląd tego ekranu różni się w zależności od używanej technologii monitorowania. Na przykład jeśli funkcja oksymetrii tkankowej jest włączona, trzy dodatkowe animacje są używane do wyświetlania dostępnych miejsc pomiaru oksymetrii tkankowej razem z parametrami hemodynamicznymi. Patrz *Ekran stanu fizjologicznego w trybie oksymetrii tkankowej* na stronie 206. Ciągłe wartości parametrów wyświetlane są w powiązaniu z animacją.

Rysunek 5-12 Ekran stanu fizjologicznego podczas monitorowania za pomocą modułu HemoSphere Swan-Ganz

Obraz bijącego serca na ekranie fizjologicznym wizualnie przedstawia częstość akcji serca, ale nie odpowiada dokładnie ilości uderzeń na minutę. Kluczowe funkcje tego ekranu są ponumerowane — patrz rysunek 5-12. Przykład ten przedstawia ekran stanu fizjologicznego w trybie ciągłym w czasie aktywnego monitorowania przy użyciu modułu HemoSphere Swan-Ganz i przyporządkowanych sygnałów EKG, MAP i CVP.

- 1 Dane dotyczące parametru ScvO₂/SvO₂ oraz wskaźnik jakości sygnału (SQI) wyświetlane są w tym miejscu podczas aktywnego monitorowania poziomu wysycenia tlenem krwi żylnej, gdy podłączony jest przewód do oksymetrii HemoSphere.
- 2 Pojemność minutowa serca (CO/CI) przedstawiona jest po stronie tętniczej na animacji układu krwionośnego. Animacja przedstawiająca szybkość przepływu krwi będzie dostosowywana względem wartości CO/CI oraz niskich/wysokich docelowych zakresów wybranych dla tego parametru.
- 3 Systemowy opór naczyniowy (ang. systemic vascular resistance, SVR), przedstawiony na środku animacji układu krwionośnego, jest dostępny podczas monitorowania CO/CI oraz wykorzystywania analogowych sygnalów wejściowych ciśnienia MAP i CVP z podłączonego monitora pacjenta lub dwóch przewodów ciśnienia HemoSphere na podstawie wzoru SVR = [(MAP–CVP)/CO]*80. W trybie monitorowania minimalnie inwazyjnego wymagane jest jedynie wprowadzenie wartości CVP przy użyciu ekranu wprowadzania CVP, monitorowanie CVP za pomocą przewodu ciśnienia HemoSphere lub przez wejście analogowe. Przedstawiony stopień zwężenia naczynia krwionośnego będzie dostosowywany do pochodnej wartości SVR oraz niskich/wysokich zakresów docelowych wybranych dla tego parametru.

SVV

UWAGA Ustawienia alarmów/wartości docelowych można dostosowywać za pomocą ekranu ustawień Alarmy/wartości docelowe (patrz *Ekran konfiguracji alarmów/wartości docelowych* na stronie 130) lub poprzez wybranie żądanego parametru jako kluczowego parametru i uzyskanie dostępu do menu konfiguracji kafelka przez dotknięcie wnętrza kafelka parametru.

Rysunek 5-12 przedstawia przykładowy ekran podczas monitorowania za pomocą modułu HemoSphere Swan-Ganz. W innych trybach monitorowania wygląd i parametry będą się różnić. Na przykład w trybie monitorowania za pomocą czujnika FloTrac wartość HR śr. jest zastąpiona przez PR, PPV i SVV (jeśli są skonfigurowane), a wartości EDV i RVEF nie są wyświetlane.

5.3.6.1 Wskaźnik nachylenia SVV

Wskaźnik nachylenia SVV jest wizualną reprezentacją krzywej Franka-Starlinga wykorzystywanej przy ocenie wartości zmiennej objętości wyrzutowej (SVV). Pojawia się on na ekranie stanu fizjologicznego w trybie monitorowania za pomocą czujnika FloTrac. Kolor latarni zmienia się w zależności od ustawionych zakresów wartości docelowych. Wartość SVV wynosząca 13% jest wyświetlana w przybliżeniu w punkcie przegięcia krzywej. Wskaźnik jest wyświetlany na ekranie stanu fizjologicznego i ekranie danych historycznych dotyczących stanu fizjologicznego.

Użytkownik ma możliwość włączania lub wyłączania wyświetlania latarni SVV, wartości parametru oraz wskaźnika przekroczenia filtrowania SVV z poziomu ustawień monitora — w menu ustawień ekranów monitorowania. Domyślnie opcja jest włączona. System nie wyświetli latarni SVV na krzywej wskaźnika SVV, gdy włączony jest wskaźnik przekroczenia filtrowania SVV.

5.3.7 Ekran kokpitu

Na tym ekranie monitorowania (rysunek 5-13) wyświetlane są duże koła parametrów z wartościami aktualnie monitorowanych parametrów. Wartości cyfrowe w kołach na ekranie kokpitu wskazują graficznie zakresy i wartości alarmowe/docelowe, a także za pomocą wskaźników igłowych określają bieżące wartości parametrów. Podobnie jak w przypadku standardowych kafelków parametrów po osiągnięciu przez określony parametr wartości alarmowej wartość zaczyna migać.

Rysunek 5-13 Ekran kokpitu

Na kołach kluczowych parametrów znajdujących się na ekranie kokpitu wyświetlany jest bardziej złożony wskaźnik wartości docelowych i alarmów niż na standardowych kafelkach parametrów. Pełen zakres wyświetlanego parametru służy do stworzenia skali pomiarowej trendów graficznych od ustawień minimalnych do maksymalnych. Wskaźnik igłowy pokazuje bieżącą wartość na kołowej skali pomiarowej. Po włączeniu zakresów docelowych kolory czerwony (wartości alarmowe), żółty (ostrzegawcze wartości docelowe) i zielony (dopuszczalne wartości docelowe) wskazują na kołowej skali pomiarowej obszary alarmowe i docelowe. Jeżeli nie włączono zakresów docelowych, obszar kołowej skali pomiarowej ma kolor szary, a zakresy docelowe i alarmowe nie są wyświetlane. Strzałka wskaźnika wartości zmienia się w chwili, gdy wartości przekraczają zakresy skali.

5.3.8 Zależności fizjologiczne

Ekran zależności fizjologicznych przedstawia równowagę pomiędzy podażą tlenu (DO_2) a jego zużyciem (VO_2). Aktualizuje się on automatycznie wraz ze zmianą wartości parametrów, więc zawsze wyświetla bieżące wartości. Łączące linie uwydatniają związek pomiędzy dwoma parametrami.

5.3.8.1 Tryby ciągły i historyczny

Ekran zależności fizjologicznych pracuje w dwóch trybach: ciągłym i historycznym. W trybie ciągłym wartości chwilowe i pochodne zawsze wyświetlane są jako niedostępne. Wartość HGB stanowi wyjątek i jest wyświetlana jako parametr chwilowy w trybie ciągłym, ze znacznikiem czasu ostatniej obliczonej/ wprowadzonej wartości.

Rysunek 5-14 Ekran zależności fizjologicznych podczas monitorowania za pomocą modułu HemoSphere Swan-Ganz

- 1 Pionowe linie powyżej i poniżej parametrów wyświetlane są w takim samym kolorze jak wskaźnik przy parametrze.
- 2 Pionowe linie łączące bezpośrednio dwa parametry wyświetlają się w takim samym kolorze jak latarnia przy parametrze znajdującym się poniżej (na przykład pomiędzy SVRI i MAP patrz rysunek 5-14).
- 3 Linie poziome są tego samego koloru co linia ponad nimi.
- **4** Lewy pasek pojawia się po ustawieniu bolusa. W celu wyświetlenia dostępnych danych historycznych (patrz rysunek 5-14) należy dotknąć ikony zegara/krzywej.

- **5** Aby otworzyć ekran konfiguracji nowych ustawień termodylucji, należy dotknąć ikony iCO, jeśli jest dostępna.
- UWAGA Rysunek 5-14 przedstawia przykładowy ekran podczas monitorowania za pomocą modułu HemoSphere Swan-Ganz. W innych trybach monitorowania wygląd i parametry będą się różnić. Na przykład w trybie monitorowania za pomocą czujnika FloTrac wartość HR śr. jest zastąpiona przez PR, PPV i SVV (jeśli są skonfigurowane), a wartości EDV i RVEF nie są wyświetlane.
- **UWAGA** Przed konfiguracją ustawień termodylucji i przed wprowadzeniem jakichkolwiek wartości (patrz *5.3.8.2 Okna parametrów* poniżej) ikony zegara/krzywej oraz iCO nie są widoczne. Wyświetlane są wylącznie dostępne parametry ciągle.

Rysunek 5-15 Ekran historycznych danych zależności fizjologicznych

UWAGA Ekran historycznych danych zależności fizjologicznych wyświetla większość parametrów dostępnych w systemie w danej chwili. Na ekranie wyświetlane są linie łączące parametry, uwydatniające związek pomiędzy tymi parametrami. Na ekranie historycznych danych zależności fizjologicznych wyświetlane są po prawej stronie skonfigurowane kluczowe parametry (maksymalnie osiem). Poziome karty u góry ekranu pozwalają użytkownikowi na nawigację po bazie danych zapisów historycznych. Czasy zapisów odpowiadają ustawieniom bolusa termodylucji i obliczeniom pochodnych wartości.

Ekran historycznych zależności fizjologicznych umożliwia użytkownikowi wprowadzanie parametrów używanych do obliczenia pochodnych parametrów **DO**₂ oraz **VO**₂ wyłącznie na podstawie najnowszego zapisu. Czas wprowadzonych wartości jest czasem zapisu historycznego, a nie czasem aktualnym.

Ekran historycznych zależności fizjologicznych jest dostępny z poziomu ikony zegara/ krzywej na ekranie ciągłych zależności fizjologicznych. Aby powrócić do ekranu ciągłych zależności fizjologicznych, należy dotknąć ikony powrotu C. Dla tego ekranu nie przewidziano 2-minutowego limitu czasu oczekiwania.

Do obliczenia wartości parametrów DO_2 i VO_2 wymagane jest ciśnienie parcjalne tlenu we krwi tętniczej (PaO₂) i żylnej (PvO₂). Na ekranie historycznego zapisu zależności fizjologicznych używana jest wartość zerowa (0) parametrów PaO₂ i PvO₂. Do obliczenia wartości parametrów DO₂ i VO₂ przy użyciu wartości innych niż zerowa (0) w przypadku parametrów PaO₂ i PvO₂ należy użyć **kalkulatora wartości wyliczanej** (patrz punkt 5.5.3 na stronie 104).

5.3.8.2 Okna parametrów

W każdym małym oknie parametru wyświetlane są:

- Nazwa parametru
- Jednostki parametru
- Wartość parametru (jeśli dostępna)
- Wskaźnik docelowego stanu klinicznego (jeśli wartość jest dostępna)
- Wskaźnik SVV (w stosownych przypadkach)
- Znacznik czasu parametru (dla HGB)

Jeżeli parametr jest w stanie błędu, pole wartości jest puste, wskazując, że wartość ta jest lub była niedostępna w czasie wyświetlania.

Rysunek 5-16 Okna parametrów zależności fizjologicznych

5.3.8.3 Ustawianie wartości parametrów wejściowych i docelowych

W celu zmiany ustawień docelowych lub wprowadzenia wartości należy dotknąć parametru, aby aktywować podręczne okno wartości docelowych/wejściowych. Podręczne okno wartości docelowych/wejściowych zależności fizjologicznych wyświetli się po dotknięciu następujących małych okien parametrów zależności fizjologicznych:

- HGB
- SpO₂

SvO₂/ScvO₂ (jeśli nie jest dostępny żaden pomiar przewodem do oksymetrii HemoSphere)

Rysunek 5-17 Okno podręczne wartości docelowych/wejściowych zależności fizjologicznych

Jeżeli wartość została zaakceptowana, tworzony jest nowy historyczny zapis zależności fizjologicznych z określonym czasem powstania. Zawiera on:

- Dane bieżącego parametru ciągłego
- Wprowadzoną wartość i wartości dowolnych pochodnych obliczeń.

Ekran historycznych zależności fizjologicznych wyświetla się z nowo utworzonym zapisem; można następnie wpisać pozostale ręcznie wprowadzane wartości do obliczeń dowolnych wartości pochodnych.

5.3.9 Ekran pozycjonowania celu

Ekran pozycjonowania celu pozwala użytkownikowi na monitorowanie i śledzenie relacji dwóch kluczowych parametrów przez wykreślenie ich na tej samej plaszczyźnie XY.

Pojedynczy, pulsujący niebieski punkt odpowiada przecięciu dwóch parametrów i porusza się w czasie rzeczywistym wraz ze zmianą wartości parametru. Dodatkowe kółka przedstawiają historyczny trend parametru, gdzie mniejsze kółka wskazują starsze dane.

Zielone pole wartości docelowej odpowiada przecięciu zielonego obszaru parametru docelowego. Czerwone strzałki na osiach X i Y wskazują progi alarmu parametru.

Pierwsze dwa wybrane kluczowe parametry reprezentują wartości parametrów wykreślonych odpowiednio na osi Y i osi X, co przedstawia rysunek 5-18.

Rysunek 5-18 Ekran pozycjonowania celu

Na tym ekranie można wprowadzić następujące zmiany:

- Aby wyłączyć kółka trendów historycznych, należy dotykać ikony przedziału trendu, aż pojawi się opcja **Wyłącz**.
- Aby dopasować skale osi X bądź Y, dotknąć odpowiedniej osi.
- Jeżeli bieżące przecięcie parametrów znajduje się poza skalą płaszczyzny X/Y, zostanie wyświetlony komunikat informujący o tym użytkownika.

5.4 Zogniskowany format monitorowania

Zogniskowany format monitorowania umożliwia użytkownikowi obserwację wartości ciśnienia tętniczego krwi wraz z monitorowanymi danymi z maksymalnie trzema parametrami kluczowymi w uporządkowanym układzie ekranu.

5.4.1 Wybieranie widoku monitorowania

Aby wybrać widok monitorowania w zogniskowanym formacie monitorowania, należy dotknąć ikony

W zogniskowanym widoku monitorowania są dostępne trzy widoki monitorowania:

1 Zogniskowany ekran główny (patrz *Zogniskowany ekran główny* na stronie 100)

2 Zogniskowany ekran trendu graficznego (patrz *Zogniskowany ekran trendu graficznego* na stronie 101)

3 Zogniskowany ekran dokumentacji (patrz Zogniskowany ekran dokumentacji na stronie 102)

Trzy zogniskowane formaty monitorowania są wyświetlane w dolnej części menu wyboru monitorowania w postaci przycisków przypominających wygląd ekranu monitorowania. Dotknięcie przycisku widoku monitora powoduje wyświetlenie kluczowych parametrów w tym formacie ekranu.

UWAGA Jeśli podczas monitorowania zostaną wybrane cztery parametry przy użyciu formatów opisanych w części *Widoki monitora* na stronie 81, a następnie monitorowanie zostanie przelączone na format zogniskowany, będą wyświetlane tylko trzy pierwsze wybrane parametry.

5.4.2 Kafelek krzywej ciśnienia krwi

We wszystkich zogniskowanych widokach monitorowania znajduje się krzywa ciśnienia krwi. Patrz *Wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym* na stronie 89. W zogniskowanym widoku krzywej ciśnienia jest stosowany format podobny do opisanego poniżej zogniskowanego kafelka parametrów oraz są wyświetlane wartości numeryczne ciśnienia krwi.

5.4.3 Zogniskowany kafelek parametru

Głównym elementem zogniskowanego widoku monitorowania jest zogniskowany kafelek parametru. Na zogniskowanym kafelku parametru są wyświetlane informacje podobne do tych na klasycznym kafelku parametru opisanym w części *Kafelki parametrów* na stronie 82. W widoku zogniskowanym cały kolor kafelka zmienia się w zależności od koloru stanu docelowego. Na przykład jeśli kolor tła kafelka jest zielony (rysunek 5-19), wartość mieści się w zakresie docelowym. Jeśli monitorowanie jest wyłączone lub wstrzymane, tło jest czarne.

Rysunek 5-19 Zogniskowany kafelek parametru

5.4.4 Zmiana parametrów

Aby zmienić parametry w zogniskowanym widoku monitorowania, należy dotknąć w dowolnym miejscu powyżej środkowej linii kafelka parametru, gdzie wyświetlana jest nazwa parametru. Patrz rysunek 5-20.

Rysunek 5-20 Zogniskowany kafelek parametru — wybór parametru i wartości alarmowych/docelowych

Zostanie wyświetlone menu wyboru parametru. Patrz rysunek 5-4. W menu wyboru parametru parametry są uporządkowane w kategorie. Opis tych kategorii znajduje się w części *Zmiana parametrów* na stronie 82. Aktualnie wybrane parametry są podświetlone na niebiesko. Pozostałe monitorowane parametry są obramowane na niebiesko. W celu aktywnego monitorowania tego parametru należy wybrać dowolny dostępny parametr, który nie jest aktualnie podświetlony.

5.4.5 Zmiana wartości alarmowych/docelowych

Aby zmienić wartości alarmowe lub docelowe parametru kluczowego w zogniskowanym widoku monitorowania, należy dotknąć w dowolnym miejscu poniżej środkowej linii kafelka parametru, gdzie wyświetlane są wartość i jednostki parametru. Zostanie wyświetlone menu **Alarmy/wartości docelowe** dotyczące danego parametru. Więcej informacji na temat tego menu, patrz *Alarmy/wartości docelowe* na stronie 127.

5.4.6 Zogniskowany ekran główny

Na zogniskowanym ekranie głównym wyświetlane są maksymalnie trzy parametry w kolumnach oraz w postaci krzywej ciśnienia tętniczego w górnej części ekranu. W poszczególnych kolumnach są wyświetlane nazwy zgodne z kategoriami parametru (na przykład: **Przepływ, Opór** lub **Ciśnienie**) oraz wyśrodkowany kafelek parametru, ciągła zmiana % lub wartość odniesienia (jeśli jest aktywna) oraz pionowy miernik wartości docelowej po lewej stronie kolumny. Patrz rysunek 5-21.

Pionowy wskaźnik wartości docelowej z boku zawiera bieżącą wartość parametru wraz ze strefami

Rysunek 5-21 Zogniskowany ekran główny

Pionowy miernik przedstawia strefę wartości docelowych dla bieżącej wartości. Jego kolor jest zgodny z kolorem kafelka parametru. Aby zmienić wartość parametru interwalu zmiany (wyrażonej w procentach lub w postaci wartości liczbowej), dotknąć wartości wyświetlanej w dolnej części kolumny parametru i przełączyć na jedną z opcji interwalu (0, 5, 10, 15, 20, 30 minut lub z wartości referencyjnej w przypadku wyświetlenia zmiany wartości). Patrz *Odstępy czasu/ uśrednianie* na stronie 121.

5.4.7 Zogniskowany ekran trendu graficznego

Na zogniskowanym ekranie trendu graficznego znajduje się wykres graficzny parametru w czasie. Elementy tego widoku są zgodne w widokiem trendów graficznych opisanych w części *Widok monitorowania trendu graficznego* na stronie 85. W tym punkcie znajdują się informacje dotyczące tematów Zdarzenia interwencji i Tryb przewijania trendów graficznych.

Rysunek 5-22 Zogniskowany ekran trendu graficznego

Zogniskowany ekran trendu graficznego jest wyświetlany w formacie wierszowym z kategorią parametru i pionowym miernikiem po lewej stronie, wyśrodkowanym wykresem trendu oraz kafelkiem parametru po prawej stronie. Patrz rysunek 5-22. Skalę czasu lub górną/dolną wartość graniczną parametru można dostosować, dotykając w dowolnym miejscu osi x lub y wykresu trendu parametru. Patrz *Wyreguluj wagę* na stronie 134, aby uzyskać informacje dotyczące ustawiania wyświetlanych wartości wszystkich parametrów. Opcje wybrane w menu ustawień parametru mają wpływ na widoki we wszystkich formatach trendu graficznego — zogniskowany ekran graficzny oraz widok trendu graficznego opisano w części *Widok monitorowania trendu graficznego* na stronie 85.

5.4.8 Zogniskowany ekran dokumentacji

Zogniskowany ekran dokumentacji zawiera wszystkie dostępne parametry w maksymalnie trzech kategoriach parametrów opisanych w części *Zmiana parametrów* na stronie 82. Tylko najwyższy parametr wyświetlany jako kafelek parametru można skonfigurować jako parametr kluczowy i wyzwalający alarm wizualny/dźwiękowy. Aby zmienić parametr kluczowy, należy dotknąć nazwy parametru powyżej linii nazwy parametru. Menu wyboru parametru zogniskowanego widoku dokumentacji zawiera tylko parametry dostępne w wybranej kategorii parametru. Kolor czcionki wartości parametrów wyświetlanych poniżej najwyższego parametru wskazuje kolor bieżącego zakresu docelowego. Zakresy docelowe tych nieskonfigurowanych parametrów można dostosować, dotykając w dowolnym miejscu kafelka mniejszego parametru i otwierając menu konfiguracji **Alarmy/wartości docelowe** danego parametru.

Rysunek 5-23 Zogniskowany ekran dokumentacji

Aby zmienić wyświetlaną kategorię parametru, należy dotknąć aktualnie skonfigurowaną kategorię parametru wyświetlaną u góry kolumny. Zostanie wyświetlone menu podręczne (rysunek 5-24). Dotknąć kategorii parametru do zmiany.

Wybierz kategorię			
PRZEPŁYW	CIŚNIENIE	OKSYMETRIA	
OPÓR	FUNKCJA RV	ACUMEN	

Rysunek 5-24 Zogniskowany widok dokumentacji — konfigurowanie kolumn

5.5 Narzędzia kliniczne

Większość opcji menu czynności klinicznych odnosi się do bieżącego trybu monitorowania (np. podczas monitorowania za pomocą modulu HemoSphere Swan-Ganz). We wszystkich trybach monitorowania dostępne są wymienione poniżej czynności kliniczne.

5.5.1 Wybierz tryb monitorowania

Strona Wybierz tryb monitorowania umożliwia użytkownikowi przelączanie między trybami monitorowania. Ten ekran pojawi się przed rozpoczęciem nowej sesji monitorowania. Dostęp do tego ekranu można uzyskać także poprzez:

a dotknięcie ikony trybu monitorowania u góry paska nawigacji

Na tym ekranie użytkownik może wybierać podłączone urządzenia przeznaczone do monitorowania. Monitorowanie oksymetrii jest dostępne we wszystkich trybach monitorowania.

Przycisk minimalnie inwazyjnego trybu monitorowania. Użytkownik może wybrać ten przycisk do przeprowadzenia minimalnie inwazyjnego monitorowania hemodynamicznego przy użyciu przewodu ciśnienia HemoSphere. W tym trybie dostępne jest również monitorowanie za pomocą przetwornika DPT TruWave.

Przycisk inwazyjnego trybu monitorowania. Użytkownik może wybrać ten przycisk do przeprowadzenia inwazyjnego monitorowania hemodynamicznego przy użyciu modułu HemoSphere Swan-Ganz.

Dotknąć ikony ekranu głównego 🟠, aby przejść do wybranego trybu monitorowania. Litera "S" (S) pojawi się na osi X na widoku monitorowania trendów graficznych w punkcie czasowym, w którym nastąpiło przełączenie trybu monitorowania.

5.5.2 Wprowadzanie CVP

Ekran wprowadzania ośrodkowego ciśnienia żylnego (CVP) umożliwia użytkownikowi wprowadzanie wartości CVP pacjenta w celu ciągłego obliczana wartości SVR/SVRI, jeśli dane MAP są także dostępne.

1 Dotknąć ikony ustawień 🏹 → zakładki Narzędzia kliniczne 💿 Narzędzia kliniczne

 \rightarrow

ikony Wprowadzić parametr ośrodkowego ciśnienia żylnego (CVP)

2 Wprowadzić wartość CVP.

3 Do	otknąć ikony ekranu głównego 🏠, aby powrócić do głównego ekranu monitorowania.
UWAGA	Wprowadzanie wartości CVP nie jest dostępne, gdy do wyświetlania danych CVP używany jest analogowy sygnał wejściowy (patrz <i>Analogony sygnał wejściowy ciśnienia</i> na stronie 122) lub gdy przewód ciśnienia HemoSphere i przetwornik TruWave monitorują wartość CVP (patrz <i>Monitorowanie z użyciem przewodu ciśnienia z przetwornikiem DPT TruWave</i> na stronie 171).

5.5.3 Kalkulator wartości wyliczanej

Kalkulator wartości wyliczanej pozwala użytkownikowi obliczać pewne parametry hemodynamiczne i wyświetlać je w wygodny sposób przy jednorazowych wyliczeniach.

Obliczone parametry zależą od trybu monitorowania i mogą obejmować: CPO/CPI, DO₂/DO₂I, ESV/ ESVI, SVI/SV, VO₂/VO₂I, VO₂e/VO₂Ie, SVR/SVRI, LVSWI, RVSWI oraz PVR.

1 Dotknąć ikony ustawień 🍋 → zakładki Narzędzia kliniczne 🂿 Narzędzia kliniczne → ikony

Kalkulator wartości wyliczanej

- 2 Po wprowadzeniu żądanych wartości obliczenia wartości wyliczanych zostaną wyświetlone automatycznie.
- 3 Dotknąć ikony ekranu głównego 🏠, aby powrócić do ekranu monitorowania.

5.5.4 Przegląd zdarzeń

W celu przejrzenia zdarzeń systemowych i związanych z parametrami, które wystąpiły podczas monitorowania, należy skorzystać z opcji **Przegląd zdarzeń**. Obejmuje to godziny rozpoczęcia i zakończenia wszelkich usterek, alertów, alarmów fizjologicznych lub komunikatów systemowych. Rejestrowane są zdarzenia i komunikaty alarmów do 72 godzin wstecz, z najnowszym zdarzeniem na górze listy.

1 Dotknąć ikony ustawień \bigcirc \rightarrow zakładki **Narzędzia kliniczne** \bigcirc **Narzędzia kliniczne** \rightarrow ikony

LUB

dotknąć skrótu Przegląd zdarzeń na pasku informacji 📃

- 2 Aby wyświetlić zdarzenia zarejestrowane w systemie (patrz tabela 5-4), wybrać zakładkę Zdarzenia. Aby wyświetlić komunikaty generowane przez system, dotknąć zakładki Alarmy. Aby przewinąć w górę lub w dół na obu ekranach, dotknąć odpowiedniej strzałki.
- 3 Dotknąć ikony ekranu głównego 🕋, aby powrócić do ekranu monitorowania.

Karta Zdarzenia dziennika przeglądu zdarzeń obejmuje wymienione poniżej zdarzenia.

Tabela 5-4 Przegląd zdarzeń

Zdarzenie	Czas zarejestrowania
Ciśnienie tętnicze wyzerowane	Przetwornik ciśnienia TruWave jest wyzerowany i pojawia się napis "ART"
Czas uśredniania — 5 sekund	Czas uśredniania CO/ciśnienia zmienia się na 5 sekund
Czas uśredniania — 20 sekund	Czas uśredniania CO/ciśnienia zmienia się na 20 sekund
Czas uśredniania — 5 minut	Czas uśredniania CO/ciśnienia zmienia się na 5 minut
Zmiana BSA	Wartość BSA zmienia się z poprzedniej wartości BSA (w tym, gdy pole wartości BSA staje się puste/przestaje być puste)
Ośrodkowe ciśnienie żylne wyzerowane	Przetwornik ciśnienia TruWave jest wyzerowany i pojawia się napis "CVP"
Test przewodu CO zakończony pomyślnie	Jeśli pomyślnie ukończono test przewodu czujnika CCO pacjenta
Monitorowanie CO rozpoczęte	Jeśli monitorowanie CO zostało rozpoczęte
Monitorowanie CO zatrzymane	Jeśli użytkownik lub system zatrzyma monitorowanie CO
Parametr ośrodkowego ciśnienia żylnego skasowany	Użytkownik skasował wprowadzoną ręcznie wartość CVP
Parametr ośrodkowego ciśnienia żylnego wprowadzony <wartość><jednostki></jednostki></wartość>	Ręcznie wprowadzono wyświetloną wartość CVP w danej jednostce
[IA nr N] Pobierz krew	Opcję Pobierz wybiera się na ekranie Pobierz z kalibracją in vivo. Jest to rejestrowane jako analiza interwencji, w której nr N jest wyliczeniem interwencji dla tego pacjenta
Czujnik FloTrac wyzerowany	Czujnik FloTrac lub Acumen IQ jest wyzerowany
FRT — rozpocząć pomiar podstawy	Rozpoczęto pomiar podstawy FRT
FRT — zakończyć pomiar podstawy	Zakończono pomiar podstawy FRT z prawidłowym wynikiem
FRT — anulować pomiar podstawy	Anulowano pomiar podstawy FRT
FRT — niestabilna podstawa	Zatrzymano pomiar podstawy FRT z prawidłowym wynikiem, jednak pomiar jest niestabilny
FRT — rozpocząć obciążenie	Rozpoczęto pomiar obciążenia FRT
FRT — zakończyć obciążenie	Zatrzymano pomiar obciążenia FRT z prawidłowym wynikiem. Występuje pod koniec czasu trwania obciążenia lub po naciśnięciu przez użytkownika opcji Zakończ teraz
FRT — anulować obciążenie	Anulowano pomiar FRT
FRT — niewystarczające dane	Zatrzymano nieprawidłowy pomiar FRT
Rozpoczęto sesję GDT: #nn	Uruchomiono sesję monitorowania GDT. "nn" to numer sesji monitorowania GDT dla bieżącego pacjenta
Zatrzymano sesję GDT: #nn	Zakończono sesję monitorowania GDT. "nn" to numer sesji monitorowania dla bieżącego pacjenta
Wstrzymano sesję GDT: #nn	Zatrzymano sesję monitorowania GDT. "nn" to numer sesji monitorowania dla bieżącego pacjenta
Wznowiono sesję GDT: #nn	Wznowiono sesję monitorowania GDT. "nn" to numer sesji monitorowania dla bieżącego pacjenta
Zaktualizowano wartości docelowe sesji GDT: #nn; <pppp>:<qqq><uuu>,<></uuu></qqq></pppp>	Zaktualizowano wartości docelowe sesji monitorowania GDT. "nn" to numer sesji monitorowania dla bieżącego pacjenta, <pppp> to parametr, dla którego zaktualizowano zakres wartości docelowych <qqq> w jednostkach <uuu>. Zaktualizowano <> dodatkowych wartości docelowych</uuu></qqq></pppp>

Zdarzenie	Czas zarejestrowania
[IA#N] Aktualizuj HGB	Aktualizacja przewodu do oksymetrii zostanie zakończona w wyniku procesu aktualizacji HGB
Alert HPI	Uaktywniono alert HPI funkcji wskaźnika predykcji niedociśnienia (Acumen HPI). [wyłącznie HPI]
Alert HPI potwierdzony*	Alert funkcji Wskaźnik predykcji niedociśnienia (Acumen HPI) został zatwierdzony* [wyłącznie HPI]
Alert HPI odwołany (potwierdzony*)	Alert funkcji Wskaźnik predykcji niedociśnienia (Acumen HPI) zostanie wyczyszczony, ponieważ wartość HPI wynosiła mniej niż 75 dla dwóch następujących po sobie 20-sekundowych aktualizacji. Okno podręczne alertu wysokiej wartości HPI zostało potwierdzone* przed wyczyszczeniem alertu. [wyłącznie HPI]
Alert HPI odwołany (niepotwierdzony*)	Alert funkcji Wskaźnik predykcji niedociśnienia (Acumen HPI) zostanie wyczyszczony, ponieważ wartość HPI wynosiła mniej niż 75 dla dwóch następujących po sobie 20-sekundowych aktualizacji. Okno podręczne alertu wysokiej wartości HPI nie zostało potwierdzone* przed wyczyszczeniem alertu. [wyłącznie HPI]
Użyto bolusa iCO	Jeśli użyto bolusa iCO
Kalibracja in vitro	Jeśli zakończono aktualizację przewodu do oksymetrii po procesie kalibracji in vitro
Kalibracja in vivo	Jeśli zakończono aktualizację przewodu do oksymetrii po procesie kalibracji in vivo
[IA nr N] <podtyp> <szczegół> <uwaga></uwaga></szczegół></podtyp>	Przeprowadzana jest analiza interwencji, w której nr N jest wyliczeniem interwencji dla tego pacjenta <podtyp> to wybrany podtyp interwencji (w przypadku interwencji ogólnej: Inotrop, Wazodylatator lub Wazopresor; w przypadku analizy płynów: Krwinki czerwone, Koloid lub Krystaloid; w przypadku problemów z pozycją: Bierne uniesienie kończyn lub Trendelenburg; w przypadku zdarzeń: PEEP, Indukcja, Kaniulacja, CPB, Zacisk, Kardioplegia, Przepływ pompy, Zatrzymanie krążenia, Podniesienie temperatury, Obniżenie temperatury, Selektywna perfuzja mózgu) <szczegół> to wybrany szczegół <uwaga> to uwaga dodana przez użytkownika</uwaga></szczegół></podtyp>
[IA nr N] Niestandardowe <szczegół> <uwaga></uwaga></szczegół>	Przeprowadzana jest analiza niestandardowych interwencji, w której nr N jest wyliczeniem interwencji dla tego pacjenta <szczegół> to wybrany szczegół <uwaga> to uwaga dodana przez użytkownika</uwaga></szczegół>
[Zaktualizowano IA nr N] Uwaga: <zaktualizowana uwaga=""></zaktualizowana>	Uwaga związana z N-tą interwencją została zmieniona, ale data i godzina nie zostały zmienione. Rejestrowane po włączeniu lub naciśnięciu przycisku Akceptuj w oknie podręcznym Edytuj interwencję. N jest wyliczeniem pierwotnej interwencji.
[Zaktualizowano IA nr N] Godzina: <zaktualizowana data> — <zaktualizowana godzina></zaktualizowana </zaktualizowana 	Data lub godzina związana z N-tą interwencją została zmieniona, ale uwaga nie została zmieniona. Rejestrowane po włączeniu lub naciśnięciu przycisku Akceptuj w oknie podręcznym Edytuj interwencję. N jest wyliczeniem pierwotnej interwencji.
[Zaktualizowano IA nr N] Godzina: <zaktualizowana data> — <zaktualizowana godzina>; Uwaga: <zaktualizowana uwaga=""></zaktualizowana></zaktualizowana </zaktualizowana 	(Godzina LUB data) I uwaga związane z N-tą interwencją zostały zmienione. Rejestrowane po włączeniu lub naciśnięciu przycisku Akceptuj w oknie podręcznym Edytuj interwencję. N jest wyliczeniem pierwotnej interwencji.
Światło poza zakresem	Gdy wystąpi usterka zakresu światła oksymetrii

Tabela 5-4 Przegląd zdarzeń (ciąg dalszy)

Zdarzenie	Czas zarejestrowania	
Tryb monitorowania przełączono z minimalnie inwazyjnego na inwazyjny	Użytkownik przełącza tryby monitorowania z trybu minimalnie inwazyjnego (za pomocą czujnika FloTrac/Acumen IQ lub przetwornika DPT TruWave) na tryb inwazyjny (za pomocą cewnika Swan-Ganz)	
Tryb monitorowania przełączono z inwazyjnego na minimalnie inwazyjny	Użytkownik przełącza tryby monitorowania z trybu inwazyjnego (za pomocą cewnika Swan-Ganz) na tryb minimalnie inwazyjny (za pomocą czujnika FloTrac/Acumen IQ lub przetwornika DPT TruWave)	
Przerwa w monitorowaniu	Aby zapobiec alarmom dźwiękowym i monitorowaniu parametrów, należy przerwać aktywne monitorowanie	
Monitorowanie wznowione	Zwykłe monitorowanie wznowione. Alarmy dźwiękowe i monitorowanie parametrów są aktywne	
Oksymetria odłączona	Wykryto odłączenie przewodu do oksymetrii	
Ciśnienie w tętnicy płucnej wyzerowane	Przetwornik ciśnienia TruWave jest wyzerowany i pojawia się napis "PAP"	
[IA#N] Przywołaj dane oksymetrii	Gdy przywołane dane kalibracji oksymetrii zostaną zaakceptowane przez użytkownika	
Odzyskiwanie systemu	Gdy system samoistnie wznowił monitorowanie po wyłączeniu i włączeniu	
Nastąpiło przełączenie trybu monitorowania	Tryb monitorowania został zmieniony	
Zmiana czasu	Zegar systemowy został zaktualizowany	
* Potwierdzenie zostanie zarejestrowane po dotknięciu przez użytkownika dowolnego przycisku na ekranie podręcznym alertu wysokiej wartości wskaźnika HPI.		

Tabela 5-4 Przegląd zdarzeń (ciąg dalszy)

5.6 Pasek informacji

Pasek informacji jest wyświetlany na wszystkich aktywnych ekranach monitorowania oraz na wiekszości ekranów narzędzi klinicznych. Wyświetlane są na nim bieżąca godzina, data, stan baterii, skrót menu jasności ekranu, skrót menu głośności alarmu, skrót ekranu pomocy, skrót przeglądu zdarzeń i symbol blokady ekranu. Informacje na temat przełączania trybów monitorowania — patrz Wybierz tryb monitorowania na stronie 103. W czasie monitorowania za pomocą modułu HemoSphere Swan-Ganz na pasku informacji o parametrach może być wyświetlana temperatura krwi oraz częstość akcji serca z podleglego źródła. W czasie monitorowania za pomocą przewodu ciśnienia HemoSphere w trybie monitorowania czujnika FloTrac na pasku informacji o parametrach mogą być wyświetlane czas uśredniania CO/ciśnienia oraz wartości parametru HPI. Więcej informacji na temat zaawansowanej funkcji Wskaźnik predykcji niedociśnienia (Acumen HPI) – patrz Wskaźnik predykcji niedociśnienia (Acumen HPI) na stronie 210. Jeżeli w monitorze będzie aktywowane połączenie z systemem HIS lub siecią Wi-Fi, będzie wyświetlany stan połączenia. Symbole stanu połączenia z siecią Wi-Fi — patrz tabela 8-1 na stronie 141. Symbole stanu połączenia z systemem HIS --- patrz tabela 8-2 na stronie 142. Rysunek 5-25 przedstawia przykładowy pasek informacji podczas monitorowania za pomocą modulu HemoSphere Swan-Ganz z częstością akcji serca mierzoną za pomocą EKG z podległego źródła. Rysunek 5-26 przedstawia przykładowy pasek informacji podczas monitorowania za pomocą przewodu ciśnienia HemoSphere.

5.6.1 Bateria

Zaawansowany monitor HemoSphere po zainstalowaniu baterii pozwala na nieprzerwane monitorowanie nawet podczas utraty zasilania. Stan naładowania baterii jest wyświetlany na pasku informacji za pomocą odpowiednich symboli (patrz tabela 5-5). Więcej informacji na temat instalacji baterii — patrz *Instalacja baterii* na stronie 60. Aby zapewnić poprawne wyświetlanie na monitorze stanu naładowania baterii, zaleca się przeprowadzanie okresowych kontroli stanu baterii poprzez jej formowanie. Informacje na temat konserwacji i formowania baterii — patrz *Konserwacja baterii* na stronie 296.
Symbol baterii	Wskazanie
Î	Poziom naładowania baterii wyższy niż 50%.
Í	Poziom naładowania baterii niższy niż 50%.
Í	Poziom naładowania baterii niższy niż 20%.
4	Bateria ładuje się i jest podłączona do źródła zasilania.
þ	Bateria w pełni naładowana i podłączona do źródła zasilania.
X	Bateria nie została zainstalowana.

Tabela 5-5 Stan naładowania baterii

OSTRZEŻENIE Należy zawsze korzystać z zaawansowanego monitora HemoSphere z włożoną baterią, aby zapobiec przerwaniu monitorowania w przypadku utraty zasilania sieciowego.

> Jeśli dojdzie do utraty zasilania lub bateria się wyczerpie, monitor przeprowadzi kontrolowaną procedurę wyłączania.

5.6.2 Jasność ekranu

Aby dostosować jasność ekranu, dotknąć skrótu znajdującego się na pasku informacji 🐞

5.6.3 Głośność alarmu

Aby dostosować głośność alarmu, dotknąć skrótu znajdującego się na pasku informacji 🚽

5.6.4 Zrzut ekranu

Ikona zrzutu ekranu przechwytuje obraz ekranu w danym momencie. Aby zapisać obraz, należy podłączyć przenośną pamięć USB do jednego z dwóch portów USB (panele tylne i prawe) zaawansowanego monitora HemoSphere. Dotknąć ikony zrzutu ekranu znajdującej się na pasku informacji 📷

5.6.5 Zablokuj ekran

Podczas czyszczenia lub przemieszczania monitora należy zablokować ekran. Instrukcje dotyczące czyszczenia — patrz *Czyszczenie monitora i modułów* na stronie 291. Ekran odblokuje się automatycznie po zakończeniu odliczania przez wewnętrzny czasomierz.

- 1 Dotknąć ikony blokady ekranu
- 2 W oknie podręcznym Zablokuj ekran dotknąć wartości czasu, przez który ekran ma pozostawać zablokowany.

Rysunek 5-27 Okno podręczne Zablokuj ekran

- 3 Czerwona ikona blokady pojawi się na pasku informacji.
- 4 W celu odblokowania ekranu dotknąć czerwonej ikony blokady Odblokuj ekran w menu Zablokuj ekran.

5.7 Pasek stanu

Pasek stanu jest wyświetlany u góry wszystkich aktywnych ekranów monitorowania, poniżej paska informacji. Wyświetlane są na nim usterki, alarmy, alerty, niektóre ostrzeżenia i powiadomienia. W przypadku wystąpienia więcej niż jednej usterki, alertu lub alarmu komunikat jest przełączany co dwie sekundy. Kolejny numer komunikatu spośród wszystkich komunikatów jest wyświetlany po lewej stronie. Należy go dotknąć w celu przełączania się pomiędzy bieżącymi komunikatami. Dotknąć ikony pytania, aby uzyskać dostęp do ekranu pomocy dotyczącego komunikatów alarmów niefizjologicznych.

5.8 Nawigacja w obrębie ekranu monitora

Istnieje kilka standardowych procedur nawigacji po ekranie.

5.8.1 Przewijanie w pionie

Niektóre ekrany zawierają więcej informacji niż można zmieścić jednocześnie na ekranie. Jeżeli pionowe strzałki pojawiają się na przeglądanej liście, aby zobaczyć następny zbiór pozycji, należy dotknąć strzałki w górę lub w dół.

Po wybraniu pozycji z listy strzałki przewijania pionowego przesuwają w górę lub w dół o jedną pozycję na raz.

5.8.2 Ikony nawigacji

Niektóre przyciski zawsze pełnią tę samą funkcję:

Ekran glówny. Ikona ekranu głównego przenosi użytkownika do ostatnio wyświetlanego ekranu monitorowania i zachowuje wszelkie zmiany danych wprowadzone na ekranie.

Powrót. Ikona powrotu przenosi użytkownika do poprzedniego ekranu menu i zachowuje wszelkie zmiany danych wprowadzone na ekranie.

Wprowadzanie. Ikona wprowadzania zachowuje wszelkie zmiany danych wprowadzone na ekranie i powraca do ekranu monitorowania lub wyświetla następny ekran menu.

Anuluj. Ikona anulowania powoduje usunięcie dowolnego wpisu.

Na niektórych ekranach, na przykład na ekranie Dane pacjenta, przycisk anulowania nie występuje. Dane pacjenta są zachowywane przez system natychmiast po ich wprowadzeniu.

Przyciski listy. Na niektórych ekranach występują przyciski wyświetlone obok tekstu menu.

W takich przypadkach dotknięcie przycisku w dowolnym miejscu powoduje rozwinięcie listy możliwych do wybrania pozycji związanych z tekstem menu. Przycisk służy do wyświetlania bieżącego wyboru.

Przycisk wartości. Niektóre ekrany zawierają prostokątne przyciski, takie jak pokazano poniżej. Naciśnięcie takiego przycisku powoduje wyświetlenie klawiatury numerycznej.

Przycisk przełączania. Jeśli pomiędzy dwoma opcjami można dokonać wyboru, np. Włącz/Wyłącz, pojawia się przycisk przełączania.

Należy nacisnąć przeciwną stronę przycisku, aby przełączyć wybór.

Klawiatura numeryczna. Naciskanie klawiszy tej klawiatury służy do wprowadzania danych liczbowych.

Klawiatura. Naciskanie klawiszy tej klawiatury służy do wprowadzania danych alfanumerycznych.

6

Ustawienia interfejsu użytkownika

Spis treści

Ochrona hasłem	113
Dane pacjenta	115
Ogólne ustawienia monitora	118

6.1 Ochrona hasłem

Zaawansowany monitor HemoSphere ma trzy poziomy ochrony haslem.

Tabela	6-1	Poziomy	hasła	zaawansowanego	monitora	HemoSphere
	-	,		· · · · · · · · · · · · · · · · · · ·		

Poziom	Wymagane cyfry	Opis użytkowników
Administrator	cztery	Lekarze
Uprawniony użytkownik	osiem	Upoważniony personel szpitala
Użytkownik firmy Edwards	hasło generowane losowo	Tylko do użytku przez personel firmy Edwards

Wszelkie wymagające hasła ustawienia i funkcje opisane w tym podręczniku są funkcjami **administratora**. Hasła **administratora** i **uprawnionego użytkownika** wymagają zresetowania podczas inicjalizacji systemu przy pierwszym wejściu na ekran z hasłami. W celu uzyskania haseł należy skontaktować się z administratorem szpitala lub działem IT. W przypadku dziesięciokrotnego nieprawidłowego wprowadzenia hasła klawiatura do wprowadzania hasła zostanie na pewien czas zablokowana. Nadal będzie można prowadzić monitorowanie. W przypadku zapomnienia hasła należy skontaktować się z lokalnym przedstawicielem firmy Edwards.

Dwie opcje menu ustawień są zabezpieczone hasłem: Zaawansowana konfiguracja i Eksport danych.

Aby uzyskać dostęp do funkcji menu Zaawansowana konfiguracja opisanych poniżej (patrz tabela 6-2),

należy dotknąć ikony ustawień 💽 → zakładki Ustawienia 🔅

→ przycisku

Ustawienia

Zaawansowana konfiguracja.

Tabela 6-2 Nawigacja w menu Zaawansowana konfiguracja i ochrona
hasłem tego menu

Wybór menu Zaawansowana konfiguracja	Wybór podmenu	Administrator	Uprawniony użytkownik	Użytkownik firmy Edwards
Ustawienia	Alarmy/wartości docelowe	\checkmark	\checkmark	\checkmark
parametru	Alarmy/wartości docelowe → Skonfiguruj wszystko	brak dostępu	~	\checkmark
	Wyreguluj wagę	~	~	\checkmark
	Ustawienia HPI	~	~	\checkmark
	SVV/PPV	\checkmark	\checkmark	\checkmark
Ustawienia GDT		\checkmark	\checkmark	\checkmark
Analogowy sygnał wej	ściowy	\checkmark	\checkmark	\checkmark
Profil ustawień		brak dostępu	\checkmark	\checkmark
Resetowanie systemu	Przywróć wszystkie domyślne ustawienia fabryczne	brak dostępu	~	\checkmark
	Usunięcie danych	brak dostępu	\checkmark	\checkmark
	Wycofaj monitor z eksploatacji	brak dostępu	brak dostępu	\checkmark
Łączność	Komunikacja bezprzewodowa	brak dostępu	√(jeśli włączony)	\checkmark
	Konfiguracja portu szeregowego	brak dostępu	~	\checkmark
	Konfiguracja HL7	brak dostępu	√(jeśli włączony)	\checkmark
Zarządzaj funkcjami		brak dostępu	\checkmark	\checkmark
Stan systemu		brak dostępu	\checkmark	\checkmark
Zmień hasła		brak dostępu	✓	✓
Serwis	Ustawienia alarmu	brak dostępu	✓	✓
	Oksymetria tkankowa	brak dostępu	~	\checkmark

Aby uzyskać dostęp do funkcji menu Eksport danych opisanych poniżej (patrz tabela 6-3), należy dotknąć

→ przycisku **Eksport danych.** → zakładki Ustawienia 🧐 Ustawienia ikony ustawień

Tabela 6-3 Nawigacja w menu Eksport danych i ochrona hasłem tego menu

Wybór menu Eksport danych	Administrator	Uprawniony użytkownik	Użytkownik firmy Edwards
Eksport diagnostyki	\checkmark	\checkmark	\checkmark
Pobieranie danych	\checkmark	\checkmark	\checkmark

Tabela 6-3 Nawigacja w menu Eksport danych i ochrona hasłem tego menu (ciąg dalszy)

Wybór menu Eksport danych	Administrator	Uprawniony użytkownik	Użytkownik firmy Edwards
Zarządzaj danymi	brak dostępu	√(jeśli	\checkmark
klinicznymi		włączony)	
Eksportuj dane serwisowe	brak dostępu	\checkmark	\checkmark

6.1.1 Zmiana haseł

W celu zmiany hasel wymagany jest dostęp **Uprawniony użytkownik**. W celu uzyskania hasła należy skontaktować się z administratorem szpitala lub działem IT. Aby zmienić hasła:

1 Dotknąć ikony ustawień \bigcirc \rightarrow zakładka Ustawienia \bigcirc Ustawienia \rightarrow przycisk

Zaawansowana konfiguracja.

- 2 Wprowadzić hasło w polu Uprawniony użytkownik.
- 3 Dotknąć przycisku Zmień hasła.
- 4 Wprowadzać cyfry nowych haseł administratora i/lub uprawnionego użytkownika do obu pól wartości, aż pojawi się zielony znacznik wyboru. Znacznik wyboru potwierdza, że wymaganie dotyczące minimalnej liczby cyfr zostało spełnione oraz że oba wpisy żądanego hasła są identyczne.
- 5 Dotknąć przycisku Potwierdź.

6.2 Dane pacjenta

Po włączeniu systemu użytkownik może kontynuować monitorowanie ostatniego pacjenta lub rozpocząć monitorowanie nowego pacjenta. Patrz rysunek 6-1 poniżej.

UWAGA Jeżeli dane ostatniego monitorowanego pacjenta pochodzą sprzed 12 godzin lub więcej, można rozpocząć jedynie monitorowanie nowego pacjenta.

E	Hen Copyright @	NO © 2018 E	Spl dwards Life	IELE ssciences LLC	GE <u>}</u> 0: ⊂1 20113
	Ostatr ID pacjenta: Pleć: Wiek: Wzrost: Waga: BSA:	ni pac Niezn Mężcz 78 145 78.0 1.69	jent any ID cyzna lat cm kg m²		
<u>à</u>				Nowy pacjent	Kontynuuj dla tego samego pacjenta.

Rysunek 6-1 Ekran nowego pacjenta lub kontynuacji monitorowania dotychczasowego pacjenta

6.2.1 Nowy pacjent

Rozpoczęcie monitorowania nowego pacjenta powoduje wyczyszczenie wszystkich danych poprzedniego pacjenta. Progi alarmu i parametry ciągłe są ustawione zgodnie z ich wartościami domyślnymi.

OSTRZEŻENIE Po rozpoczęciu nowej sesji pacjenta należy sprawdzić domyślne zakresy wysokich/niskich wartości alarmów fizjologicznych, aby upewnić się, że są one odpowiednie dla tego pacjenta.

Użytkownik może wprowadzić nowego pacjenta po pierwszym uruchomieniu systemu lub już przy uruchomionym systemie.

OSTRZEŻENIE Po podłączeniu nowego pacjenta do zaawansowanego monitora HemoSphere należy użyć polecenia **Nowy pacjent** lub wyczyścić profil danych pacjenta. W przeciwnym wypadku na ekranach historii mogą wyświetlić się dane poprzedniego pacjenta.

 Po włączeniu monitora zostanie wyświetlony ekran nowego pacjenta lub kontynuacji monitorowania dotychczasowego pacjenta (rysunek 6-1). Nacisnąć przycisk Nowy pacjent i przejść do punktu 6.

LUB

1 Jeżeli monitor jest już włączony, dotknąć ikony ustawień 💽 → zakładka Narzędzia kliniczne

Narzędzia kliniczne i przejść do punktu 2.

- 2 Dotknąć ikony Dane pacjenta
- 3 Dotknąć przycisku Nowy pacjent.
- **4** Dotknąć przycisku **Tak** na ekranie z prośbą o potwierdzenie, aby rozpocząć monitorowanie nowego pacjenta.

5 Pojawi się ekran Dane nowego pacjenta. Patrz rysunek 6-2.

Edwards		HemoSphere Copyright © 2018 Edwards Lifesciences LLC Dane nowego pacjenta	-∰ - ⊄≬ 19.22.19
	ID pacjenta Opcja Wiek	Nieznany ID Płeć Mężczyzna	
	Wzrost Waga	= BSA (DuBois)	
<u>à</u> (<u>,</u>		

Rysunek 6-2 Ekran Dane nowego pacjenta

- 6 Dotknąć klawisza Enter pacjenta i powrócić do ekranu danych pacjenta.
- 7 Dotknąć przycisku **ID pacjenta**, a następnie wprowadzić szpitalny identyfikator pacjenta za pomocą klawiatury.
- 8 Dotknąć przycisku Wzrost, a następnie wprowadzić wzrost pacjenta za pomocą klawiatury. Jednostka domyślna dla danego języka jest dostępna w prawym górnym rogu klawiatury. Jej dotknięcie pozwala zmienić jednostkę pomiaru.
- 9 Dotknąć przycisku Wiek, a następnie wprowadzić wiek pacjenta za pomocą klawiatury.
- 10 Dotknąć przycisku Waga, a następnie wprowadzić ciężar ciała pacjenta za pomocą klawiatury. Jednostka domyślna dla danego języka jest dostępna w prawym górnym rogu klawiatury. Jej dotknięcie pozwala zmienić jednostkę pomiaru.
- 11 Dotknąć przycisku Płeć, a następnie wybrać opcję Mężczyzna lub Kobieta.
- 12 Pole powierzchni ciała (BSA) jest obliczane na podstawie wzrostu i ciężaru ciała za pomocą równania DuBois.
- 13 Dotknąć przycisku Dalej.

UWAGA	Przycisk Dalej jest nieaktywny, dopóki nie zostaną wprowadzone wszystkie dane
	pacjenta.

14 Wybrać odpowiedni tryb monitorowania w oknie **Wybór trybu monitorowania**. Patrz *Wybierz tryb monitorowania* na stronie 103. Zapoznać się z instrukcją rozpoczynania monitorowania w żądanej technologii monitorowania hemodynamicznego.

6.2.2 Kontynuacja monitorowania dotychczasowego pacjenta

Jeśli dane ostatniego pacjenta są wcześniejsze niż sprzed 12 godzin, dane demograficzne oraz ID pacjenta beda wciaż wyświetlane po właczeniu systemu. Jeśli kontynuowane jest monitorowanie ostatniego pacjenta, nastąpi wczytanie danych pacjenta oraz przywrócenie danych trendów. Pojawi się ostatnio wyświetlany ekran monitorowania. Dotknąć opcji Kontynuuj dla tego samego pacjenta.

6.2.3 Wyświetlanie danych pacjenta

1 Dotknąć ikony ustawień 🏹 → zakładka Narzędzia kliniczne 💿 Narzędzia kliniczne

- 2 Dotknąć ikony Dane pacjenta z hoy wyświetlić dane pacjenta. Na ekranie będzie widoczny również przycisk Nowy pacjent.
- 3 Dotknąć ikony powrotu 🦰 aby powrócić do ekranu ustawień. Pojawi się ekran podręczny

z danymi demograficznymi pacjenta. W przypadku powrotu do tego samego pacjenta należy przejrzeć jego dane demograficzne i nacisnąć Tak, jeśli są poprawne.

6.3 Ogólne ustawienia monitora

Ogólne ustawienia monitora to ustawienia dotyczące wszystkich ekranów. Ustawienia te dotyczą jezyka wyświetlania, używanych jednostek, głośności alarmu, dźwięku zrzutu, daty/godziny, jasności ekranu oraz ekranu monitorowania.

Interfejs zaawansowanego monitora HemoSphere jest dostępny w kilku językach. Ekran wyboru języka pojawia się przy pierwszym uruchomieniu zaawansowanego monitora HemoSphere. Patrz rysunek 3-7 "Ekran wyboru języka" na stronie 64. Ekran wyboru języka nie pojawi się ponownie, ale zmiana języka wyświetlania będzie możliwa w dowolnym momencie.

Wybrany język określa domyślny format czasu i daty. Te ustawienia można również zmieniać niezależnie od wybranego języka.

UWAGA W przypadku utraty, a następnie przywrócenia zasilania zaawansowanego monitora HemoSphere nastąpi automatyczne przywrócenie ostatnich ustawień sprzed utraty zasilania, w tym ustawień alarmu, głośności alarmu, ustawień wartości docelowych, ekranu monitorowania, konfiguracji parametrów i wybranego języka oraz jednostek.

6.3.1 Zmiana języka

- 1 Dotknąć ikony ustawień 🏹 → zakładki Ustawienia 🔅 Ustawienia
- 2 Dotknąć przycisku **Ogólne**.

Narzędzia kliniczne	Wybierz opcję Ekrany	©	Ustawienia	i	Pomoc	
÷	Usta	wie	nia ogólr	ne		
Język	Polski		Format	daty	DD.MM.F	RRRR
Temperatura	°C		Format o	zasu	24 god	ziny
Głośność alarmu	Średni		Ustawienie daty		10.12.2	018
Dźwięk zrzutu	Włącz		Ustaw czasu	vienie	13:40:	23
Indeksowane lub nieindeksowane	Nieindeksowane	Ind	leksowane			
Sporządź wykresy trendów za pom	Wyłącz		Włącz			
Jasność ekranu						

Rysunek 6-3 Ogólne ustawienia monitora

- 3 Dotknąć części ikony Język używanej do wyboru wartości, a następnie wybrać żądany język wyświetlania.
- 4 Dotknąć ikony ekranu głównego 🏠, aby powrócić do ekranu monitorowania.

UWAGA Wszystkie ustawienia domyślne dla języków — patrz dodatek D.

6.3.2 Ekran zmiany daty i czasu

W przypadku języka English (US) (amerykański angielski) domyślnym formatem daty jest **MM/DD/RRRR**, a czasu — **12 godzin**.

Jeśli wybrany jest język międzynarodowy, przywracane jest domyślne ustawienie daty (format — patrz dodatek D: *Konfiguracja monitora i ustawienia domyślne*) i czasu (format 24-godzinny).

- 1 Dotknąć ikony ustawień O \rightarrow zakładki **Ustawienia** O Ustawienia
- 2 Dotknąć przycisku Ogólne.
- **3** Dotknąć części przycisku **Format daty** używanej do wyboru wartości, a następnie dotknąć formatu, który ma być używany.
- **4** Dotknąć części przycisku **Format czasu** używanej do wyboru wartości, a następnie dotknąć formatu, który ma być używany.
- 5 Dotknąć ikony ekranu głównego 🏠 , aby powrócić do ekranu monitorowania.

6.3.2.1 Regulacja daty lub godziny

W razie konieczności możliwe jest zresetowanie godziny w systemie. Po zmianie czasu lub daty następuje zaktualizowanie danych zapisanych w trendach, aby odzwierciedlić wprowadzone zmiany. Wszystkie zachowane dane zostaną zaktualizowane, aby uwzględnić zmianę czasu.

UWAGA Zegar zaawansowanego monitora HemoSphere nie aktualizuje się automatycznie do czasu letniego (ang. daylight saving time, DST). Należy dokonać tej zmiany, postępując zgodnie z poniższymi instrukcjami.

- 1 Dotknąć ikony ustawień \bigcirc \rightarrow zakładki Ustawienia \bigcirc Ustawienia
- 2 Dotknąć przycisku **Ogólne**.
- **3** Aby zmienić datę, dotknąć części przycisku **Ustawienie daty** używanej do wyboru wartości, a następnie wprowadzić datę za pomocą klawiatury.
- **4** Aby zmienić godzinę, dotknąć części przycisku **Ustawienie czasu** używanej do wyboru wartości, a następnie wprowadzić godzinę.

UWAGA	Datę i godzinę można dostosować, dotykając bezpośrednio opcji Data/godzina na
	pasku informacji.

5 Dotknąć ikony ekranu głównego 🏠, aby powrócić do ekranu monitorowania.

6.3.3 Ustawienia ekranów monitorowania

Z poziomu ekranu **Ustawienia ogólne** użytkownik może również dokonywać ustawień ekranu monitorowania fizjologii i zależności fizjologicznych oraz dostosowywać opcje ekranu monitorowania trendu graficznego.

- 1 Dotknąć ikony ustawień \bigcirc \rightarrow zakładki Ustawienia \bigcirc Ustawienia
- 2 Dotknąć przycisku **Ogólne**.
- **3** Wybrać przycisk przełączania **Indeksowane lub nieindeksowane** dla parametrów na ekranach fizjologii i zależności fizjologicznych.
- 4 Obok pozycji Sporządź wykresy trendów za pomocą kolorów docelowych wybrać opcję Włącz lub Wyłącz, aby wyświetlić docelowe kolory na ekranach monitorowania trendów graficznych.

6.3.4 Odstępy czasu/uśrednianie

Ekran **Odstępy czasu/uśrednianie** umożliwia użytkownikowi wybieranie czasowych interwalów ciąglej zmiany (%). Podczas trybu monitorowania czujnika FloTrac użytkownik może również zmienić czas uśredniania CO/ciśnienia.

UWAGA	Po dwóch minutach braku aktywności ekran powróci do widoku monitorowania.
	Przycisk wartości Czas uśredniania CO/ciśnienia jest dostępny wyłącznie w trybie monitorowania czujnika FloTrac.

- 1 Dotknąć kafelka parametru w dowolnym miejscu, aby uzyskać dostęp do menu konfiguracji tego parametru.
- 2 Dotknąć zakładki Odstępy czasu/uśrednianie.

6.3.4.1 Wyświetlanie zmiany wartości parametru

Na kafelku parametru można wyświetlić zmianę wartości lub procentową zmianę wartości parametru kluczowego w wybranym odstępie czasowym.

- 1 Dotknąć przycisku menu Zmiana, aby wybrać format, dla jakiego wyświetlany będzie odstęp czasowy: Zmieniony % lub Różnica wartości.
- 2 Dotknąć przycisku wartości Interwał zmiany, a następnie wybrać jedną z następujących opcji odstępów czasowych:

•	Brak	•	10 min
•	Wartość referencyjna	•	15 min
•	1 min	•	$20 \min$
•	3 min	•	30 min
•	5 min		

W przypadku wybrania opcji **Wartość referencyjna** interwał zmiany zostanie obliczony od momentu rozpoczęcia monitorowania. Opcję **Wartość referencyjna** można skorygować w zakładce **Odstępy czasu/uśrednianie** menu konfiguracji kafelka.

6.3.4.2 Czas uśredniania CO/ciśnienia

Dotknąć prawej części przycisku wartości **Czas uśredniania CO/ciśnienia**, a następnie dotknąć jednej z następujących opcji odstępów:

- 5 s
- 20 s (domyślny i zalecany odstęp czasu)
- 5 min

Wybór **Czasu uśredniania CO/ciśnienia** wpływa na czas uśredniania i częstość aktualizacji wyświetlania wartości CO oraz innych dodatkowych parametrów w trybie monitorowania minimalnie inwazyjnego. Szczegółowe informacje dotyczące tego, na uśrednianie których parametrów i na częstość aktualizacji których parametrów ma wpływ wybór w menu, zawiera rysunek 6-1 poniżej.

Częstość aktualizacji parametro		rametrów
5 s	20 s	5 min
2 s	20 s	20 s
2 s	20 s	20 s
2 s	20 s^	20 s^
2 s	20 s^	20 s^
2 s	20 s^	20 s^
2 s	20 s^	20 s^
2 s	2 s†	2 s†
2 s	2 s [†]	2 s [†]
20 s*	20 s*	20 s
20 s*	20 s*	20 s
	Częstość 5 s 2	Częstość aktualizacji pa 5 s 20 s 2 s 20 s 2 s 20 s 2 s 20 s^A 2 s 2 s f^T 20 s* 20 s* 20 s* 20 s*

Tabela 6-4 Czas uśredniania CO/ciśnienia i częstotliwość aktualizacji wyświetlacza — tryb monitorowania minimalnie inwazyjnego

* W przypadku parametrów SVV i PPV nie jest dostępny 5-sekundowy ani 20-sekundowy czas uśredniania. Jeśli zostanie wybrana opcja 5 sekund lub 20 sekund, czas uśredniania w przypadku parametrów SVV i PPV będzie wynosił 1 minutę.

[†] W przypadku CVP i MPAP czas uśredniania parametrów zawsze wynosi 5 sekund z częstością aktualizacji wynoszącą 2 sekundy.

[^] W przypadku używania przetwornika TruWave dostępne jest tylko 5-sekundowe uśrednianie z częstością aktualizacji wynoszącą 2 sekundy.

UWAGA

W przypadku krzywej ciśnienia krwi w czasie rzeczywistym wyświetlanej na ekranie krzywej ciśnienia tętniczego (patrz *Wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym* na stronie 89) lub na ekranie Wyzeruj i krzywa (patrz *Ekran Wyzeruj i krzywa* na stronie 174) częstotliwość aktualizacji wynosi 2 sekundy.

Dotknąć ikony ekranu głównego 🕋, aby powrócić do ekranu monitorowania.

6.3.5 Analogowy sygnał wejściowy ciśnienia

Podczas monitorowania parametru CO zaawansowany monitor HemoSphere może również obliczyć wartość parametru SVR, wykorzystując analogowe sygnały wejściowe ciśnienia z podłączonego monitora pacjenta.

UWAGAPodłączenie do zewnętrznych urządzeń do wprowadzania danych pozwala na
wyświetlenie dodatkowych informacji. Przykładowo, gdy podczas monitorowania
za pomocą modułu HemoSphere Swan-Ganz wartości parametrów MAP i CVP
są dostarczane w sposób ciągły z monitora przyłóżkowego, wartość SVR jest
wyświetlana, o ile została skonfigurowana w kafelku parametru. Wartości MAP
i CVP są wyświetlane na ekranie monitorowania zależności fizjologicznych i ekranie
monitorowania fizjologicznego.

OSTRZEŻENIE	Analogowe porty komunikacyjne zaawansowanego monitora HemoSphere znajdują się na jednej plaszczyźnie odizolowanej od elektronicznych części interfejsu cewnika. W przypadku podłączania kilku urządzeń do zaawansowanego monitora HemoSphere wszystkie urządzenia powinny być wyposażone w izolację zasilania, aby nie naruszyć izolacji elektrycznej żadnego z nich.	
	Ryzyko i prąd upływowy ostatecznej konfiguracji systemu muszą być zgodne z normą IEC 60601-1:2005/A1:2012. Zapewnienie tej zgodności jest obowiązkiem użytkownika.	
	Sprzęt dodatkowy podłączony do monitora musi spełniać wymogi normy IEC/EN 60950 dla sprzętu do przetwarzania danych lub normy IEC 60601-1:2005/ A1:2012 dla sprzętu elektromedycznego. Wszystkie konfiguracje sprzętu muszą być zgodne z wymogami systemowymi określonymi w normie IEC 60601-1:2005/ A1:2012.	
PRZESTROGA	W przypadku podłączania zaawansowanego monitora HemoSphere do urządzeń zewnętrznych należy zapoznać się z instrukcjami obsługi tych urządzeń. Przed zastosowaniem klinicznym należy zweryfikować prawidłowe działanie systemu.	

Po skonfigurowaniu monitora przyłóżkowego w zakresie wyświetlania żądanych parametrów należy podlączyć monitor za pośrednictwem przewodu interfejsu do wybranego portu wejścia analogowego zaawansowanego monitora HemoSphere.

UWAGA	Zgodny monitor przyłóżkowy powinien dostarczać analogowy sygnał wyjściowy.
	W celu uzyskania właściwego przewodu interfejsu do wejścia analogowego zaawansowanego monitora HemoSphere podłączanego do monitora przyłóżkowego należy skontaktować się z lokalnym przedstawicielem firmy Edwards.

Sposób konfigurowania portów wejść analogowych zaawansowanego monitora HemoSphere opisano w poniższej procedurze.

- 1 Dotknąć ikony ustawień 🏹 → zakladki Ustawienia 🔅 Ustawienia
- 2 Dotknąć przycisku Zaawansowana konfiguracja, a następnie wprowadzić wymagane hasło. Wszystkie hasła są ustawiane podczas inicjalizacji systemu. W celu uzyskania hasła należy skontaktować się z administratorem szpitala lub działem IT.
- 3 Dotknąć przycisku Analogowy sygnał wejściowy.
- 4 W przypadku monitorowania za pomocą modulu HemoSphere Swan-Ganz wybrać opcję MAP z poziomu przycisku listy Parametr dla opatrzonego numerem portu analogowego, dla którego skonfigurowano parametr MAP (1 lub 2). Zostaną wyświetlone wartości ustawienia domyślnego dla parametru MAP.

UWAGA W trybie monitorowania za pomocą czujnika FloTrac dane MAP z wejścia analogowego nie są dostępne.

Jeśli w wybranym porcie nie zostanie wykryty sygnał analogowy, pod przyciskiem listy **Port** zostanie wyświetlony komunikat "**Niepodłączone**".

Jeśli najpierw zostanie wykryte połączenie lub rozłączenie analogowego sygnału wejściowego, na pasku stanu zostanie wyświetlony krótki komunikat.

- 5 Wybrać opcję CVP z poziomu przycisku listy Parametr dla opatrzonego numerem portu analogowego, dla którego skonfigurowano parametr CVP. Zostaną wyświetlone wartości ustawienia domyślnego dla parametru CVP.
- **UWAGA** Nie można skonfigurować tego samego parametru na więcej niż jednym wejściu analogowym w danym momencie.

W trybie monitorowania za pomocą czujnika FloTrac i gdy skonfigurowano parametr CVP do monitorowania za pomocą przetwornika DPT TruWave, dane CVP z wejścia analogowego nie są dostępne.

6 Jeśli wartości domyślne są prawidłowe dla używanego monitora przyłóżkowego, dotknąć ikony ekranu głównego 💦 .

Jeśli wartości domyślne nie są prawidłowe dla używanego monitora przyłóżkowego (patrz podręcznik operatora monitora przyłóżkowego), użytkownik może zmodyfikować zakres napięcia, pełny zakres skali lub przeprowadzić kalibrację opisaną w części 6.3.5.1 niniejszego rozdziału.

Dotknięcie przycisku **Zakres pełnowymiarowy** powoduje zmianę wyświetlanej wartości sygnału pełnowymiarowego. Tabela 6-5 poniżej przedstawia dozwolone wartości wejściowe zakresu pełnowymiarowego na podstawie wybranego parametru.

Parametr	Zakres pełnowymiarowy
МАР	Od 0 mmHg do 510 mmHg (od 0 kPa do 68 kPa)
CVP	Od 0 mmHg do 110 mmHg (od 0 kPa do 14,6 kPa)

Tabela 6-5 Zakresy wartości parametru analogowego sygnału wejściowego

UWAGA Zerowa wartość odczytu napięcia jest automatycznie ustawiana na odczyt ciśnienia minimalnego wynoszący 0 mmHg (0 kPa). Zakres pełnowymiarowy odzwierciedla sygnał pełnowymiarowy lub odczyt ciśnienia maksymalnego dla wybranego zakresu napięcia. Dotknąć przycisku **Zakres napięcia**, aby zmienić wyświetlany zakres napięcia. Wybieralne zakresy napięcia dostępne dla wszystkich parametrów to:

- 0–1 V (woltów),
- 0–5 V (woltów),
- 0–10 V (woltów),
- niestandardowe (patrz 6.3.5.1: Kalibracja).

OSTRZEŻENIE Przełączając się na inny monitor przyłóżkowy, należy zawsze sprawdzić, czy wymienione wartości domyślne są nadal prawidłowe. W razie konieczności można przeprowadzić kalibrację lub ponownie skonfigurować zakres napięcia i odpowiadający mu zakres parametrów.

6.3.5.1 Kalibracja

Opcja kalibracji jest wymagana, gdy wartości domyślne są nieprawidłowe lub gdy zakres napięcia nie jest znany. Proces kalibracji polega na konfiguracji zaawansowanego monitora HemoSphere za pomocą analogowego sygnału płynącego z monitora przyłóżkowego.

UWAGA	Jeśli wartości domyślne są prawidłowe, nie należy przeprowadzać kalibracji.	
PRZEST	ROGA Kalibrację portów analogowych zaawansowanego monitora HemoSphere powinien przeprowadzać wyłącznie właściwie przeszkolony personel.	
1	Dotknąć ikony ustawień 🏹 → zakładki Ustawienia 🐼 Ustawienia .	
2	2 Dotknąć przycisku Zaawansowana konfiguracja, a następnie wprowadzić wymagane hasło. Wszystkie hasła są ustawiane podczas inicjalizacji systemu. W celu uzyskania hasła należy skontaktować się z administratorem szpitala lub działem IT.	
3	3 Dotknąć przycisku Analogowy sygnał wejściowy.	
4	4 Wybrać żądany numer portu (1 lub 2) z poziomu przycisku listy Port i odpowiadający mu parametr (MAP lub CVP) z poziomu przycisku listy Parametr.	
5	5 Na ekranie podręcznym wartości napięcia wybrać opcję Niestandardowe. Pojawi się ekran Ustawienia niestandardowe wejścia analogowego.	
6	Wykonać symulację sygnalu pełnej skali płynącego z monitora przyłóżkowego do wybranego portu wejścia analogowego w zaawansowanym monitorze HemoSphere.	
7	Ustawić maksymalną wartość parametru równą wartości sygnału pełnej skali.	
8	Dotknąć przycisku Kalibruj wartość maks . Wartość Maks A/D pojawi się na ekranie Ustawienia niestandardowe wejścia analogowego .	

UWAGA	leśli połączenie analogowe nie zostanie wykryte, przyciski Kalibruj wartość maks. Kalibruj wartość min. zostaną wyłączone, a dla wartości maks. A/D będzie wyświetlany komunikat Niepodłączone .
9 Powtć	rzyć proces, aby skalibrować minimalną wartość parametru.
10 Dotkr i powr	ąć przycisku Akceptuj, aby zaakceptować wyświetlane ustawienia niestandardowe ócić do ekranu wejścia analogowego.
11 Powtó lub do	rzyć czynności z punktów 4–10, aby skalibrować inny port (jeśli jest potrzebny), tknąć ikony ekranu głównego 💦 , aby powrócić do ekranu monitorowania.
PRZESTROG	Dokładność ciągłego pomiaru wartości SVR w przypadku monitorowania za pomocą modulu HemoSphere Swan-Ganz zależy od jakości i dokładności danych MAP i CVP przesyłanych z monitorów zewnętrznych. Ponieważ jakość sygnalu analogowego MAP i CVP z monitora zewnętrznego nie może zostać zwalidowana w zaawansowanym monitorze HemoSphere, rzeczywiste wartości oraz wartości (w tym wszystkie pochodne parametry) wyświetlane przez zaawansowany monitor HemoSphere mogą być niespójne. W związku z tym dokładność pomiaru wartości SVR w przypadku ciągłego monitorowania nie może zostać zagwarantowana. Aby ulatwić określenie jakości sygnałów analogowych, należy regularnie porównywać wartości MAP i CVP wyświetlane na monitorze zewnętrznym z wartościami wyświetlanymi na ekranie zależności fizjologicznych zaawansowanego monitora HemoSphere. Szczegółowe informacje na temat dokładności pomiarów, kalibracji i innych zmiennych mogących wpływać na analogowy sygnał wyjściowy z monitora zewnętrznego zamieszczono w podręczniku operatora zewnętrznego urządzenia do wprowadzania danych.

7

Ustawienia zaawansowane

Spis treści

Alarmy/wartości docelowe	27
Wyreguluj wagę	34
Ustawienia parametrów SVV/PPV na ekranie fizjologii i zależności fizjologicznych	36
Tryb demonstracyjny	36

7.1 Alarmy/wartości docelowe

W systemie inteligentnych alarmów zaawansowanego monitora HemoSphere występują dwa rodzaje alarmów:

- 1 Alarmy fizjologiczne: Ustawia je lekarz i odpowiadają one górnym i/lub dolnym zakresom alarmowym dotyczącym skonfigurowanych kluczowych parametrów ciągłych.
- 2 Alarmy techniczne: Taki alarm oznacza usterkę urządzenia lub alert.

Alarmy fizjologiczne występują jako alarmy o średnim lub wysokim priorytecie. Wyłącznie parametry wyświetlane na kafelkach (parametry kluczowe) mają aktywne alarmy wizualne i dźwiękowe.

Spośród alarmów technicznych usterki mają priorytet średni lub wysoki i wstrzymują działanie związanych z nimi funkcji monitorowania. Alerty mają priorytet niski i nie wstrzymują żadnej funkcji monitorowania.

Przy wszystkich alarmach wyświetla się odpowiedni tekst na pasku stanu. System alarmów inteligentnych aktywnie przełącza wszystkie teksty aktywnych alarmów na pasku stanu. Ponadto alarmy generują wizualny wskaźnik alarmu — patrz tabela 7-1 poniżej. Dodatkowe informacje zawiera tabela 14-1 na stronie 238.

Priorytet alarmu	Kolor	Wzór światła
Wysoki	czerwony	Na przemian WŁĄCZANIE/ WYŁĄCZANIE
Średni	żółty	Na przemian WŁĄCZANIE/ WYŁĄCZANIE
Niski	żółty	Światło ciągłe

Tabela 7-1 Kolory wskaźnika alarmu wizualnego

Wskaźnik alarmu wizualnego sygnalizuje aktywny alarm o najwyższym priorytecie. Komunikaty alarmów wyświetlane na pasku stanu oznaczone są kolorem priorytetu alarmu (patrz tabela 7-1). Dodatkowo emitowany jest dźwięk związany z aktywnym alarmem o najwyższym priorytecie. Jeżeli priorytety są takie same, alarmy fizjologiczne mają pierwszeństwo przed usterkami i alertami. Wszystkie alarmy techniczne są generowane natychmiast po wykryciu przez system; nie przewidziano opóźnienia alarmów od momentu wykrycia. Dla alarmów fizjologicznych opóźnienie stanowi czas potrzebny do obliczenia następnego parametru fizjologicznego, gdy wartość parametru znajdowała się poza zakresem przez co najmniej 5 sekund:

- ciągła pojemność minutowa mierzona z użyciem modułu HemoSphere Swan-Ganz oraz powiązane parametry: czas zmienny, zwykle jednak około 57 sekund (patrz *Czasomierz CO* na stronie 152)
- ciągła pojemność minutowa serca (CO) mierzona za pomocą przewodu ciśnienia HemoSphere i związane z nią parametry mierzone przez czujnik FloTrac: różnią się w zależności od wybranej opcji w menu czasu uśredniania CO/ciśnienia i związanej z nimi częstości aktualizacji (patrz tabela 6-4 "Czas uśredniania CO/ciśnienia i częstotliwość aktualizacji wyświetlacza — tryb monitorowania minimalnie inwazyjnego" na stronie 122).
- parametry ciśnienia tętniczego krwi (SYS/DIA/MAP) mierzonego za pomocą przewodu ciśnienia HemoSphere, gdy wyświetlana jest krzywa ciśnienia tętniczego: 2 sekundy
- parametry mierzone za pomocą przewodu ciśnienia HemoSphere z przetwornikiem DPT TruWave: 2 sekundy
- oksymetria: 2 sekundy

Wszystkie alarmy są rejestrowane i zapisywane dla danego pacjenta, a dostęp do nich jest możliwy za pomocą funkcji Pobieranie danych (patrz *Pobieranie danych* na stronie 138). Dziennik funkcji Pobieranie danych jest usuwany, gdy rozpoczyna się monitorowanie nowego pacjenta (patrz *Nowy pacjent* na stronie 116). Dane aktualnego pacjenta są dostępne do 12 godzin po wyłączeniu systemu.

OSTRZEŻENIE Nie należy używać ustawień alarmowych/ustawień wstępnych, które różnią się od ustawień takiego samego lub podobnego urządzenia w jakimkolwiek pojedynczym obszarze, np. na oddziale intensywnej terapii lub w kardiologicznej sali operacyjnej. Kolidujące ze sobą alarmy mogą mieć wpływ na bezpieczeństwo pacjenta.

7.1.1 Wyciszanie alarmów

7.1.1.1 Alarmy fizjologiczne

Alarmy fizjologiczne można wyciszać bezpośrednio na ekranie monitorowania, dotykając ikony wyciszenia

alarmów 🛕 . Dźwięk alarmu fizjologicznego zostanie wyciszony na czas wstrzymania alarmu wybrany

przez użytkownika. Przez ten czas nie będzie emitowany żaden dźwięk alarmu fizjologicznego, w tym dźwięki nowych alarmów fizjologicznych wyzwolonych w tym czasie. Jeżeli w czasie wstrzymania alarmu zostanie wygenerowany alarm techniczny, automatyczne wyciszenie zostanie odwołane, co umożliwi wznowienie emitowania dźwięków alarmów. Użytkownik może ręcznie odwołać czas wstrzymania alarmu, naciskając ponownie przycisk wyciszenia alarmów. Po upływie czasu wstrzymania alarmu dźwięk aktywnych alarmów fizjologicznych zostanie przywrócony.

W przypadku alarmu fizjologicznego o średnim priorytecie wskaźnik alarmu wizualnego (migający na żółto) zostanie również wylączony na czas wstrzymania alarmu. Nie można wylączyć wskaźnika alarmu wizualnego o wysokim priorytecie (migającego na czerwono). Więcej informacji na temat priorytetów alarmów fizjologicznych — patrz część *Priorytety alarmów* na stronie 286.

UWAGA Parametry fizjologiczne mogą być tak skonfigurowane, aby nie miały żać alarmów. Patrz rozdział 7.1.5 i 7.1.6.	
OSTRZEŻENIE	Nie należy wyłączać alarmów dźwiękowych w sytuacji, gdy mogłoby to narazić pacjenta na niebezpieczeństwo.

7.1.1.2 Alarmy techniczne

Podczas aktywnego alarmu technicznego użytkownik może go wyciszyć i wyczyścić wskaźnik alarmu

wizualnego (o średnim i niskim priorytecie), dotykając ikony wyciszenia alarmów

. Wskaźnik alarmu

 $\hat{\boldsymbol{\Lambda}}$

wizualnego i sygnał dźwiękowy pozostaną nieaktywne, chyba że wystąpi kolejny stan alarmu technicznego lub fizjologicznego lub zakończy się i uruchomi ponownie pierwszy alarm techniczny.

7.1.2 Ustawianie głośności alarmu

Głośność alarmu można ustawić w zakresie od niskiej do wysokiej. Domyślnym ustawieniem jest średni poziom głośności. Dotyczy to zarówno alarmów fizjologicznych, jak i sygnałów usterek oraz alertów. Głośność alarmu można zmienić w dowolnym momencie.

- 1 Dotknąć ikony ustawień \bigcirc \rightarrow zakładki Ustawienia \bigcirc Ustawienia
- 2 Dotknąć przycisku Ogólne.
- 3 Dotknąć prawej strony przycisku listy Głośność alarmu, aby wybrać żądaną głośność.
- 4 Dotknąć ikony ekranu głównego 🏠 , aby powrócić do ekranu monitorowania

OSTRZEŻENIE Nie obniżać głośności alarmu do poziomu uniemożliwiającego odpowiednie śledzenie alarmów. W przeciwnym razie można narazić pacjenta na niebezpieczeństwo.

7.1.3 Ustawianie wartości docelowych

Wartości docelowe to wizualne wskaźniki (lampki) ustawione przez lekarza w celu wskazywania, czy parametr pacjenta znajduje się w idealnej strefie docelowej (zielony), ostrzegawczej strefie docelowej (żółty) czy strefie alarmowej (czerwony). Docelowe kolory wyświetlane są w postaci zacienionego obrysu wokół kafelków parametrów (patrz rysunek 5-5). Lekarz może włączyć lub wyłączyć zastosowanie zakresów strefy docelowej. Wartość alarmowa parametru (wysoka/niska) różni się od wartości będącej w strefie docelowej tym, że wartość miga i towarzyszy jej alarm dźwiękowy.

Parametry, odnośnie do których może zostać włączony alarm, są oznaczone ikoną dzwonka **(a)** na ekranie ustawień **Alarmy/wartości docelowe**. Alarmy wysokie/niskie domyślnie również stają się zakresami czerwonej strefy niebezpiecznej danego parametru. Parametry, dla których NIE MOŻNA ustawić wysokiego/niskiego alarmu, nie są oznaczone ikoną dzwonka na ekranie ustawień **Alarmy/wartości docelowe**, ale mimo to można dla nich ustawić zakresy docelowe.

Docelowe zachowanie i zakres parametru HPI opisuje HPI na pasku informacji na stronie 215.

Kolor	Wskazanie
Zielony	Dopuszczalny — zieloną strefę docelową uznaje się za idealny zakres parametru ustawiony przez lekarza.
Żółty	Żółtą strefę docelową uznaje się za zakres ostrzegawczy. Wzrokowo wskazuje ona, że parametr pacjenta znalazł się poza idealnym zakresem, ale nie osiągnął jeszcze zakresu alarmowego lub niebezpiecznego, jaki ustawił lekarz.
Czerwony	Czerwony alarm i/lub strefy docelowe można uznać za parametry "alarmowe" oznaczone ikoną dzwonka na ekranie ustawień Alarmy/wartości docelowe . Alarmy wysokie/niskie domyślnie również stają się zakresem czerwonej strefy niebezpiecznej danego parametru. Parametry, dla których NIE MOŻNA ustawić wysokiego/niskiego alarmu, nie są oznaczone ikoną dzwonka na ekranie ustawień Alarmy/wartości docelowe , ale mimo to można dla nich ustawić zakresy docelowe. Zakresy alarmu i/lub strefy docelowej ustawia lekarz.
Szary	Jeśli wartość docelowa nie zostanie ustawiona, wskaźnik stanu przyjmie kolor szary.

Tabela 7-2 Kolory wskaźników stanu wartości docelowych

7.1.4 Ekran konfiguracji alarmów/wartości docelowych

Ekran konfiguracyjny **Alarmy/wartości docelowe** umożliwia lekarzowi przeglądanie i konfigurowanie alarmów oraz wartości docelowych dla każdego parametru kluczowego. Na ekranie **Alarmy/wartości docelowe**, który znajduje się w obrębie menu ustawień **Konfiguracja zaawansowana**, użytkownik może zmieniać wartości docelowe oraz włączać i wyłączać alarmy dźwiękowe. Wszystkie funkcje, do których dostęp uzyskuje się z menu ustawień **Konfiguracja zaawansowana**, są chronione hasłem i mogą je zmieniać wyłącznie doświadczeni lekarze. Ustawienia dla poszczególnych parametrów kluczowych są wyświetlane w ich polach. Aktualnie skonfigurowane parametry kluczowe są pierwszym wyświetlanym

zestawem parametrów kluczowych. Pozostale parametry kluczowe są wyświetlane w zdefiniowanej kolejności. Parametry wskazują również na czym oparto zakresy wartości docelowych: Ustawienia niestandardowe, Ustawienia domyślne lub Zmodyfikowany.

Domyślna nazwa	Opis
Ustawienia niestandardowe	Dla parametru skonfigurowano niestandardowe ustawienie domyślnego zakresu docelowego i zakres docelowy parametru nie został zmodyfikowany względem tej wartości domyślnej.
Ustawienia domyślne	Zakres docelowy parametru nie został zmieniony względem pierwotnego ustawienia.
Zmodyfikowany	Zakres docelowy parametru zmieniono dla tego pacjenta.

Tabela 7-3 Domyślne wartości docelowe

UWAGA Ustawienia alarmów wzrokowych i dźwiękowych mają zastosowanie wyłącznie do wyświetlanych parametrów.

Aby zmienić ustawienia opcji Alarmy/wartości docelowe, należy:

- 1 Dotknąć ikony ustawień 💽 → zakładki Ustawienia 🔅 Ustawienia
- 2 Dotknąć przycisku Zaawansowana konfiguracja, a następnie wprowadzić wymagane hasło.
- 3 Dotknąć kolejno przycisków Ustawienia parametru → Alarmy/wartości docelowe.
- 4 Dotknąć w dowolnym miejscu pola parametru, aby wyświetlić menu Alarmy/wartości docelowe dla tego parametru

Rysunek 7-1 Konfiguracja alarmów/wartości docelowych

UWAGA Z tym ekranem związany jest czasomierz 2-minutowej nieaktywności.

Czerwony, żółty i zielony prostokąt są stałymi figurami i nie zmieniają swojego rozmiaru ani kształtu.

7.1.5 Konfiguracja wszystkich wartości docelowych

Alarmy/wartości docelowe można łatwo konfigurować lub zmieniać — wszystkie w tym samym momencie. Na ekranie **Skonfiguruj wszystko** użytkownik może:

- Przywrócić wszystkie niestandardowe ustawienia domyślne alarmów i wartości docelowych parametru.
- Przywrócić wszystkie ustawienia domyślne (ustalone przez firmę Edwards) alarmów i wartości docelowych parametru.
- Włączyć lub wyłączyć dźwiękowe alarmy fizjologiczne dla wszystkich parametrów, których one dotyczą.
- Włączyć lub wyłączyć wszystkie alarmy dźwiękowe.
- 1 Dotknąć ikony ustawień 🏹 → zakładki Ustawienia 🔅 Ustawienia
- 2 Dotknąć przycisku Zaawansowana konfiguracja, a następnie wprowadzić wymagane hasło w polu Uprawniony użytkownik.
- 3 Dotknąć kolejno przycisków Ustawienia parametru → Alarmy/wartości docelowe.
- 4 Dotknąć przycisku Skonfiguruj wszystko.
 - Aby włączyć lub wyłączyć dźwiękowe alarmy fizjologiczne dotyczące wszystkich parametrów, dotknąć przycisku przełącznika **Wyłączony**/**Włączony** opcji **Wart. docel.** w polu **Alarm dźwiękowy**.
 - Aby włączyć lub wyłączyć dźwiękowe alarmy techniczne dotyczące wszystkich parametrów, dotknąć przycisku przełącznika **Wyłączony**/**Włączony** opcji **Wszystkie** alarmy w polu **Alarm dźwiękowy**.
 - Aby przywrócić wszystkie niestandardowe ustawienia domyślne, dotknąć opcji Przywróć wszystkie niestandardowe ustawienia domyślne. Pojawi się komunikat "Ta czynność przywróci niestandardowe ustawienia domyślne WSZYSTKICH alarmów i wartości docelowych". Dotknąć przycisku Kontynuuj w oknie podręcznym, aby potwierdzić chęć przywrócenia.
 - Aby przywrócić wszystkie ustawienia domyślne firmy Edwards, dotknąć opcji Przywróć wszystkie ustawienia domyślne firmy Edwards. Pojawi się komunikat "Ta czynność przywróci ustawienia domyślne firmy Edwards WSZYSTKICH alarmów i wartości docelowych". Dotknąć przycisku Kontynuuj w oknie podręcznym, aby potwierdzić chęć przywrócenia.

7.1.6 Konfiguracja wartości docelowych i alarmów dla jednego parametru

Menu **Alarmy/wartości docelowe** umożliwia użytkownikowi skonfigurowanie wartości alarmów i wartości docelowych dla wybranego parametru. Ponadto użytkownik może również włączać i wyłączać alarm dźwiękowy. Zmiany ustawień docelowych można wprowadzać za pomocą klawiatury numerycznej lub, gdy potrzebna jest niewielka zmiana, za pomocą przycisków przewijania.

- 1 Dotknąć wewnątrz kafelka, aby otworzyć menu alarmów/wartości docelowych danego parametru. Menu alarmów/wartości docelowych można również wyświetlić na ekranie zależności fizjologicznych, dotykając pola parametru.
- 2 Aby włączyć alarm dźwiękowy parametru, dotknąć ikony Alarm dźwiękowy w prawym górnym rogu menu.

UWAGA	Parametry, dla których NIE MA możliwości ustawienia wysokiego/niskiego alarmu, nie mają ikony Alarm dźwiękowy w menu Alarmy/wartości docelowe .
	Nie można dostosowywać wartości granicznych alarmów dotyczących wskaźnika predvkcji niedociśnienia (Acumen HPD). Funkcjonowanie i zakres docelowy
	parametru HPI opisano w części <i>Alarm HPI</i> na stronie 215.

- 3 Aby wyłączyć wizualne wartości docelowe dla danego parametru, dotknąć włączonej ikony
 Wartość docelowa organizacji w lewym górnym rogu menu. Wskaźnik wartości docelowej tego parametru będzie miał kolor szary.
- **4** Zmienić ustawienia strefy za pomocą strzalek lub dotknąć przycisku wartości, aby otworzyć klawiaturę numeryczną.

- docelowych poszczegoniych parametro
- 5 Gdy wartości są poprawne, dotknąć ikony wprowadzenia
- 6 Aby anulować, dotknąć ikony anulowania 🌈

```
OSTRZEŻENIE Wizualne i dźwiękowe alarmy fizjologiczne są aktywowane wyłącznie, gdy parametr
został skonfigurowany na ekranach jako kluczowy (parametry 1–8 wyświetlane
na kafelkach parametrów). Jeśli parametr nie został wybrany i wyświetlony jako
kluczowy, nie będą dla niego wyzwalane fizjologiczne alarmy dźwiękowe ani
wizualne.
```

7.2 Wyreguluj wagę

Dane graficzne przedstawione są na wykresie od lewej do prawej (gdzie znajdują się najnowsze dane). Skala parametru znajduje się na osi pionowej, natomiast czasu — na osi poziomej.

Rysunek 7-3 Ekran trendu graficznego

Ekran konfiguracji skal umożliwia użytkownikowi ustawienie zarówno skali parametru, jak i czasu. Parametry kluczowe podane są na szczycie listy. Aby zobaczyć dodatkowe parametry, należy użyć przycisków przewijania w poziomie.

- 1 Dotknąć ikony ustawień 🌾 → zakładki Ustawienia 🄅 Ustawienia
- 2 Dotknąć przycisku Zaawansowana konfiguracja, a następnie wprowadzić wymagane hasło.
- 3 Dotknąć kolejno przycisków Ustawienia parametru → Wyreguluj wagę.

Rysunek 7-4 Wyreguluj wagę

UWAGA

Po dwóch minutach braku aktywności ekran powróci do widoku monitorowania.

- 4 Dla każdego parametru dotknąć przycisku Dolne, aby wprowadzić minimalną wartość, jaka ma pojawić się na osi pionowej. Dotknąć przycisku Górne, aby wprowadzić wartość maksymalną. Aby zobaczyć dodatkowe parametry, należy użyć ikon przewijania w poziomie
- **5** Dotknąć prawej strony przycisku wartości **Czas graficznych trendów**, aby ustawić łączny czas wyświetlany na wykresie. Możliwe są następujące opcje:

•	3 minuty	•	1 godzina	•	12 godzin
•	5 minut	•	2 godziny (domyślnie)	•	18 godzin
•	10 minut	•	4 godziny	•	24 godziny
•	15 minut	•	6 godzin	•	48 godzin
•	30 minut				

6 Dotknąć prawej strony ikon wartości **Przedział czasowy**, aby ustawić czas dla każdej wartości, która ma swoją zakładkę. Możliwe są następujące opcje:

•	1 minuta (domyślnie)	•	30 minut
•	5 minut	•	60 minut
•	10 minut		
ſ	Przedział czasowy		
. —		۲.	
		n	
	1 minuta		
	5 minut		
		J	
	10 minut		
	30 minut		
		n	
	60 minut		

Rysunek 7-5 Okno podręczne Przedział czasowy

- 7 Aby przejść do następnego zestawu parametrów, dotknąć strzałki w lewym dolnym rogu.
- 8 Dotknąć ikony ekranu głównego 🏠 , aby powrócić do ekranu monitorowania.

7.3 Ustawienia parametrów SVV/PPV na ekranie fizjologii i zależności fizjologicznych

- 1 Dotknąć ikony ustawień 🌾 → zakładki Ustawienia 🄅 Ustawienia
- 2 Dotknąć przycisku Zaawansowana konfiguracja, a następnie wprowadzić wymagane hasło.
- 3 Dotknąć przycisku Ustawienia parametru → przycisku SVV/PPV.
- 4 Aby włączyć lub wyłączyć wskaźnik SVV, należy dotknąć przelącznika Zmienność objętości wyrzutowej (SVV): Ekrany fizjologii i zależności fizjologicznych.
- 5 Aby włączyć lub wyłączyć dane PPV, należy dotknąć przełącznika **PPV: Ekrany fizjologii** i zależności fizjologicznych.

7.4 Tryb demonstracyjny

Tryb demonstracyjny służy do wyświetlania symulacji danych pacjenta w celach szkoleniowych.

Tryb demonstracyjny wyświetla dane z zapisanego zestawu i korzysta nieustannie ze wstępnie zdefiniowanego zestawu danych. W **trybie demonstracyjnym** w interfejsie użytkownika zaawansowanej platformy do monitorowania HemoSphere dostępne są te same funkcje, co w pełnej wersji platformy. Należy wprowadzić dane demograficzne pacjenta symulowanego, aby zademonstrować funkcje wybranego trybu monitorowania. Użytkownik może dotykać elementów sterowania, tak jak podczas monitorowania pacjenta.

Po włączeniu **trybu demonstracyjnego** dane i zdarzenia zapisane w trendach zostaną wyczyszczone z wyświetlanego widoku i zapisane, aby można było z nich korzystać po wznowieniu monitorowania pacjenta.

- 1 Dotknąć ikony ustawień 🏹 → zakładki Ustawienia 🔇 Ustawienia
- 2 Dotknąć przycisku Tryb demonstracyjny.

UWAGAGdy zaawansowana platforma do monitorowania HemoSphere działa w trybie
demonstracyjnym, wszystkie alarmy są wyłączone.

3 Wybrać tryb demonstracyjny monitorowania:

Inwazyjny: Patrz rozdział 9: *Monitorowanie za pomocą modułu HemoSphere Swan-Ganz*, aby uzyskać więcej informacji na temat monitorowania za pomocą modułu HemoSphere Swan-Ganz i trybu monitorowania **Inwazyjny**.

Minimalnie inwazyjna: Patrz rozdział 10: *Monitorowanie za pomocą przewodu ciśnienia HemoSphere*, aby uzyskać więcej informacji na temat monitorowania za pomocą przewodu ciśnienia i trybu monitorowania **Minimalnie inwazyjna**.

UWAGAWybranie trybu demonstracyjnego FloTrac umożliwia symulację użycia czujnika
Acumen IQ po włączeniu funkcji HPI.

- 4 Dotknąć opcji Tak na ekranie Tryb demonstracyjny z potwierdzeniem.
- **5** Przed rozpoczęciem monitorowania pacjenta należy ponownie uruchomić zaawansowaną platformę do monitorowania HemoSphere.

OSTRZEŻENIE Należy upewnić się, że tryb demonstracyjny nie jest włączony tw warunkach klinicznych, aby nie dopuścić do pomylenia danych symulowanych z danymi klinicznymi.

8

Eksportowanie danych i ustawienia łączności

Spis treści

Eksportowanie danych	
Ustawienia łączności bezprzewodowej	
Łączność HIS	
Bezpieczeństwo cybernetyczne	

8.1 Eksportowanie danych

Na ekranie **Eksportowanie danych** znajduje się szereg funkcji eksportowania danych zaawansowanego monitora HemoSphere. Dostęp do ekranu jest chroniony hasłem. Z poziomu tego ekranu lekarze mogą eksportować raporty diagnostyczne, usuwać sesje monitorowania lub eksportować raporty z danymi monitorowania. Więcej informacji na temat eksportowania raportów z danymi monitorowania znajduje się poniżej.

8.1.1 Pobieranie danych

Z poziomu ekranu **Pobieranie danych** użytkownik może wyeksportować dane monitorowanego pacjenta w formacie XML programu Windows Excel 2003 na urządzenie USB.

UWAGA Po dwóch minutach braku aktywności ekran powróci do widoku monitorowania.

- 1 Dotknąć ikony ustawień 🌾 → zakładki Ustawienia 🄅 Ustawienia
- 2 Dotknąć przycisku Eksport danych.
- 3 Kiedy pojawi się monit o wprowadzenie hasła, wprowadzić je w oknie podręcznym Hasło eksportowania danych. Wszystkie hasła są ustawiane podczas inicjalizacji systemu. W celu uzyskania hasła należy skontaktować się z administratorem szpitala lub działem IT.
- 4 Upewnić się, że podłączono urządzenie USB zatwierdzone przez firmę Edwards.

PRZESTROGA Przed podłączeniem jakiegokolwiek urządzenia USB przeprowadzić skanowanie antywirusowe, aby zapobiec zainfekowaniu przez wirusy lub złośliwe oprogramowanie.

5 Dotknąć przycisku Pobieranie danych.

Dane monitorowania. Aby wygenerować arkusz kalkulacyjny danych monitorowanego pacjenta:

- 1 Nacisnąć stronę wartości przycisku Przedział i wybrać częstotliwość pobierania danych. Im krótsza jest częstotliwość, tym większa ilość danych. Możliwe są następujące opcje:
 - 20 sekund (domyślne)
 - 1 minuta
 - 5 minut
- 2 Dotknąć przycisku Rozpocznij pobieranie.

WWAGA Wszystkie alarmy są rejestrowane i zapisywane dla danego pacjenta, a dostęp do nich jest możliwy za pomocą funkcji pobierania w rejestrze Dane monitorowania. Zarejestrowanie danych alarmów w rejestrze powoduje usunięcie wcześniejszych wpisów, jeśli rejestr jest już pełny. Rejestr Dane monitorowania zostaje wyczyszczony po rozpoczęciu monitorowania nowego pacjenta. Dane aktualnego pacjenta są dostępne do 12 godzin po wyłączeniu systemu. Ten rejestr zawiera również warunki alarmów ze znacznikiem czasu oraz czas wyłączenia systemu.

Raport przypadku. Aby wygenerować raport parametrów kluczowych:

- 1 Dotknąć przycisku Raport przypadku.
- 2 Wybrać żądane parametry w menu podręcznym Raport przypadku. Maksymalnie można wybrać trzy parametry.
- **3** Zaznaczyć **Odznacz** (7), aby wykluczyć dane demograficzne pacjenta.
- 4 Dotknąć ikony wprowadzania , aby wyeksportować plik PDF.

Raport GDT. Aby wygenerować raport sesji monitorowania GDT:

- 1 Dotknąć przycisku Raport GDT.
- 2 W menu podręcznym Raport GDT wybrać żądane sesje monitorowania GDT. Za pomocą przycisków przewijania wybrać starsze sesje monitorowania.
- **3** Zaznaczyć **Odznacz** (7), aby wykluczyć dane demograficzne pacjenta.
- 4 Dotknąć ikony wprowadzania , aby wyeksportować plik PDF.

UWAGA Nie odłączać urządzenia USB do czasu wyświetlenia komunikatu "Pobieranie zakończone". Jeżeli wyświetli się komunikat informujący o braku miejsca na urządzeniu USB, podłączyć inne urządzenie USB i ponownie rozpocząć pobieranie.

Użytkownik może wyczyścić wszystkie dane monitorowanego pacjenta. Aby skasować, nacisnąć przycisk **Wyczyść wszystko** i potwierdzić.

8.1.2 Eksport diagnostyki

Jeśli potrzebne są dochodzenia lub szczegółowe rozwiązywanie problemów, wówczas można korzystać z przechwytywania wszystkich zdarzeń, alertów, alarmów i działań monitorujących, które są rejestrowane. W menu ustawień **Eksport danych** dostępna jest opcja **Eksport diagnostyki**, która pozwala na pobranie tych informacji do celów diagnostycznych. Informacje te mogą być wymagane przez personel serwisowy firmy Edwards w celu rozwiązania problemów. Ponadto jest to sekcja przeznaczona dla personelu serwisowego, w której znajdują się szczegółowe informacje o wersji oprogramowania podłączonych komponentów platformy.

- 1 Dotknąć ikony ustawień \bigotimes \rightarrow zakladki Ustawienia \bigotimes Ustawienia
- 2 Dotknąć przycisku Eksport danych.
- **3** Wprowadzić hasło **Administratora**. Wszystkie hasła są ustawiane podczas inicjalizacji systemu. W celu uzyskania hasła należy skontaktować się z administratorem szpitala lub działem IT.
- 4 Dotknąć przycisku Eksport diagnostyki.
- 5 Do jednego z dostępnych portów USB monitora wprowadzić dysk flash USB zatwierdzony przez firmę Edwards.
- **6** Poczekać na wyświetlenie na ekranie potwierdzenia zakończenia eksportu danych diagnostycznych.

Na dysku flash USB dane diagnostyczne będą znajdować się w folderze oznaczonym numerem seryjnym monitora.

8.2 Ustawienia łączności bezprzewodowej

Zaawansowany monitor HemoSphere może łączyć się z dostępnymi sieciami bezprzewodowymi. Aby uzyskać informacje na temat łączenia się z siecią bezprzewodową, należy skontaktować się z lokalnym przedstawicielem firmy Edwards.

Stan połączenia Wi-Fi jest wyświetlany na pasku informacyjnym za pomocą odpowiednich symboli (patrz tabela 8-1).

Symbol Wi-Fi	Wskazanie
(ý	Bardzo duża siła sygnału
(ý.	Średnia siła sygnału
	Mała siła sygnału
	Bardzo mała siła sygnału
(((.	Brak sygnału
[k :	Brak łączności

Tabela 8-1 Stan połączenia Wi-Fi

8.3 Łączność HIS

Zaawansowany monitor HemoSphere współdziała ze szpitalnym systemem informacyjnym (ang. Hospital Information System, HIS) w celu wysyłania i odbierania danych demograficznych pacjentów oraz ich danych fizjologicznych. Zaawansowany monitor HemoSphere obsługuje standard komunikatów danych klinicznych poziomu siódmego (ang. Health Level 7, HL7) i korzysta z profilów integracji rozwiązań informatycznych w służbie zdrowia (ang. Integrating Healthcare Enterprise, IHE). Standard komunikatów HL7 w wersji 2.6 jest najczęściej stosowanym systemem elektronicznej wymiany danych w warunkach klinicznych. Aby mieć dostęp do tej funkcji, należy korzystać ze zgodnego interfejsu. Protokół komunikacji HL7 zaawansowanego monitora HemoSphere, określany też jako łączność HIS, umożliwia następujące rodzaje wymiany danych pomiędzy zaawansowanym monitorem HemoSphere a aplikacjami oraz urządzeniami zewnętrznymi:

- Wysyłanie danych fizjologicznych z zaawansowanego monitora HemoSphere do systemu HIS i/lub urządzeń medycznych
- Wysyłanie alarmów fizjologicznych i informacji o usterkach urządzenia z zaawansowanego monitora HemoSphere do systemu HIS
- Uzyskiwanie danych pacjenta z systemu HIS przez zaawansowany monitor HemoSphere.

Zapytania dotyczące stanu połączenia z systemem HIS powinny być wysyłane wyłącznie przez menu Ustawienia monitora po skonfigurowaniu i przetestowaniu przez administratora sieci funkcji łączności z systemem HL7. W przypadku wysłania zapytania o stan połączenia z systemem HIS gdy konfiguracja funkcji nie została ukończona, ekran stanu połączenia pozostanie otwarty przez 2 minuty, zanim upłynie limit czasu wyświetlania.

Edwards	Hemc Copyright © 2018 Dane n	Sph Edwards Lifes owego pa	nere sciences LLC cjenta	1 5 co 🔆 (1 13223)
ID pacjenta				
Imię		Płeć		
Nazwisko	ADAMS			
<u>a</u>			Zapytanie	Hasło producenta.

Rysunek 8-1 System HIS — ekran Zapytanie o pacjenta

Stan łączności systemu HIS jest wyświetlany na pasku informacyjnym za pomocą odpowiednich symboli (patrz tabela 8-2).

Symbol HIS	Wskazanie
	Dobra łączność ze wszystkimi skonfigurowanymi podmiotami systemu HIS.
. .	Nie można nawiązać komunikacji ze skonfigurowanymi podmiotami systemu HIS.
	ID pacjenta we wszystkich wychodzących komunikatach systemu HIS jest ustawione jako "Nieznany".
	Występują przejściowe błędy w komunikacji ze skonfigurowanymi podmiotami systemu HIS.
	Występują trwałe błędy w komunikacji ze skonfigurowanymi podmiotami systemu HIS.

Tabela 8-2 Stan łączności systemu HIS

8.3.1 Dane demograficzne pacjenta

Zaawansowany monitor HemoSphere z włączoną łącznością HIS może pobierać dane demograficzne pacjentów z aplikacji korporacyjnych. Po włączeniu funkcji Łączności HIS dotknąć przycisku **Zapytanie**. Wyświetli się ekran **Zapytanie o pacjenta** umożliwiający wyszukiwanie pacjenta na podstawie nazwiska, ID pacjenta lub informacji o sali i łóżku. Ekranu **Zapytanie o pacjenta** można używać do pozyskiwania danych demograficznych pacjenta przy zakładaniu konta nowego pacjenta lub do powiązania monitorowanych danych fizjologicznych pacjenta w zaawansowanym monitorze HemoSphere z rekordem pacjenta uzyskanym z systemu HIS.

UWAGA

Przerwanie niewykonanego zapytania może spowodować bląd polączenia. Jeśli wystąpi, należy zamknąć okno blędu i wznowić zapytanie.

Po wybraniu danych pacjenta z wyników zapytania dane demograficzne pacjenta zostaną wyświetlone na ekranie **Dane nowego pacjenta**.

Aby zakończyć zapytanie, skonfigurowana usługa HIS musi mieć wprowadzone wartości płci dla pacjenta: "M", "K" lub puste. Jeśli zapytanie przekracza maksymalny czas określony w pliku konfiguracyjnym HIS, zostanie wyświetlony komunikat o błędzie z monitem o ręczne wprowadzenie danych pacjenta.

Edwards	Le nowego pacjenta	⊴⊇ ∛Ç ⊂≬ 10.12.18 19.24446
ID pacjenta Opcja Wiek	Nieznany ID Ploć Mężczyzna Kobieta	
Wzrost Waga	= BSA (DuBois)	
Sala	Łóżko	
<u>a</u>		Dalej

Rysunek 8-2 System HIS — ekran Dane nowego pacjenta

Na tym ekranie użytkownik może wprowadzić lub edytować wzrost pacjenta, jego wagę, wiek, płeć oraz informacje o sali i łóżku. Wybrane lub zaktualizowane dane pacjenta można zapisać przez dotknięcie ikony

ekranu głównego 🟠 . Po zapisaniu danych pacjenta zaawansowany monitor HemoSphere tworzy unikalne identyfikatory dla wybranego pacjenta i wysyła tę informację do aplikacji korporacyjnych w komunikatach wychodzących z danymi fizjologicznymi.

8.3.2 Dane fizjologiczne pacjenta

Zaawansowany monitor HemoSphere może przesłać monitorowane i obliczane parametry fizjologiczne w komunikatach wychodzących. Komunikaty wychodzące mogą być przesyłane do jednej lub większej liczby skonfigurowanych aplikacji korporacyjnych. Do aplikacji korporacyjnej można wysłać parametry stale monitorowane i wyliczane przez zaawansowany monitor HemoSphere.

8.3.3 Alarmy fizjologiczne i usterki urządzenia

Zaawansowany monitor HemoSphere może wysyłać alarmy fizjologiczne i informacje o usterkach urządzenia do skonfigurowanego podmiotów systemu HIS. Alarmy i informacje o usterkach mogą być wysyłane do jednego lub większej liczby skonfigurowanych podmiotów systemu HIS. Stany poszczególnych alarmów, w tym zmiany stanów, są wysyłane do aplikacji korporacyjnych.

Aby uzyskać więcej informacji na temat uzyskiwania dostępu do łączności HIS, należy skontaktować się z lokalnym przedstawicielem firmy Edwards lub działem pomocy technicznej firmy Edwards.

OSTRZEŻENIE Nie używać zaawansowanego monitora HemoSphere jako części rozproszonego systemu alarmowego. Zaawansowany monitor HemoSphere nie obsługuje systemów zdalnego monitorowania alarmów ani zarządzania alarmami. Dane są rejestrowane i przesyłane wyłącznie w celu dokumentowania danych klinicznych.

8.4 Bezpieczeństwo cybernetyczne

W tym rozdziale opisano sposoby przekazywania danych do zaawansowanego monitora HemoSphere oraz z niego. Należy zaznaczyć, że każda placówka, w której korzysta się z zaawansowanego monitora HemoSphere, musi zapewnić ochronę poufności danych osobowych pacjentów zgodnie z przepisami obowiązującymi w danym kraju i z polityką danego ośrodka w zakresie zarządzania tymi informacjami. Działania, które muszą być podjęte w celu ochrony tych informacji i ogólnego bezpieczeństwa zaawansowanego monitora HemoSphere, obejmują:

- **Dostęp fizyczny**: należy ograniczyć liczbę osób korzystających z zaawansowanego monitora HemoSphere do uprawnionych użytkowników. Niektóre ekrany konfiguracji zaawansowanego monitora HemoSphere są chronione hasłem. Hasła należy chronić. Więcej informacji zawiera *Ochrona hasłem* na stronie 113.
- Aktywne użytkowanie: użytkownicy monitora powinni podejmować środki w celu ograniczenia ilości przechowywanych danych pacjentów. Dane pacjenta powinny zostać usunięte z monitora po wypisaniu pacjenta i zakończeniu jego monitorowania.
- **Bezpieczeństwo sieci**: ośrodek musi podjąć środki zapobiegawcze w celu zapewnienia bezpieczeństwa każdej współdzielonej sieci, do której można podłączyć monitor.
- **Bezpieczeństwo urządzenia**: użytkownicy powinni stosować wyłącznie akcesoria zatwierdzone przez firmę Edwards. Ponadto należy upewnić się, że wszystkie podłączone urządzenia są wolne od złośliwego oprogramowania.

Korzystanie z jakiegokolwiek interfejsu zaawansowanego monitora HemoSphere w celu innym niż ten, do którego jest on przeznaczony, może wywołać ryzyko związane z bezpieczeństwem cybernetycznym. Żadne połączenia zaawansowanego monitora HemoSphere nie są przeznaczone do sterowania innym urządzeniem. Wszystkie dostępne interfejsy zawiera część *Porty przyłączeniowe zaawansowanego monitora HemoSphere* na stronie 56, a ich dane techniczne — część tabela A-5 "Dane techniczne zaawansowanego monitora HemoSphere" na stronie 267.

8.4.1 HIPAA

Ustawa o przenośności i odpowiedzialności w ubezpieczeniach zdrowotnych (ang. The Health Insurance Portability and Accountability Act, HIPPA) z 1996 r. wprowadzona przez amerykański Departament Zdrowia i Opieki Społecznej zawiera istotne zasady dotyczące norm ochrony prywatności informacji zdrowotnych identyfikowalnych osobowo. Jeżeli ma to zastosowanie, należy przestrzegać tych zasad podczas korzystania z monitora.
9

Monitorowanie za pomocą modułu HemoSphere Swan-Ganz

Spis treści

Podłączanie modułu HemoSphere Swan-Ganz	145
Ciągła pojemność minutowa serca	149
Chwilowa pojemność minutowa serca	152
Monitorowanie EDV/RVEF	158
SVR	163

9.1 Podłączanie modułu HemoSphere Swan-Ganz

Moduł HemoSphere Swan-Ganz jest zgodny ze wszystkimi cewnikami do tętnicy płucnej Swan-Ganz firmy Edwards. Moduł HemoSphere Swan-Ganz rejestruje i przetwarza sygnały przesyłane do i ze zgodnego cewnika Swan-Ganz firmy Edwards na potrzeby monitorowania parametrów CO, iCO oraz EDV/RVEF. W tej części opisano połączenia modułu HemoSphere Swan-Ganz. Patrz rysunek 9-1.

OSTRZEŻENIE	Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy moduł HemoSphere Swan-Ganz (podłączany do części aplikacyjnej, odpornej na defibrylację) jest podłączony do zgodnej platformy do monitorowania. Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób nieopisany w niniejszej instrukcji może nie spełniać wymogów tej normy.
	prądem elektrycznym pacjenta/operatora. Nie modyfikować w żaden sposób, nie naprawiać produktu ani nie wprowadzać
	w nim zmian. Naprawianie, modyfikowanie lub wprowadzanie zmian może wpływać na bezpieczeństwo pacjenta/operatora i/lub na działanie produktu.

Rysunek 9-1 Przegląd połączeń modułu HemoSphere Swan-Ganz

UWAGA		Wygląd przedstawionych w tym rozdziale cewników i systemów iniektatu jest wyłącznie przykładowy. Rzeczywisty wygląd może się różnić i jest zależny od modułu cewnika i systemu iniektatu.
		Cewniki do tętnicy płucnej są ELEMENTAMI WCHODZĄCYMI W KONTAKT Z CIAŁEM PACJENTA TYPU CF odpornymi na defibrylację. Przewody pacjenta podłączane do cewnika, np. przewód CCO pacjenta, nie są częściami wchodzącymi w kontakt z ciałem pacjenta, ale mogą mieć z nim styczność i spelniają wymagania normy IEC 60601-1 dotyczącej stosownych części wchodzących w kontakt z ciałem pacjenta.
1	Wprowad Prawidłow	zić moduł HemoSphere Swan-Ganz do zaawansowanego monitora HemoSphere. vo osadzony moduł zatrzaśnie się na miejscu.
PRZEST	TROGA	Nie wprowadzać modułu do otworu na siłę. Należy przyłożyć równomierny nacisk, aby wsunąć moduł, a następnie zablokować w odpowiednim położeniu, czemu będzie towarzyszyć dźwięk kliknięcia.
2	Nacisnąć postępow na stronie	przycisk zasilania, aby włączyć zaawansowany monitor HemoSphere, a następnie ać zgodnie z instrukcjami wprowadzania danych pacjenta. Patrz <i>Dane pacjenta</i> 115. Podłączyć przewód CCO pacjenta do modułu HemoSphere Swan-Ganz.

3 Podłączyć zgodny cewnik Swan-Ganz do przewodu CCO pacjenta. Informacje o dostępnych parametrach i wymaganych połączeniach — patrz tabela 9-1 poniżej.

Parametr	Wymagane połączenie	Patrz
со	połączenie termistora i włókna termicznego	<i>Ciągła pojemność minutowa serca</i> na stronie 149
iCO	termistor i sonda iniektatu (do łaźni wodnej lub in-line)	<i>Chwilowa pojemność minutowa serca</i> na stronie 152
EDV/RVEF (SV)	połączenie termistora i włókna termicznego *Sygnał HR pozyskiwany przez zaawansowany monitor HemoSphere	<i>Monitorowanie EDV/RVEF</i> na stronie 158
SVR	połączenie termistora i włókna termicznego *Sygnały MAP i CVP pozyskiwane przez zaawansowany monitor HemoSphere	SVR na stronie 163

Tabela 9-1 Dostępne parametry i wymagane połączenia modułu HemoSphere Swan-Ganz

UWAGA

Dane dotyczące ciśnienia tętniczego w płucach są dostępne po podłączeniu przewodu ciśnienia HemoSphere. Patrz *Monitorowanie przy użyciu przewodu ciśnienia w trybie monitorowania za pomocą modułu Swan-Ganz* na stronie 173, aby uzyskać więcej informacji.

4 Postępować zgodnie z niezbędnymi wskazówkami dotyczącymi monitorowania. Patrz *Ciągła pojemność minutowa serca* na stronie 149, *Chwilowa pojemność minutowa serca* na stronie 152 i *Monitorowanie EDV/RVEF* na stronie 158.

9.1.1 Test przewodu CCO pacjenta

W celu przetestowania integralności przewodu CCO pacjenta firmy Edwards należy przeprowadzić test integralności przewodu. Zalecane jest testowanie integralności przewodu w ramach procesu rozwiązywania problemów. Ten test nie sprawdza złącza sondy temperatury iniektatu na przewodzie.

Rysunek 9-2 Połączenia do testu przewodu CCO pacjenta

- 1 Podłączyć przewód CCO pacjenta do wprowadzonego modułu HemoSphere Swan-Ganz ①.
- 2 Podłączyć złącze włókna termicznego ③ i złącze termistora ② przewodu CCO pacjenta do odpowiadających im portów testowych na module HemoSphere Swan-Ganz.
- **3** Dotknąć przycisku **Rozpocznij**, aby rozpocząć test przewodu. Zostanie wyświetlony pasek postępu.
- **4** Jeśli przewód CCO pacjenta nie działa prawidłowo, należy go ponownie podłączyć, a następnie jeszcze raz go przetestować. Jeśli przewód CCO pacjenta wielokrotnie nie przejdzie testu, należy go wymienić.
- 5 Jeśli przewód przejdzie test, dotknąć ikony wprowadzania 🕗. Odłączyć złącze włókna termicznego przewodu pacjenta i złącze termistora od modulu HemoSphere Swan-Ganz.

9.1.2 Menu wyboru parametru

Kategorie parametrów dostępne podczas monitorowania z użyciem modułu Swan-Ganz to **Przepływ** (patrz *Ciągła pojemność minutowa serca* na stronie 149), **Opór** (patrz *SVR* na stronie 163) i **Funkcja RV** (*Monitorowanie EDV/RVEF* na stronie 158). Po podłączeniu przewodu do oksymetrii lub modułu do oksymetrii tkankowej dostępna jest także opcja **Oksymetria** (patrz *Monitorowanie oksymetrii żylnej* na stronie 176). Aby wyświetlić dodatkowe opcje monitorowania dla danego parametru w zależności od częstości odświeżania wyświetlania i czasu uśredniania, należy dotknąć przycisków parametrów, na których

jest widoczna strzałka (\searrow). Patrz *STAT CO* na stronie 152 i *STAT EDV i RVEF* na stronie 163. Aby wyświetlić definicje tych opcji monitorowania, należy dotknąć ikony niebieskiej strzałki (\bigcirc), a w celu uzyskania dodatkowych informacji należy dotknąć ikony pomocy (\bigcirc).

Rysunek 9-3 Okno wyboru kluczowych parametrów modułu HemoSphere Swan-Ganz

9.2 Ciągła pojemność minutowa serca

Zaawansowany monitor HemoSphere mierzy pojemność minutową serca w sposób ciągły, wprowadzając niewielkie impulsy energii do strumienia krwi i mierząc temperaturę krwi za pośrednictwem cewnika w tętnicy płucnej. Maksymalna temperatura powierzchni włókna termicznego używanego do uwalniania tych impulsów energii we krwi wynosi 48°C. Pojemność minutowa serca jest wyliczana z użyciem sprawdzonych algorytmów opartych na zasadzie zachowania energii i krzywych dylucji z wykorzystaniem wskaźnika, które zostały opracowane poprzez korelację krzyżową przebiegów energii pobranej i temperatury krwi. Po zainicjowaniu zaawansowany monitor HemoSphere w sposób ciągły mierzy i wyświetla pojemność minutową serca w litrach na minutę, co odbywa się bez konieczności kalibracji i interwencji ze strony operatora.

9.2.1 Podłączanie przewodów pacjenta

- 1 Podłączyć przewód CCO pacjenta do wprowadzonego modułu HemoSphere Swan-Ganz, postępując zgodnie z wcześniejszym opisem (patrz część 9.1).
- 2 Podłączyć cewnikowy koniec przewodu pacjenta do złącza termistora i włókna termicznego na cewniku Swan-Ganz CCO. Te połączenia są oznaczone numerami ⁽²⁾ i ⁽³⁾, co przedstawia tabela 9-4 na stronie 150.
- 3 Upewnić się, że cewnik CCO jest prawidłowo umieszczony w ciele pacjenta.

Rysunek 9-4 Przegląd połączeń CO

9.2.2 Rozpoczęcie monitorowania

OSTRZEŻENIE	 Monitorowanie pojemności minutowej serca należy zawsze przerwać w sytuacji zatrzymania przepływu krwi wokół włókna termicznego. Sytuacje kliniczne, w których należy przerwać monitorowanie CCO, obejmują między innymi następujące stany: okresy, w których u pacjenta jest stosowane krążenie pozaustrojowe; częściowe wycofanie cewnika w taki sposób, że termistor nie znajduje się w tętnicy plucnej lub usupiecie cewnika z ciała pacienta
	usunięcie cewnika z ciała pacjenta.

Po poprawnym podlączeniu systemu należy dotknąć ikony uruchomienia monitorowania

aby rozpocząć monitorowanie parametru CO. Na ikonie zatrzymania monitorowania pojawi się czasomierz odmierzający czas do rozpoczęcia pomiaru CO. Po około 5–12 minutach, kiedy zostanie zarejestrowana wystarczająca ilość danych, na kafelku parametru pojawi się wartość CO. Wartość CO wyświetlana na ekranie będzie aktualizowana co około 60 sekund.

UWAGAŻadna wartość CO nie zostanie wyświetlona do momentu uzyskania
wystarczającej ilości danych uśrednionych po czasie.

9.2.3 Warunki dotyczące sygnału termicznego

W niektórych sytuacjach, gdy stan pacjenta w ciągu kilku minut wywołuje duże zmiany temperatury krwi w tętnicy płucnej, uzyskanie początkowego pomiaru CO przez monitor może zająć więcej niż 6 minut. Gdy trwa monitorowanie CO, aktualizowanie wartości parametru CO również może być opóźnione na skutek niestabilnej temperatury krwi w tętnicy płucnej. Zamiast zaktualizowanej wartości CO zostanie wyświetlona ostatnia wartość CO i czas ostatniego pomiaru CO. Tabela 9-2 przedstawia komunikaty o alertach/usterkach, które pojawiają się na ekranie w różnych punktach czasowych, podczas gdy sygnał się stabilizuje. Więcej informacji na temat usterek i alertów dotyczących parametru CO — patrz tabela 14-8 "Usterki/alerty CO modulu HemoSphere Swan-Ganz" na stronie 245.

	Powiadomienie	Alert CO		Usterka CO
Stan	Obliczanie pojemności minutowej serca w toku	Dostosowanie sygnału — kontynuacja	Niestabilna temperatura krwi — kontynuacja	Utrata sygnału termicznego
Rozpoczęcie monitorowania: czas od rozpoczęcia bez pomiaru CO	3 ¹ ⁄ ₂ minuty	6 minut	15 minut	30 minut
Monitorowanie w toku: czas od ostatniej aktualizacji wartości CO	5 sekund od upłynięcia czasu na czasomierzu CO	Nie dotyczy	6 minut	20 minut

Tabela 9-2 Opóźnienie czasowe komunikatów o alertach i usterkach CO w przypadku niestabilnego sygnału termicznego

Usterka powoduje przerwanie monitorowania. Usterka może wynikać z przemieszczenia końcówki cewnika do niewielkiego naczynia, co uniemożliwia termistorowi dokładne wykrywanie sygnału termicznego. Należy sprawdzić położenie cewnika i w razie potrzeby ponownie umiejscowić cewnik. Po sprawdzeniu stanu pacjenta i położenia cewnika można wznowić monitorowanie CO, dotykając ikony uruchomienia

PRZESTROGA	Niedokładne pomiary pojemności minutowej serca spowodowane przez:
	 Nieprawidłowe umiejscowienie lub niewłaściwe położenie cewnika.
	Nadmierne odchylenia temperatury krwi w tętnicy płucnej. Przykładowe
	sytuacje, ktore powodują odchylenia temperatury krwi, to m.in.:
	 * stan po zabiegu z zastosowaniem krążenia pozaustrojowego,
	* podanie przez cewnik centralny schłodzonych lub podgrzanych roztworów
	produktów krwiopochodnych,
	* stosowanie wyrobów wywierających stopniowany ucisk.
	Powstanie skrzepliny na termistorze.
	Nieprawidłowości w budowie anatomicznej (na przykład przecieki
	wewnątrzsercowe).
	Nadmierna ruchomość pacjenta.
	Zakłócenia wywołane przez urządzenie do elektrokauteryzacji lub
	elektrochirurgii.
	 Szybkie zmiany pojemności minutowej serca.

9.2.4 Czasomierz CO

Czasomierz CO znajduje się na ikonie zatrzymania monitorowania 🚺

. Ten czasomierz informuje

użytkownika, kiedy rozpocznie się następny pomiar CO. Czas do następnego pomiaru CO wynosi od 60 sekund do 3 minut (lub dłużej).

9.2.5 STAT CO

Hemodynamicznie niestabilny sygnał termiczny może spowodować opóźnienie obliczeń CO. W przypadku dłuższych odstępów między pomiarami CO dostępny jest parametr STAT CO. Parametr STAT CO (sCO) stanowi szybkie oszacowanie wartości CO i jest aktualizowany co 60 sekund. W celu wyświetlania wartości STAT CO należy wybrać sCO jako parametr kluczowy. Podczas przeglądania podzielonego ekranu z trendem graficznym/tabelą trendów należy wybrać CO i sCO jako kluczowe parametry, a dane monitorowania CO zostaną przedstawione graficznie obok danych w formie liczbowej i tabelarycznej dla wartości STAT parametru sCO. Patrz *Podzjelony ekran z trendem graficznym/ tabelą trendów* na stronie 91.

9.3 Chwilowa pojemność minutowa serca

Moduł HemoSphere Swan-Ganz mierzy chwilową pojemność minutową serca, wykorzystując metodę termodylucji z bolusem. Metoda ta polega na wstrzyknięciu przez port iniektatu cewnika niewielkiej ilości jałowego roztworu fizjologicznego (soli fizjologicznej lub dekstrozy) o znanej objętości i temperaturze (niższej od temperatury krwi). Wynikający z tego spadek temperatury krwi jest mierzony przez termistor w tętnicy płucnej. W jednej serii może zostać wykonanych maksymalnie sześć iniekcji bolusa. W systemie wyświetlana jest średnia objętość iniekcji w serii. Wynik dowolnej serii może zostać sprawdzony, a użytkownik może usunąć pojedyncze pomiary iCO (bolusa), które mogły ulec zakłóceniu (np. z powodu ruchów pacjenta, diatermii lub blędu operatora).

9.3.1 Podłączanie przewodów pacjenta

- 1 Podłączyć przewód CCO pacjenta do wprowadzonego modułu HemoSphere Swan-Ganz, postępując zgodnie z wcześniejszym opisem (patrz część 9.1).
- 2 Podłączyć cewnikowy koniec przewodu CCO pacjenta do złącza termistora na cewniku Swan-Ganz iCO (patrz ⁽²⁾, rysunek 9-5).
- 3 Upewnić się, że cewnik jest prawidłowo umieszczony w ciele pacjenta.

Rysunek 9-5 Przegląd połączeń iCO

9.3.1.1 Wybór sondy

Sonda temperatury iniektatu wykrywa temperaturę iniektatu. Wybraną sondę podłącza się do przewodu CCO pacjenta (rysunek 9-5). Można użyć jednej z następujących dwóch sond:

- Sondę in-line jest podłącza się do przepływowej obudowy na systemie doprowadzania iniektatu CO-Set/CO-Set+.
- Sonda do pomiaru temperatury w łaźni mierzy temperaturę roztworu iniektatu. Sondy do pomiaru temperatury w łaźni są przeznaczone do pomiaru temperatury roztworu próbnego, który jest przechowywany w tej samej temperaturze, co roztwór jałowy używany do iniekcji, podczas wyliczania pojemności minutowej serca z użyciem bolusa.

Sondę temperatury iniektatu (in-line lub do pomiaru temperatury w łaźni) należy podłączyć do złącza sondy temperatury iniektatu na przewodzie CCO pacjenta (patrz ③, rysunek 9-5).

9.3.2 Ustawienia konfiguracji

Zaawansowany monitor HemoSphere umożliwia wprowadzenie konkretnej stałej obliczeniowej albo skonfigurowanie modulu HemoSphere Swan-Ganz w taki sposób, aby zezwalał na automatyczne ustalanie stałej obliczeniowej poprzez wybranie objętości iniektatu i rozmiaru cewnika. Operator może również wybrać sposób wyświetlania parametrów i tryb bolusa.

Dotknąć ikony ustawień 🏹 → zakładki Narzędzi	a kliniczne 💿 Narzędzia kliniczne → ikony iCO 📈.
Narzędzia kliniczne 🕺 🕆 Ekzany	to Ustawienia () Pomoc
← iCO mode	ułu Swan-Ganz
Nowy 12:06 10.12.2018 VV	
Zalecana objętość subst	ancji wstrzykiwanej:5 ml
Objętość iniektatu	5 ml
Rozmiar cewnika	7 F
Obliczona stała	Auto
Tryb bolusa	Auto
Uruchom zestaw	

Rysunek 9-6 Ekran konfiguracji nowego zestawu iCO

PRZESTROGA	W celu sprawdzenia, czy stała obliczeniowa jest taka sama, jak określona w ulotce do opakowania cewnika, należy zapoznać się z Załącznikiem E. Jeśli stała obliczeniowa różni się, należy wprowadzić żądaną stałą obliczeniową ręcznie.
UWAGA	Moduł HemoSphere Swan-Ganz automatycznie wykryje typ używanej sondy temperatury (do łaźni lodowej lub in-line). Moduł wykorzysta tę informację do ustalenia stałej obliczeniowej.
	Jeśli monitor nie wykryje sondy temperatury iniektatu (ang. injectate temperature, IT), zostanie wyświetlony komunikat " Podłącz sondę iniektatu w celu monitorowania iCO ".

9.3.2.1 Wybór objętości iniektatu

Należy wybrać wartość, korzystając z przycisku listy **Objętość iniektatu**. Dostępne są następujące opcje:

- 10 ml
- 5 ml
- 3 ml (wyłącznie sonda do pomiaru temperatury w łaźni)

Po wybraniu wartości automatycznie ustawiana jest stała obliczeniowa.

9.3.2.2 Wybór rozmiaru cewnika

Rozmiar cewnika należy wybrać, korzystając z przycisku listy Rozmiar cewnika. Dostępne są następujące opcje:

- 5,5 F
- 6 F
- 7 F
- 7,5 F
- 8 F

Po wybraniu wartości automatycznie ustawiana jest stała obliczeniowa.

9.3.2.3 Wybór stałej obliczeniowej

W celu ręcznego wprowadzenia stałej obliczeniowej należy dotknąć przycisku wartości **Obliczona stała**, a następnie wprowadzić wartość za pomocą klawiatury numerycznej. Jeżeli stała obliczeniowa jest wprowadzana ręcznie, objętość iniektatu i rozmiar cewnika zostaną ustawione automatycznie, a dla parametru zostanie ustawiona wartość **Auto**.

9.3.2.4 Wybierz tryb

Należy wybrać opcję **Auto** lub **Ręcznie** po naciśnięciu przycisku listy **Tryb**. Trybem domyślnym jest **Auto**. W trybie **Automatycznie** zaawansowany monitor HemoSphere automatycznie podświetla komunikat **Wstrzyknij**, gdy tylko otrzyma wyjściową wartość temperatury krwi. Działanie w trybie **Ręcznie** jest podobne do działania w trybie **Automatycznie**, ale użytkownik musi dotknąć przycisku **Wstrzyknij** przed każdą iniekcją. W poniższej części podano instrukcje dotyczące obu tych trybów z bolusem.

9.3.3 Instrukcje dotyczące trybów z pomiarem bolusa

Domyślnym ustawieniem fabrycznym modułu HemoSphere Swan-Ganz do pomiaru z użyciem bolusa jest tryb **Auto**. W tym trybie zaawansowany monitor HemoSphere podświetla komunikat **Wstrzyknij**, gdy tylko otrzyma wyjściową wartość temperatury krwi. W trybie **Ręcznie** operator rozpoczyna wstrzykiwanie, dotykając przycisku **Wstrzyknij**. Po zakończeniu wstrzykiwania moduł oblicza wartość i jest gotowy do przetwarzania innej iniekcji bolusa. W jednej serii może zostać wykonanych maksymalnie sześć iniekcji bolusa.

Poniżej przedstawiono instrukcje krok po kroku dotyczące wykonywania pomiarów parametrów pracy serca z użyciem bolusa, począwszy od ekranu konfiguracji nowego zestawu iCO.

1 Dotknąć przycisku **Uruchom zestaw** u dołu ekranu konfiguracji nowego zestawu iCO po wybraniu ustawień konfiguracji termodylucji.

Przycisk jest nieaktywny w następujących sytuacjach:

- Objętość iniektatu jest niepoprawna lub nie została wybrana.
- Czujnik temperatury iniektatu (Ti) nie jest podłączony.
- Czujnik temperatury krwi (Tb) nie jest podłączony.
- Aktywna jest usterka iCO.

Jeżeli aktywne są pomiary ciągłe CO, wyświetli się okno podręczne w celu potwierdzenia zawieszenia monitorowania CO. Dotknąć przycisku **Tak**.

UWAGA	Podczas pomiaru bolusa CO nie są dostępne żadne parametry obliczone
	z wykorzystaniem sygnału wejściowego EKG (HR śr.).

- 2 Ekran nowego zestawu iCO zostanie wyświetlony z wyróżnionym komunikatem Czekaj
 (Czekaj).
- 3 Gdy w trybie automatycznym zostanie uzyskana wartość wyjściowa warunków termicznych, na ekranie podświetlany jest komunikat Wstrzyknij (Wstrzyknij), co oznacza, że można rozpocząć serię iniekcji bolusa.

LUB

Gdy w trybie ręcznym zostanie uzyskana wartość wyjściowa warunków termicznych, na ekranie zostanie podświetlony komunikat **Gotowe** (**Gotowe**). Po spełnieniu warunków gotowości do iniekcji należy dotknąć przycisku **Wstrzyknij**, co spowoduje podświetlenie przycisku **Wstrzyknij** na ekranie.

4 W celu wstrzyknięcia wybranej poprzednio objętości bolusa należy wykonać iniekcję techniką szybkiego, płynnego i ciągłego wstrzykiwania.

```
PRZESTROGA Nagle zmiany temperatury krwi w tętnicy plucnej, na przykład spowodowane ruchami ciała pacjenta albo podaniem leku w bolusie, mogą spowodować wyliczenie wartości iCO lub iCI. W celu uniknięcia fałszywego wyzwalania krzywych należy przeprowadzić iniekcję jak najszybciej po wyświetleniu komunikatu Wstrzyknij.
```

Gdy bolus zostanie wstrzyknięty, na ekranie pojawi się krzywa wypłukiwania dla termodylucji, podświetlony będzie komunikat **Wyliczanie** (**wyliczanie**) i wyświetlony zostanie wynikowy pomiar iCO.

5 Gdy krzywa wyplukiwania dla termodylucji zostanie ukończona, wówczas po ponownym osiągnięciu stabilnych termicznych warunków wyjściowych w trybie ręcznym zaawansowany monitor HemoSphere podświetli komunikat Czekaj, a następnie komunikat Wstrzyknij lub Gotowe. W zależności od potrzeb etapy od 2 do 4 można powtórzyć maksymalnie sześć razy. Podświetlane komunikaty są powtarzane w następującej kolejności:

UWAGA

Gdy tryb bolusa jest ustawiony na wartość **Automatycznie**, maksymalny czas, jaki może upłynąć od wyświetlenia komunikatu **Wstrzyknij** do iniekcji bolusa, wynosi cztery minuty. Jeśli w tym przedziale czasu nie zostanie wykryta żadna iniekcja, komunikat **Wstrzyknij** zniknie i ponownie pojawi się komunikat **Czekaj**.

W trybie **Ręcznie** bolusa operator ma maksymalnie 30 sekund na wykonanie iniekcji bolusa po dotknięciu przycisku **Wstrzyknij**. Jeśli w tym czasie iniekcja nie zostanie wykryta, przycisk **Wstrzyknij** zostanie ponownie aktywowany i pojawi się komunikat Wstrzyknij. Jeśli pomiar z bolusem zostanie zakłócony, o czym będzie świadczyć komunikat o alercie, wówczas zamiast wartości CO/CI na ekranie pojawi się ikona

- Aby zakończyć pomiary iCO (z użyciem bolusa), należy dotknąć ikony anulowania 🔀
- 6 Po wykonaniu żądanej liczby iniekcji bolusa należy przejrzeć zestaw krzywych wyplukiwania, dotykając przycisku **Przegląd**.
- 7 Usunąć dowolną z sześciu iniekcji w zestawie, dotykając jej na ekranie przeglądu.

Na krzywej pojawi się czerwony znak "X", co oznacza usunięcie go z uśrednionej wartości CO/ CI. W przypadku krzywych, które są nieregularne lub niejasne, obok zestawu danych przebiegu będzie widoczna ikona (). W razie potrzeby należy dotknąć ikony anulowania (), aby usunąć zestaw bolusa. W celu potwierdzenia dotknąć przycisku **Tak**.

8 Po zakończeniu przeglądu danych dot. wstrzyknięć bolusa dotknąć przycisku Akceptuj, aby użyć uśrednionej wartości CO/CI, albo dotknąć ikony powrotu , aby wznowić serię i dodać dodatkowe wstrzyknięcia bolusa (maksymalnie sześć) w celu uśrednienia.

9.3.4 Ekran podsumowania termodylucji

Po zaakceptowaniu zestawu jego podsumowanie zostanie wyświetlone jako zakładka ze znacznikami czasu na ekranie podsumowania termodylucji. Dostęp do tego ekranu można uzyskać, dotykając ikony historii

Na ekranie podsumowania termodylucji dla operatora dostępne są następujące czynności:

Rysunek 9-7 Ekran podsumowania termodylucji

Nowy zestaw. W celu wykonania kolejnego zestawu termodylucji należy dotknąć ikony powrotu **K** lub karty **Nowy.** Poprzednia uśredniona wartość CO/CI oraz powiązane krzywe wyplukiwania zostaną zapisane jako zakładka na ekranie podsumowania termodylucji.

Przegląd. Ta opcja umożliwia przegląd krzywych wypłukiwania uzyskanych z zestawu bolusa. W celu przejrzenia dowolnych krzywych wypłukiwania uzyskanych z innych zestawów bolusa należy dotknąć dowolnej zakładki.

Monitorowanie CO. Po poprawnym podłączeniu systemu w celu ciąglego monitorowania CO można w dowolnym momencie dotknąć ikony uruchomienia monitorowania parametru CO.

9.4 Monitorowanie EDV/RVEF

Monitorowanie objętości późnorozkurczowej prawej komory (EDV) jest dostępne w połączeniu z trybem monitorowania CO, gdy używany jest cewnik Swan-Ganz CCOmbo V oraz wejściowy sygnał EKG. Podczas monitorowania parametru EDV zaawansowany monitor HemoSphere w sposób ciągły wyświetla wartość EDV oraz frakcję wyrzutową prawej komory (RVEF). Parametry EDV i RVEF są wartościami uśrednianymi po czasie, które mogą być wyświetlane w postaci liczbowej w kafelkach parametrów, a w widoku trendu może być prezentowany trend ich zmian w czasie.

Ponadto po wybraniu sEDV i sRVEF jako parametrów kluczowych w systemie wyliczane i wyświetlane są szacunkowe wartości EDV i RVEF co około 60 sekund.

9.4.1 Podłączanie przewodów pacjenta

- 1 Podłączyć przewód CCO pacjenta do wprowadzonego modułu HemoSphere Swan-Ganz, postępując zgodnie z wcześniejszym opisem (patrz część 9.1).
- 2 Podłączyć cewnikowy koniec przewodu pacjenta do złącza termistora i włókna termicznego na cewniku Swan-Ganz CCOmbo V. Te połączenia są oznaczone numerami ⁽²⁾ i ⁽³⁾, co przedstawia rysunek 9-8.
- 3 Upewnić się, że cewnik jest prawidłowo umieszczony w ciele pacjenta.

Rysunek 9-8 Przegląd połączeń EDV/RVEF

9.4.2 Podłączanie przewodu interfejsu EKG

Miniaturowy wtyk telefoniczny 1/4 cala przewodu interfejsu EKG należy podłączyć do gniazda wejściowego na monitorze EKG na panelu tylnym zaawansowanego monitora HemoSphere ECG.

Drugi koniec przewodu interfejsu należy podłączyć do gniazda wyjściowego sygnalu EKG na monitorze przyłóżkowym. Dzięki temu średnia wartość częstości akcji serca (HR_{śr}) będzie przekazywana do zaawansowanego monitora HemoSphere na potrzeby dokonywania pomiarów parametrów EDV i RVEF. W celu uzyskania zgodnych przewodów interfejsu EKG należy skontaktować się z lokalnym przedstawicielem firmy Edwards.

WAŻNA INFORMACJAZaawansowany monitor HemoSphere jest zgodny z analogowym
podrzędnym wejściem EKG każdego zewnętrznego monitora
pacjenta wyposażonego w analogowy podrzędny port wyjściowy
zgodny z danymi technicznymi dotyczącymi sygnału wejściowego.
EKG znajdującymi się w dodatku A, tabela A-5 tego podręcznika
operatora. Sygnał EKG jest wykorzystywany do uzyskania częstości
akcji serca, która następnie stanowi podstawę do obliczania
dodatkowych parametrów hemodynamicznych do wyświetlenia.
Jest to funkcja opcjonalna niemająca wpływu na podstawowe
działanie zaawansowanego monitora HemoSphere polegające na
monitorowaniu pojemności minutowej serca (za pomocą modułu
HemoSphere Swan-Ganz) oraz wysycenia tlenem krwi żylnej
(za pomocą kabla pulsoksymetru monitora HemoSphere). Ocenę
działania urządzenia przeprowadzono przy użyciu sygnałów
wejściowych EKG.

OSTRZEŻENIE PACJENCI ZE STYMULATOREM SERCA — mierniki częstości mogą nadal rejestrować częstość stymulatora podczas zatrzymania akcji serca lub niektórych arytmii. Wyświetlana częstość akcji serca nie jest całkowicie miarodajna. Konieczna jest ścisła obserwacja pacjentów ze stymulatorem serca. Tabela A-5 na stronie 267 zawiera opis wyświetlania funkcji odrzucania odczytu tętna za pomocą tego przyrządu.

W przypadku pacjentów wymagających stymulacji wewnętrznej lub zewnętrznej nie należy stosować zaawansowanej platformy monitorowania HemoSphere do pozyskiwania częstości akcji serca i jej parametrów pochodnych w poniższych warunkach:

• wartości wyjściowe tętna zsynchronizowane ze stymulatorem wskazywane przez monitor przyłóżkowy uwzględniają odczyt tętna ze stymulatora, ale charakterystyka wykracza poza dane techniczne funkcji odrzucania odczytu tętna ze stymulatora serca przedstawione w tabela A-5;

• nie można określić charakterystyki wartości wyjściowych tętna zsynchronizowanych ze stymulatorem z monitora przyłóżkowego.

Interpretując parametry pochodne, takie jak SV, EDV, RVEF, i związane z nimi wskaźniki, należy zwrócić uwagę na wszelkie rozbieżności w częstości akcji serca (HRśr) między wartością HR monitora pacjenta a wyświetlonym zapisem EKG.

Sygnał wejściowy EKG i wszystkie parametry uzyskiwane dzięki pomiarom częstości akcji serca nie były oceniane u dzieci i dlatego nie są dostępne dla tej populacji pacjentów.

UWAGA Jeśli najpierw zostanie wykryte połączenie lub rozłączenie wejścia EKG, na pasku stanu zostanie wyświetlony krótki komunikat.
 Monitorowanie SV jest dostępne w przypadku każdego zgodnego cewnika Swana-Ganza i sygnału wejściowego EKG. W przypadku monitorowania EDV/ RVEF wymagany jest cewnik Swana-Ganza CCOmbo V.

9.4.3 Rozpoczęcie pomiaru

OSTRZEŻENIE	Monitorowanie pojemności minutowej serca należy zawsze przerwać w sytuacji
	zatrzymania przepływu krwi wokół włókna termicznego. Sytuacje kliniczne,
	w których należy przerwać monitorowanie CCO, obejmują między innymi
	następujące stany:
	• okresy, w których u pacjenta jest stosowane krążenie pozaustrojowe;
	• częściowe wycofanie cewnika w taki sposób, że termistor nie znajduje
	się w tętnicy płucnej lub

• usunięcie cewnika z ciała pacjenta.

Po poprawnym podłączeniu systemu należy dotknąć ikony rozpoczęcia monitorowania

, aby

rozpocząć monitorowanie parametru CO. Na ikonie zatrzymania monitorowania pojawi się czasomierz odmierzający czas do rozpoczęcia pomiaru CO. Po około 5–12 minutach, kiedy zostanie zarejestrowana wystarczająca ilość danych, na skonfigurowanych kafelkach parametrów pojawi się wartość EDV i/lub RVEF. Wartości EDV i RVEF wyświetlane na ekranie będą aktualizowane co około 60 sekund.

UWAGA	Wartość EDV ani RVEF nie zostanie wyświetlona do czasu uzyskania
	wystarczającej ilości danych uśrednionych po czasie.

W niektórych sytuacjach, gdy stan pacjenta w ciągu kilku minut wywołuje duże zmiany temperatury krwi w tętnicy płucnej, uzyskanie początkowego pomiaru EDV lub RVEF przez monitor może zająć więcej niż 9 minut. W takich przypadkach po upływie 9 minut od rozpoczęcia monitorowania zostanie wyświetlony następujący komunikat o alercie:

Alert: EDV — dostosowanie sygnału — kontynuacja

Monitor będzie nadal działał, a użytkownik nie będzie musiał podejmować żadnych czynności. Podczas ciągłych pomiarów parametrów EDV i RVEF komunikat o alercie zostanie usunięty, a bieżące wartości będą wyświetlane i nanoszone na wykresy.

UWAGA Wartości CO mogą być nadal dostępne, nawet gdy wartości EDV i RVEF są niedostępne.

9.4.4 Aktywne monitorowanie parametru EDV

Gdy trwa monitorowanie EDV, aktualizowanie ciąglych wartości parametrów EDV oraz RVEF może być opóźnione na skutek niestabilnej temperatury krwi w tętnicy płucnej. Jeśli od ostatniej aktualizacji wartości upłynie ponad 8 minut, pojawi się następujący komunikat:

Alert: EDV — dostosowanie sygnału — kontynuacja

W sytuacjach, gdy średnia częstość akcji serca znajdzie się poza zakresem (np. poniżej 30 bpm lub powyżej 200 bpm) lub przestanie być wykrywana, pojawi się następujący komunikat:

Alert: EDV — utrata sygnału częstości akcji serca

Wartości ciągle monitorowanych parametrów EDV i RVEF nie będą już wyświetlane. Taki stan może wynikać ze zmian stanu fizjologicznego pacjenta lub utraty sygnału z podrzędnego monitora EKG. Należy sprawdzić połączenia przewodu interfejsu EKG i w razie potrzeby je połączyć ponownie. Po sprawdzeniu stanu pacjenta i połączeń przewodu monitorowanie parametrów EDV i RVEF zostanie automatycznie wznowione.

UWAGAWartości SV, EDV i RVEF są zależne od dokładnych obliczeń częstości akcji
serca. Należy zadbać o wyświetlanie dokładnych wartości częstości akcji serca
oraz należy unikać dwukrotnego zliczania tych samych sygnałów — szczególnie
w przypadku stosowania stymulacji przedsionkowo-komorowej (ang. atrial-
ventricular, AV).

Jeśli pacjent ma wszczepiony stymulator przedsionkowy lub przedsionkowo-komorowy (AV), wówczas użytkownik powinien sprawdzić, czy dochodzi do dwukrotnego wykrywania sygnałów (w celu dokładnego wyznaczania częstości akcji serca powinna być wykrywana tylko jedna iglica stymulatora lub jeden skurcz na każdy cykl akcji serca). W przypadku dwukrotnego wykrywania sygnałów należy:

- Zmienić położenie elektrody referencyjnej, aby zminimalizować wykrywanie iglicy przedsionkowej
- Wybrać odpowiednią konfigurację odprowadzeń, aby zminimalizować wyzwalanie rytmem pracy serca i ograniczyć wykrywanie iglicy przedsionkowej, a także
- Ocenić, czy poziomy sygnałów stymulujących wyrażone w miliamperach (mA) są odpowiednie.

Dokładność ciąglego wyznaczania parametrów EDV i RVEF jest zależna od tego, czy z monitora przyłóżkowego odbierany jest spójny sygnał EKG. Dodatkowe informacje na temat rozwiązywania problemów — patrz tabela 14-9 "Usterki/alerty EDV i SV modułu HemoSphere Swan-Ganz" na stronie 247 i tabela 14-12 "Rozwiązywanie problemów ogólnych związanych z przewodem ciśnienia HemoSphere" na stronie 249.

Jeśli monitorowanie parametru EDV zostanie zatrzymane poprzez dotknięcie ikony zatrzymania

monitorowania $v_{0:19}$, wówczas wskaźnik wartości docelowej na kafelku parametru EDV i/lub RVEF stanie się szary, a pod wartością oznaczającą czas pomiaru ostatniej wartości zostanie umieszczony znacznik czasu.

Jeśli monitorowanie parametru EDV zostanie wznowione, na kreślonej linii trendu pojawi się przerwa oznaczająca czas, przez jaki monitorowanie ciągłe było przerwane.

9.4.5 STAT EDV i RVEF

Hemodynamicznie niestabilny sygnal temperatury może spowodować w zaawansowanym monitorze HemoSphere opóźnienie wyświetlania wartości EDV, EDVI i/lub RVEF po rozpoczęciu monitorowania. W takiej sytuacji lekarz może korzystać z wartości STAT, które stanowią szacunkowe wartości EDV, EDVI i RVEF aktualizowane co około 60 sekund. W celu wyświetlania wartości STAT należy wybrać sEDV, sEDVI lub sRVEF jako parametr kluczowy. Na podzielonym ekranie z trendem graficznym/tabelą trendów może być przedstawiany trend zmian wartości EDV, EDVI i_RVEF w postaci graficznej wraz z liczbowymi wartościami parametrów sEDV, sEDVI i sRVEF. Na ekranie tym mogą być wyświetlane maksymalnie dwa parametry w formie tabelarycznej. Patrz *Podzielony ekran z trendem graficznym/tabelą trendów* na stronie 91.

9.5 SVR

Podczas monitorowania parametru CO zaawansowany monitor HemoSphere może również obliczyć wartość parametru SVR, wykorzystując analogowe sygnały wejściowe ciśnienia MAP i CVP z podłączonego monitora pacjenta. Patrz *Analogowy sygnał wejściowy ciśnienia* na stronie 122.

10

Monitorowanie za pomocą przewodu ciśnienia HemoSphere

Spis treści

Opis przewodu ciśnienia164
Wybór trybu monitorowania
Monitorowanie za pomocą czujnika FloTrac16
Monitorowanie z użyciem przewodu ciśnienia z przetwornikiem DPT TruWave
Monitorowanie przy użyciu przewodu ciśnienia w trybie monitorowania za pomocą modułu Swan-Ganz
Ekran Wyzeruj i krzywa

10.1 Opis przewodu ciśnienia

Przewód ciśnienia HemoSphere jest wyrobem wielokrotnego użytku, którego jeden koniec ④ służy do podłączenia monitora HemoSphere, a drugi ① — do podłączenia zatwierdzonego przez firmę Edwards pojedynczego przetwornika ciśnienia jednorazowego użytku (DPT) lub czujnika. Patrz rysunek 10-1 na stronie 165. Przewód ciśnienia HemoSphere odbiera i przetwarza pojedynczy sygnał ciśnienia ze zgodnego przetwornika DPT, takiego jak TruWave DPT, lub z czujnika FloTrac. Czujnik FloTrac lub Acumen IQ podłącza się do założonego cewnika tętniczego w celu zminimalizowania ingerencji w parametry hemodynamiczne. Przetwornik TruWave można podłączyć do dowolnego zgodnego cewnika monitorującego ciśnienie w celu dostarczania informacji o ciśnieniu wewnątrznaczyniowym w danej lokalizacji. W celu uzyskania szczególowych instrukcji dotyczących umieszczenia i stosowania cewnika oraz zapoznania się z odpowiednimi ostrzeżeniami, przestrogami i uwagami należy zapoznać się z instrukcją użytkowania dolączoną do każdego cewnika. Przewód ciśnienia HemoSphere można monitorować w dwóch trybach monitorowania technologicznego w oparciu o sparowany czujnik/ przetwornik: trybie monitorowania za pomocą czujnika FloTrac lub Acumen IQ bądź trybie monitorowania za pomocą cewnika Swan-Ganz. Tryb monitorowania widoczny jest na górze paska nawigacji (patrz rysunek 5-2 na stronie 78). Wygląd przewodu ciśnienia HemoSphere i punkty jego podłączania przedstawia rysunek 10-1.

Kolorowa wkładka rodzaju ciśnienia. W razie potrzeby w przewodzie ciśnienia można zainstalować odpowiednią kolorową wkładkę oznaczającą rodzaj monitorowanego ciśnienia. Patrz ③ na rysunek 10-1 poniżej. Stosuje się następujące oznakowania:

- czerwony ciśnienie tętnicze (AP)
- niebieski ośrodkowe ciśnienie żylne (CVP)
- żółty ciśnienie w tętnicy płucnej (PAP)
- zielony pojemność minutowa serca (CO)

Rysunek 10-1 Przewód ciśnienia HemoSphere

Dostępne	Konfiguracja przewodu ciśnienia					
parametry kluczowe	Czujnik FloTrac/ Acumen IQ	Czujnik FloTrac/ Acumen IQ z wejściem CVP lub przyporząd- kowanym sygnałem CVP	Czujnik FloTrac/ Acumen IQ z wejściem CVP lub przyporząd- kowanym sygnałem CVP i przewodem do oksymetrii	Przetwornik DPT TruWave podłączony do linii tętniczej	Przetwornik DPT TruWave podłączony do linii centralnej	Przetwornik DPT TruWave podłączony do cewnika tętnicy płucnej
CO/CI	•	•	•			
SV/SVI	•	•	•			
SVV/PPV	•	•	•			
SVR/SVRI		•	•			
SvO ₂ /ScvO ₂			•			
PR	•	•	•	•		

Tabela 10-1 Wykaz konfiguracji przewodu ciśnienia HemoSphere	
oraz dostępnych parametrów kluczowych	

165

Dostępne paramotry	Konfiguracja przewodu ciśnienia						
kluczowe	Czujnik FloTrac/ Acumen	Czujnik FloTrac/ Q Acumen IQ z wejściem CVP lub przyporząd- kowanym sygnałem CVP	Czujnik FloTrac/ Acumen IQ z wejściem CVP lub przyporząd- kowanym sygnałem CVP i przewodem do oksymetrii	Przetwornik DPT TruWave podłączony do linii tętniczej	Przetwornik DPT TruWave podłączony do linii centralnej	Przetwornik DPT TruWave podłączony do cewnika tętnicy płucnej	
SYS _{ART}	•	•	•	•			
DIA _{ART}	•	•	•	•			
MAP	•	•	•	•			
MPAP						•	
SYS _{PAP}						•	
DIA _{PAP}						•	
CVP		•	•		•		
HPI*	•	•	•				
dP/dt*	•	•	•				
Ea _{dyn} *	•	•	•				
 *UWAGA Parametr Wskaźnik predykcji niedociśnienia (Acumen HPI) jest zaawansowaną funkcją, którą należy aktywować przy użyciu czujnika Acumen IQ podłączonego do cewnika w tętnicy promieniowej. Więcej informacji — patrz Funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI) na stronie 208. 							
OSTRZEŻENIE		Nie wolno wyjaławiać ani ponownie wykorzystywać żadnego czujnika FloTrac, Acumen IQ, przetwornika TruWave ani cewnika; należy zapoznać się z instrukcją stosowania cewnika.					
		Nie wolno używać czujnika FloTrac, Acumen IQ, przetwornika TruWave ani cewnika, który jest uszkodzony lub ma odsłonięte styki elektryczne.					
		Nie modyfikować w żaden sposób, nie naprawiać produktu ani nie wprowadzać w nim zmian. Naprawianie, modyfikowanie lub wprowadzanie zmian może wpływać na bezpieczeństwo pacjenta/operatora i/lub na działanie produktu.					
		W celu uzyskania szczegółowych instrukcji dotyczących umieszczenia					

Tabela 10-1 Wykaz konfiguracji przewodu ciśnienia HemoSphere oraz dostępnych parametrów kluczowych (ciąg dalszy)

W celu uzyskania szczegołowych instrukcji dotyczących umieszczenia i stosowania cewnika oraz zapoznania się z odpowiednimi OSTRZEŻENIAMI, PRZESTROGAMI i specyfikacjami należy zapoznać się z instrukcją użytkowania dołączoną do każdego cewnika.

W przypadku niekorzystania z przewodu ciśnienia należy chronić odsłonięte złącze przewodu przed stycznością z płynami. Zawilgocenie złącza może prowadzić do nieprawidłowego działania lub niedokładnych pomiarów ciśnienia.

	Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy przewód ciśnienia HemoSphere (wyposażenie dodatkowe części aplikacyjnej, odporne na defibrylację) jest podłączony do zgodnej platformy do monitorowania. Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób nieopisany w niniejszej instrukcji może nie spelniać wymogów tej normy. Stosowanie urządzenia niezgodnie z instrukcją może zwiększyć ryzyko porażenia prądem elektrycznym pacjenta/operatora.			
PRZESTROGA	Nie wolno używać żadnych czujników FloTrac ani przetworników TruWave po oznaczonym terminie ważności. Stosowanie produktów po upływie tego terminu może się wiązać z gorszym działaniem przetwornika i drenów lub naruszeniem jałowości.			
	Zbyt częste upuszczanie przewodu ciśnienia HemoSphere może spowodować uszkodzenie przewodu lub jego nieprawidłowe działanie.			

10.2 Wybór trybu monitorowania

Głównym trybem monitorowania z wykorzystaniem przewodu ciśnienia HemoSphere jest tryb monitorowania minimalnie inwazyjnego. Przewód ciśnienia może również służyć do zbierania danych dotyczących ciśnienia w tętnicy plucnej (PAP) w trybie monitorowania inwazyjnego za pomocą modułu Swan-Ganz. Informacje na temat przełączania trybów monitorowania zawiera część *Wybierz tryb monitorowania* na stronie 103.

10.3 Monitorowanie za pomocą czujnika FloTrac

Przewód ciśnienia HemoSphere służy do łączenia czujnika FloTrac firmy Edwards z platformą do zaawansowanego monitorowania HemoSphere. Przewód ciśnienia HemoSphere z podłączonym czujnikiem FloTrac lub Acumen IQ wykorzystuje istniejący przebieg fali ciśnienia tętniczego pacjenta do ciągłego pomiaru pojemności minutowej serca (pojemności minutowej serca automatycznie skalibrowanej w oparciu o pomiar ciśnienia tętniczego przy użyciu czujnika FloTrac [FT-CO]). Po wprowadzeniu wzrostu, masy ciała, wieku i plci pacjenta oznacza się swoistą podatność naczyniową. Automatyczna regulacja napięcia naczyniowego uwzględniona w algorytmie czujnika FloTrac rozpoznaje zmiany w oporze naczyniowym i podatności naczyniowej, dostosowując się do tych zmian. Pojemność minutowa serca jest wyświetlana w trybie ciągłym w oparciu o iloczyn częstości tętna i obliczonej objętości wyrzutowej wyznaczanej z krzywej przebiegu ciśnienia. Czujnik FloTrac lub Acumen IQ mierzy zmienność ciśnienia tętniczego proporcjonalnie do objętości wyrzutowej.

Przewód ciśnienia HemoSphere oraz czujnik FloTrac lub Acumen IQ wykorzystują istniejącą krzywą przebiegu ciśnienia tętniczego do ciągłego pomiaru zmiennej objętości wyrzutowej (SVV). SVV jest czułym wskaźnikiem zdolności reagowania pacjenta na obciążenie wstępne w przypadku, gdy jest on poddawany 100% wentylacji mechanicznej o stałej częstości i objętości oddechowej przy braku oddechu spontanicznego. Wartość SVV zawsze stosuje się w połączeniu z oceną objętości wyrzutowej lub pojemności minutowej serca.

W przypadku użycia czujnika Acumen IQ istniejące krzywe ciśnienia tętniczego pacjenta są wykorzystywane do ciąglego pomiaru nachylenia fali skurczowej (dP/dt) i podatności dynamicznej tętnic (Ea_{dyn}). Ea_{dyn} jest miarą obciążenia następczego lewej komory przez układ tętniczy (podatności tętnic) względem podatności lewej komory (podatności dynamicznej tętnic). Więcej informacji na temat czujnika Acumen IQ oraz

funkcji Wskaźnik predykcji niedociśnienia (Acumen HPI) — patrz *Funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI)* na stronie 208. Aktywacja funkcji Acumen HPI dostępna jest wyłącznie w określonych obszarach. W celu uzyskania dodatkowych informacji na temat włączania tej funkcji zaawansowanej należy skontaktować się z lokalnym przedstawicielem firmy Edwards.

Parametry dostępne w oparciu o technologię FloTrac obejmują pojemność minutową (CO), wskaźnik sercowy (CI), objętość wyrzutową (SV), wskaźnik objętości wyrzutowej (SVI), zmienną objętości wyrzutowej (SVV), ciśnienie skurczowe (SYS), ciśnienie rozkurczowe (DIA), średnie ciśnienie tętnicze (MAP) oraz częstość tętna (PR). W przypadku korzystania z czujnika Acumen IQ przy włączonej funkcji Acumen HPI dostępne są dodatkowe parametry, takie jak podatność dynamiczna tętnic (Ea_{dyn}), nachylenie fali skurczowej (dP/dt), wahanie ciśnienia tętniczego (PPV) oraz wskaźnik predykcji niedociśnienia (Acumen HPI). W przypadku sparowania czujnika FloTrac lub Acumen IQ z pomiarem ośrodkowego ciśnienia żylnego (CVP) pacjenta dostępne są również wartości systemowego oporu naczyniowego (SVR) i wskaźnika systemowego oporu naczyniowego (SVRI).

PRZESTROGA	Nie badano skuteczności pomiarów FT-CO u pacjentów pediatrycznych.
	Niedokładność pomiarów FT-CO może być spowodowana następującymi czynnikami:
	Nieprawidłowo wyzerowany i/lub wypoziomowany czujnik/przetwornik
	Nadmiernie lub niewystarczająco tłumione linie ciśnienia
	• Nadmierne odchylenia ciśnienia krwi. Do niektórych warunków powodujących
	odchylenia ciśnienia krwi należą m.in.:
	* Wewnątrzaortalne pompy balonowe
	• Wszelkie sytuacje kliniczne, w których pomiar ciśnienia tętniczego zostaje uznany
	za niedokładny lub niereprezentatywny dla ciśnienia aortalnego, w tym m.in.:
	* Skrajny skurcz naczyniowy prowadzący do deformacji przebiegu krzywej
	ciśnienia w tętnicy promieniowej
	* Warunki hiperdynamiczne, na przykład po przeszczepie wątroby
	 Nadmierna ruchliwość pacjenta
	Zakłócenia wywołane przez urządzenie do elektrokauteryzacji lub elektrochirurgii
	Fala zwrotna przez zastawkę aortalną może skutkować przeszacowaniem wartości
	objętości wyrzutowej/pojemności minutowej serca obliczanej w zależności
	od rozległości zaburzeń zastawkowych i objętości krwi odpływającej z powrotem
	do lewej komory.

10.3.1 Podłączanie czujnika FloTrac lub Acumen IQ

- 1 Podłączyć jeden koniec przewodu ciśnienia do zaawansowanego monitora HemoSphere.
- 2 Aby odpowietrzyć i napelnić worek do infuzji dożylnych i czujnik FloTrac lub Acumen IQ, wykonać następujące czynności: Odwrócić worek do infuzji z normalnym roztworem soli fizjologicznej (ochrona przeciwzakrzepowa zgodna z zasadami ośrodka). Nakłuć worek do infuzji dożylnych zestawem do podawania płynów, utrzymując komorę kroplową w położeniu pionowym. Utrzymując worek do infuzji dożylnej w pozycji odwróconej, delikatnie wycisnąć z niego powietrze przy użyciu jednej dłoni, a jednocześnie pociągnąć drugą ręką za zapadkę typu Snap-tab tak, aby całkowicie opróżnić worek z powietrza i w połowie napelnić komorę kroplową.
- **3** Umieścić worek do infuzji dożylnych w worku ciśnieniowym i zawiesić na statywie infuzyjnym (NIE NAPEŁNIAĆ POWIETRZEM).

- 4 Za pomocą jedynie siły grawitacji (bez stosowania ciśnienia w worku ciśnieniowym) przepłukać czujnik FloTrac, utrzymując dren ciśnienia w pozycji pionowej w czasie, w którym kolumna cieczy będzie podnosić się w jego wnętrzu i wypychać z niego powietrze do momentu, gdy poziom cieczy osiągnie końcówkę drenu.
- 5 Napełnić worek ciśnieniowy powietrzem do poziomu 300 mmHg.
- **6** Szybko przepłukać czujnik FloTrac, opukując dren i korki w celu usunięcia ewentualnych pęcherzyków powietrza.
- 7 Prostym ruchem posuwistym wprowadzić zielone zlącze napełnionego czujnika FloTrac. Dioda LED otaczająca przycisk zerowania na przewodzie ciśnienia (patrz pozycja ②, rysunek 10-1) zacznie migać na zielono, co wskazuje wykrycie czujnika ciśnienia. Żółte światło wskazuje wystąpienie usterki. W takim przypadku należy sprawdzić informacje szczegółowe o usterce na pasku stanu.
- **8** Podłączyć dren do cewnika tętniczego, a następnie zassać i napelnić system cieczą w celu zapewnienia, że w układzie nie znajdują się resztki pęcherzyków powietrza.
- **9** Przy użyciu rutynowych procedur kalibracji przetwornika (zgodnych z zasadami ośrodka) zapewnić prawidłowe przekazywanie sygnałów ciśnienia. Należy zapoznać się z instrukcją obsługi czujnika FloTrac lub Acumen IQ.
- 10 Wykonać czynności związane z wprowadzaniem danych pacjenta. Patrz Dane pacjenta na stronie 115.
- 11 Wykonać poniższe instrukcje zerowania czujnika FloTrac lub Acumen IQ.

```
PRZESTROGA Podczas podłączania lub odłączania przewodu zawsze należy chwytać za wtyczkę, a nie za przewód.
```

Nie skręcać ani nie zginać złączy.

10.3.2 Ustawianie czasu uśredniania

- 1 Dotknąć kafelka parametru w dowolnym miejscu, aby uzyskać dostęp do menu konfiguracji kafelka.
- 2 Dotknąć zakładki Odstępy czasu/uśrednianie.
- **3** Dotknąć przycisku wartości **Czas uśredniania CO/ciśnienia**, a następnie wybrać jedną z następujących opcji odstępów:
 - 5 s
 - 20 s (domyślny i zalecany odstęp czasu)
 - 5 min

Więcej informacji na temat opcji menu **Czasu uśredniania CO/ciśnienia** — patrz Odstępy czasu/ uśrednianie na stronie 121.

4 Dotknąć ikony powrotu 🧲

10.3.3 Wyzeruj ciśnienie tętnicze

Aby zapewnić dokładne monitorowanie, czujnik FloTrac lub Acumen IQ musi być wyzerowany do wartości ciśnienia atmosferycznego.

1 Dotknąć ikony Wyzeruj i krzywa Znajdującej się na pasku nawigacji lub w menu Narzędzia kliniczne.

LUB

Nacisnąć fizyczny przycisk zerowania **-0-** bezpośrednio na przewodzie ciśnienia i przytrzymać go przez trzy sekundy (patrz rysunek 10-1).

PRZESTROGA Nie naciskać na silę przycisku zerowania przewodu ciśnienia, aby nie uszkodzić przewodu.

- **2** Na ekranie będzie wyświetlana ciągle aktualizowana krzywa ciśnienia tętniczego. Jej wyświetlanie jest potwierdzeniem powodzenia operacji zerowania.
- **3** Wybrać opcję **ART** (tętniczy) obok portu, do którego podłączony jest aktywny przewód ciśnienia. Jednocześnie można podłączyć maksymalnie dwa przewody ciśnienia.
- 4 Postępując zgodnie z instrukcją, wyrównać czujnik z osią flebostatyczną pacjenta.

UWAGACzujnik FloTrac lub Acumen IQ zawsze powinien być wyrównany z osią flebostatyczną
pacjenta w celu zapewnienia dokładności pomiarów pojemności minutowej serca.

- **5** Otworzyć kranik czujnika FloTrac w celu dokonania pomiaru warunków atmosferycznych. Wykres ciśnienia powinien mieć kształt linii poziomej.
- 6 Nacisnąć fizyczny przycisk zerowania -O- bezpośrednio na przewodzie ciśnienia i przytrzymać

go przez trzy sekundy lub dotknąć przycisku zerowania

widocznego na ekranie.

Po zakończeniu zerowania rozlegnie się sygnał dźwiękowy i pojawi się komunikat "**Wyzerowane**" wraz z bieżącą godziną i datą nad wykresem krzywej dla portu podłączonego przewodu ciśnienia.

-0-

- 7 Potwierdzić stabilność wyzerowanego ciśnienia i przekręcić kraniki tak, aby czujniki odczytywały ciśnienie wewnątrznaczyniowe pacjenta.
- 8 W razie potrzeby można skierować wyjściowy sygnał ciśnienia na podłączony monitor pacjenta. Więcej informacji na temat tej opcji — patrz *Wyjście sygnału ciśnienia* na stronie 175.
- 9 Dotknąć ikony ekranu głównego 🗥, aby rozpocząć monitorowanie parametru CO.

Po obliczeniu kolejnej wartości CO jest ona wyświetlana na ekranie; aktualizacje będą następować zgodnie z ustaleniami w menu **Czas uśredniania CO/ciśnienia**.

Po rozpoczęciu monitorowania CO można również wyświetlić krzywą ciśnienia krwi przy użyciu opcji wyświetlania krzywej ciśnienia tętniczego. Patrz *Wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym* na stronie 89. W trakcie odłączania przewodu ciśnienia HemoSphere od zgodnego monitora lub czujników od przewodu ciśnienia zawsze należy ciągnąć w miejscu podłączenia. Nie ciągnąć za przewody ani nie używać narzędzi w celu rozlączenia.

10.3.4 Monitorowanie SVR

W przypadku sparowania z czujnikiem FloTrac lub Acumen IQ przewód ciśnienia HemoSphere pozwala na monitorowanie systemowego oporu naczyniowego (SVR) i wskaźnika systemowego oporu naczyniowego (SVRI) w oparciu o podporządkowany sygnał CVP lub o wprowadzoną recznie przez użytkownika wartość CVP. Więcej informacji na temat wykorzystania sygnału analogowego ze zgodnego monitora przyłóżkowego – patrz Analogowy sygnał wejściowy ciśnienia na stronie 122. W celu ręcznego wprowadzenia wartości CVP pacjenta należy:

- 1 Dotknąć ikony ustawień \bigcirc \rightarrow zakładki Narzędzia kliniczne \bigcirc Narzędzia kliniczne \rightarrow

ikony Wprowadzić parametr ośrodkowego ciśnienia żylnego (CVP)

- 2 Wprowadzić wartość CVP.
- 3 Dotknąć ikony ekranu głównego 🏠.

W przypadku korzystania z funkcji Wskaźnik predykcji niedociśnienia (Acumen HPI) parametr SVR jest dostępny na dodatkowym ekranie HPI.

Monitorowanie z użyciem przewodu ciśnienia 10.4 z przetwornikiem DPT TruWave

Przewód ciśnienia HemoSphere podłącza się do jednorazowego przetwornika ciśnienia TruWave w celu gromadzenia informacji o ciśnieniu wewnątrznaczyniowym w konkretnej lokalizacji. Rodzaje ciśnienia mierzonego przy użyciu przetwornika DPT TruWave obejmują ośrodkowe ciśnienie żylne (CVP) w przypadku monitorowania z centralnej linii żylnej, ciśnienie rozkurczowe (DIA), ciśnienie skurczowe (SYS), średnie ciśnienie tętnicze (MAP) oraz częstość tętna (PR) w przypadku monitorowania z linii tętniczej oraz średniego ciśnienia w tętnicy płucnej (MPAP) w przypadku monitorowania z linii w tętnicy płucnej. Patrz tabela 10-1.

10.4.1 Podłączanie przetwornika DPT TruWave

- 1 Podłączyć jeden koniec przewodu ciśnienia do zaawansowanego monitora HemoSphere.
- 2 Aby odpowietrzyć i napelnić worek do infuzji i przetwornik TruWave, wykonać następujące czynności: odwrócić worek z normalnym roztworem soli fizjologicznej (ochrona przeciwzakrzepowa zgodna z zasadami ośrodka). Nakłuć worek do infuzji dożylnych zestawem do podawania płynów, utrzymując komorę kroplową w położeniu pionowym. Utrzymując worek do infuzji dożylnej w pozycji odwróconej, delikatnie wycisnąć z niego powietrze przy użyciu jednej dłoni, a jednocześnie pociągnąć drugą ręką za zapadkę typu Snap-tab tak, aby całkowicie opróżnić worek z powietrza i napełnić komorę kroplową do wymaganego poziomu (1/2 lub całkowicie).
- 3 Umieścić worek z roztworem pluczącym w worku ciśnieniowym (NIE NAPEŁNIAĆ POWIETRZEM) i zawiesić na statywie infuzyjnym co najmniej 60 cm nad przetwornikiem.
- 4 Za pomocą jedynie siły grawitacji (bez stosowania ciśnienia w worku ciśnieniowym) przepłukać przetwornik TruWave, utrzymując dren ciśnienia w pozycji pionowej w czasie, w którym kolumna cieczy będzie podnosić się w jego wnętrzu i wypychać z niego powietrze do momentu, gdy poziom cieczy osiągnie końcówkę drenu (przepłukiwanie pod ciśnieniem powoduje turbulencje przepływu i zwiększone występowanie pęcherzyków powietrza).
- 5 Napełnić worek ciśnieniowy powietrzem do poziomu 300 mmHg.

- **6** Szybko przepłukać przetwornik, opukując dren i korki w celu usunięcia ewentualnych pęcherzyków powietrza.
- 7 Prostym ruchem posuwistym podłączyć przetwornik DPT TruWave i przewód ciśnienia HemoSphere. Dioda LED otaczająca przycisk zerowania na przewodzie ciśnienia (patrz pozycja ②, rysunek 10-1) zacznie migać na zielono, co wskazuje wykrycie czujnika ciśnienia. Żółte światło wskazuje wystąpienie usterki. W takim przypadku należy sprawdzić informacje szczegółowe o usterce na pasku stanu.
- 8 Podłączyć dren do cewnika, a następnie zassać i napelnić system cieczą w celu zapewnienia, że cewnik znajduje się wewnątrz naczynia, oraz usunięcia resztki pęcherzyków powietrza.
- **9** Przy użyciu rutynowych procedur kalibracji przetwornika (zgodnych z zasadami ośrodka) zapewnić prawidłowe przekazywanie sygnałów ciśnienia. Posłużyć się instrukcją obsługi przetwornika ciśnienia TruWave.
- **10** Wykonać czynności związane z wprowadzaniem danych pacjenta. Patrz *Dane pacjenta* na stronie 115.
- 11 W celu wyzerowania przetwornika wykonać czynności opisane poniżej.

10.4.2 Zerowanie ciśnienia wewnątrznaczyniowego

Aby zapewnić dokładne monitorowanie, przetwornik DPT TruWave musi być wyzerowany do wartości ciśnienia atmosferycznego.

1 Dotknąć ikony Wyzeruj i krzywa View znajdującej się na pasku nawigacji.

LUB

Nacisnąć fizyczny przycisk zerowania **-0-** bezpośrednio na przewodzie ciśnienia i przytrzymać go przez trzy sekundy (patrz rysunek 10-1).

PRZESTROGA Nie naciskać na siłę przycisku zerowania przewodu ciśnienia, aby nie uszkodzić przewodu.

- 2 Na ekranie wyświetlana będzie ciągle aktualizowana krzywa ciśnienia wewnątrznaczyniowego. Jej wyświetlanie jest potwierdzeniem powodzenia operacji zerowania.
- **3** Użyć przycisku typu ciśnienia dla portu podłączonego przewodu ciśnienia (1 lub 2), aby wybrać typ/lokalizację używanego czujnika ciśnienia. Kolor sinusoidy będzie odpowiadał wybranemu typowi ciśnienia. W polu **Przetwornik ciśnienia** dostępne są następujące opcje:
 - **ART** (kolor czerwony)
 - **CVP** (kolor niebieski)
 - **PAP** (kolor żółty)
- **4** Postępując zgodnie z instrukcją, wyrównać znajdujący się tuż nad przetwornikiem TruWave kranik (port wentylacyjny) z osią flebostatyczną pacjenta.
- 5 Otworzyć kranik czujnika w celu dokonania pomiaru warunków atmosferycznych. Wykres ciśnienia powinien mieć kształt linii poziomej.

6 Nacisnąć fizyczny przycisk zerowania -0- bezpośrednio na przewodzie ciśnienia i przytrzymać

go przez trzy sekundy lub dotknąć przycisku zerowania **10-0** widocznego na ekranie. Po zakończeniu zerowania rozlegnie się sygnał dźwiękowy i pojawi się komunikat "**Wyzerowane**"

- wraz z bieżącą godziną i datą nad wykresem krzywej dla portu podłączonego przewodu ciśnienia.
- 7 Potwierdzić stabilność wyzerowanego ciśnienia i przekręcić kraniki tak, aby czujniki odczytywały ciśnienie wewnątrznaczyniowe pacjenta.
- 8 W razie potrzeby można skierować wyjściowy sygnał ciśnienia na podłączony monitor pacjenta. Więcej informacji na temat tej opcji — patrz *Wyjście sygnału ciśnienia* na stronie 175.
- **9** Dotknąć ikony ekranu głównego **(A)**, aby rozpocząć monitorowanie. Wykaz kluczowych parametrów tabela 10-1 dostępnych przy określonym typie konfiguracji zawiera.

Po rozpoczęciu monitorowania z użyciem przewodu ciśnienia można również wyświetlić krzywą ciśnienia krwi przy użyciu opcji wyświetlania krzywej ciśnienia tętniczego. Patrz *Wyświetlanie krzywej ciśnienia krwi w czasie rzeczywistym* na stronie 89.

Wartości parametrów monitorowanych przy użyciu przetwornika DPT TruWave są uśredniane w okresach 5-sekundowych i wyświetlane z aktualizacją co 2 sekundy. Patrz tabela 6-4 na stronie 122.

10.5 Monitorowanie przy użyciu przewodu ciśnienia w trybie monitorowania za pomocą modułu Swan-Ganz

Przewód ciśnienia HemoSphere podłącza się do pojedynczego portu Swan-Ganz do pomiaru ciśnienia w tętnicy płucnej (PAP) w celu monitorowania wartości tego ciśnienia.

W trybie monitorowania HemoSphere z użyciem modulu Swan-Ganz przewód ciśnienia może być podłączony do przetwornika DPT TruWave w linii tętnicy płucnej.

- 1 Podłączyć jeden koniec przewodu ciśnienia do zaawansowanego monitora HemoSphere.
- **2** Prostym ruchem posuwistym podłączyć lub odłączyć przetwornik DPT TruWave. Instrukcje część 10.4.1 usuwania powietrza z układu podano w instrukcji obsługi przetwornika ciśnienia TruWave oraz w krokach 2–6 w części powyżej.
- **3** Przy użyciu rutynowych procedur kalibracji przetwornika (zgodnych z zasadami ośrodka) zapewnić prawidłowe przekazywanie sygnałów ciśnienia.
- 4 Dotknąć ikony ustawień → zakładki Narzędzia kliniczne → ikony
 Wyzeruj i krzywa →

```
LUB
```

Nacisnąć fizyczny przycisk zerowania **-0-** bezpośrednio na przewodzie ciśnienia i przytrzymać go przez trzy sekundy (patrz rysunek 10-1).

PRZESTROGA Nie naciskać na silę przycisku zerowania przewodu ciśnienia, aby nie uszkodzić przewodu.

5 Na przycisku typu ciśnienia zostanie automatycznie wybrana opcja PAP.

- 6 Postępując zgodnie z instrukcją, wyrównać znajdujący się tuż nad przetwornikiem TruWave kranik (port wentylacyjny) z osią flebostatyczną pacjenta.
- 7 Otworzyć kranik czujnika w celu dokonania pomiaru warunków atmosferycznych. Wykres ciśnienia powinien mieć kształt linii poziomej.
- 8 Nacisnąć fizyczny przycisk zerowania -O- bezpośrednio na przewodzie ciśnienia i przytrzymać

go przez trzy sekundy lub dotknąć przycisku zerowania -0- wie

widocznego na ekranie. Po

zakończeniu zerowania rozlegnie się sygnał dźwiękowy i pojawi się komunikat "**Wyzerowane**" wraz z bieżącą godziną i datą nad wykresem krzywej dla portu podłączonego przewodu ciśnienia.

- **9** Potwierdzić stabilność wyzerowanego ciśnienia i przekręcić kraniki tak, aby czujniki odczytywały ciśnienie w tętnicy plucnej pacjenta.
- 10 Aby ulatwić właściwe umieszczenie końcówki cewnika w tętnicy plucnej, dotknąć przycisku
 Wartość referencyjna. Zostanie wyświetlona bieżąca krzywa ciśnienia wraz z pomocą graficzną w postaci przykładowych krzywych dla różnych pozycji końcówki cewnika.
- 11 Dotknąć ikony ekranu głównego
 , aby powrócić do monitorowania przy użyciu modułu Swan-Ganz. Aby wyświetlić dane dotyczące PAP, należy w dowolnym momencie powrócić do ekranu Wyzeruj i krzywa.

10.6 Ekran Wyzeruj i krzywa

Rysunek 10-2 Ekran Wyzeruj i krzywa

Dostęp do ekranu następuje poprzez menu działań klinicznych. Ekran zapewnia trzy podstawowe funkcje:

- 1 Wybór ciśnienia i zerowanie czujnika
- 2 Wyprowadzenie sygnału ciśnienia
- 3 Sprawdzenie krzywej

10.6.1 Wybór ciśnienia i zerowanie czujnika

Jak opisano powyżej, główną funkcją ekranu **Wyzeruj i krzywa** jest umożliwienie użytkownikowi wyzerowania podłączonego czujnika/przetwornika. Użytkownik powinien wyzerować czujnik przed rozpoczęciem monitorowania z użyciem przewodu ciśnienia.

10.6.2 Wyjście sygnału ciśnienia

Ekran **Wyzeruj i krzywa** umożliwia użytkownikowi przesłanie wyjściowej krzywej ciśnienia do podłączonego monitora pacjenta.

- 1 Podłączyć przewód wyjściowego sygnalu ciśnienia HemoSphere do portu wyjściowego sygnalu ciśnienia w tylnym panelu monitora. Patrz ③, rysunek 3-2 na stronie 57.
- 2 Podłączyć odpowiednią wtyczkę sygnału ciśnienia do zgodnego monitora pacjenta:
 - ciśnienie tętnicze (AP, czerwony)
 - ciśnienie w tętnicy płucnej (PAP, żółty)
 - ośrodkowe ciśnienie żylne (CVP, niebieski)

Upewnić się, że właściwa wtyczka została całkowicie wsunięta do gniazda. Posłużyć się instrukcją obsługi monitora pacjenta.

- 3 Wyzerować monitor pacjenta.
- 4 Potwierdzić, że na monitorze pacjenta jest wyświetlona wartość 0 mmHg i dotknąć przycisku Potwierdź na panelu Prześlij krzywą ciśnienia ekranu Wyzeruj i krzywa.
- 5 Dotknąć ikony Prześlij krzywą ciśnienia , aby rozpocząć wysyłanie sygnału

ciśnienia do monitora pacjenta. Podczas przesyłania aktualnej krzywej do podłączonego monitora pacjenta zostanie wyświetlony komunikat "**Konfiguracja zakończona**".

10.6.3 Potwierdzanie przebiegu krzywej

Na ekranie Wyzeruj i krzywa wyświetlana jest krzywa ciśnienia krwi. Za pomocą tego ekranu lub ciąglego wyświetlania krzywej ciśnienia w czasie rzeczywistym (patrz *Ekran trendów graficznych — dodatkowe pole informacyjne o interwencji* na stronie 89) można oceniać jakość krzywej tętniczej w odpowiedzi na komunikat "Usterka: CO — Sprawdź krzywą tętniczą". Komunikat blędu generowany jest, gdy jakość sygnalu ciśnienia tętniczego pozostaje słaba przez zbyt długi czas.

<u>}-0-</u>

Oś pionowa skalowana jest automatycznie do średniej wartości ciśnienia krwi ±50 mmHg.

Monitorowanie PAP w trybie monitorowania inwazyjnego. Ekranu Wyzeruj i krzywa używa się również do monitorowania ciśnienia w tętnicy plucnej (PAP) podczas stosowania połączenia modułu HemoSphere Swan-Ganz z przewodem ciśnienia. Podczas monitorowania PAP dotknąć przycisku Wartość referencyjna, aby wyświetlić ekran krzywej wyświetlający przykładowe krzywe dla różnych pozycji końcówki cewnika i potwierdzić prawidłowe położenie tętnicy plucnej.

OSTRZEŻENIE Platformy zaawansowanego monitorowania HemoSphere nie należy używać jako monitora częstości tętna ani ciśnienia krwi.

11

Monitorowanie oksymetrii żylnej

Spis treści

Przegląd informacji o przewodzie do oksymetrii1	176
Konfiguracja oksymetrii żylnej	177
Kalibracja in vitro	179
Kalibracja in vivo	180
Wskaźnik jakości sygnału1	181
Przywołaj dane oksymetrii	182
Aktualizuj HGB	184
Resetowanie przewodu do oksymetrii HemoSphere1	184
Nowy cewnik	185

11.1 Przegląd informacji o przewodzie do oksymetrii

Przewód do oksymetrii HemoSphere jest wyrobem wielokrotnego użytku, którego jeden koniec należy podłączyć do zaawansowanego monitora HemoSphere, a drugi koniec — do dowolnego zatwierdzonego cewnika oksymetrycznego firmy Edwards. Przewód do oksymetrii HemoSphere to wyrób nieprzeznaczony do kontaktu z ciałem pacjenta (podczas normalnego użytkowania nie powinien on dotykać ciała pacjenta). Przewód do oksymetrii służy do ciągłego pomiaru wysycenia tlenem krwi żylnej metodą spektrofotometrii odbiciowej. Światło diod LED w przewodzie do oksymetrii jest przekazywane przez światłowód do dystalnego końca cewnika. Ilość światła pochłoniętego, załamanego i odbitego zależy od względnych ilości hemoglobiny utlenowanej i odtlenowanej we krwi. Te dane dotyczące natężenia optycznego są gromadzone przez cewnik do oksymetrii, przetwarzane przez przewód do oksymetrii HemoSphere i wyświetlane na zgodnej platformie do monitorowania. Wyjściowym parametrem jest wysycenie tlenem krwi żylnej mieszanej (SvO₂) lub wysycenie tlenem krwi w żyłach centralnych (ScvO₂).

11.2 Konfiguracja oksymetrii żylnej

W celu uzyskania szczególowych instrukcji dotyczących umieszczenia i stosowania cewnika oraz zapoznania się z odpowiednimi ostrzeżeniami, przestrogami i uwagami należy zapoznać się z instrukcją użytkowania dołączoną do każdego cewnika.

Środek ostrożności. Ostrożnie rozwijać przewód podczas wyjmowania go z opakowania. Nie pociągać za przewód w celu odwinięcia go. Sprawdzić, czy drzwiczki obudowy w punkcie podłączenia cewnika na przewodzie do oksymetrii swobodnie się poruszają i właściwie zatrzaskują. Nie używać przewodu do oksymetrii, jeżeli drzwiczki są uszkodzone, otwarte lub ich nie ma. W razie uszkodzenia drzwiczek skontaktować się z działem pomocy technicznej firmy Edwards.

Przed rozpoczęciem monitorowania przewód do oksymetrii HemoSphere należy skalibrować. Informacje na temat monitorowania oksymetrii tkankowej — patrz *Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere* na stronie 186.

1 Podłączyć przewód do oksymetrii HemoSphere do zaawansowanego monitora HemoSphere. Pojawi się następująca wiadomość:

Inicjowanie przewodu do oksymetrii, proszę czekaj

- **2** Jeśli zaawansowany monitor HemoSphere nie jest włączony, nacisnąć przycisk zasilania, a następnie postępować zgodnie z instrukcjami wprowadzania danych pacjenta. Patrz *Dane pacjenta* na stronie 115.
- **3** Zdjąć element pokrywy tacy cewnika, aby uwidocznić złącze optyczne.
- **4** Umieścić złącze optyczne cewnika "TOP" (górną) stroną w przewodzie do oksymetrii i zatrzasnąć zamknięcie obudowy.

Rysunek 11-1 Podłączanie urządzeń do oksymetrii - przegląd

UWAGA	Wygląd cewnika przedstawiony na rysunku 11-1 jest tylko przykładowy. Rzeczywisty
	wygląd może się różnić w zależności od modelu cewnika.

W trakcie odłączania przewodu do oksymetrii HemoSphere od zaawansowanego monitora HemoSphere lub cewników od przewodu do oksymetrii zawsze należy ciągnąć w miejscu podłączenia. Nie ciągnąć za przewody ani nie używać narzędzi w celu rozłączenia.

Cewniki do tętnicy płucnej i żył centralnych są ELEMENTAMI WCHODZĄCYMI W KONTAKT Z CIAŁEM PACJENTA TYPU CF odpornymi na defibrylację. Przewody pacjenta podłączane do cewnika, np. przewód do oksymetrii HemoSphere, nie są częściami wchodzącymi w kontakt z ciałem pacjenta, ale mogą mieć z nim styczność i spełniają wymagania normy IEC 60601-1 dotyczącej stosownych części wchodzących w kontakt z ciałem pacjenta.

PRZESTROGA Należy się upewnić, że przewód do oksymetrii jest dobrze ustabilizowany, aby zapobiec niepotrzebnym ruchom przyłączonego cewnika.
 OSTRZEŻENIE Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy przewód do oksymetrii HemoSphere (wyposażenie dodatkowe części aplikacyjnej, odpornej na defibrylację) jest podłączony do zgodnej platformy do monitorowania. Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób

nieopisany w niniejszej instrukcji może nie spełniać wymogów tej normy. Stosowanie urządzenia niezgodnie z instrukcją może zwiększyć ryzyko porażenia prądem elektrycznym pacjenta/operatora.

Nie owijać tkaniną korpusu przewodu do oksymetrii ani nie umieszczać go bezpośrednio na skórze pacjenta. Powierzchnia nagrzewa się (do 45°C) i musi oddawać ciepło, aby utrzymać poziom temperatury wewnętrznej. Jeżeli temperatura wewnętrzna przekroczy ustalony limit, wygenerowany zostanie stan usterki oprogramowania.

Nie modyfikować w żaden sposób, nie naprawiać produktu ani nie wprowadzać w nim zmian. Naprawianie, modyfikowanie lub wprowadzanie zmian może wpływać na bezpieczeństwo pacjenta/operatora i/lub na działanie produktu.

11.3 Kalibracja in vitro

Kalibracja in vitro jest przeprowadzana przed wprowadzeniem cewnika do ciała pacjenta przy użyciu kubka kalibracyjnego dostarczonego w opakowaniu cewnika.

UWAGA		Po skalibrowaniu przewodu do oksymetrii w warunkach in vitro lub in vivo monitorowanie oksymetrii żylnej bez podłączonego cewnika pacjenta może powodować usterki lub generowanie alertów.
PRZEST	ſROGA	Nie należy dopuścić do zwilżenia końcówki cewnika ani miseczki kalibracyjnej przed kalibracją in vitro. Należy przepłukać kanał cewnika dopiero po zakończeniu kalibracji in vitro.
		Wykonywanie kalibracji in vitro po umieszczeniu cewnika do oksymetrii w ciele pacjenta będzie skutkowało niedokładną kalibracją.
1	Dotknąć i	kony kalibracji oksymetrii \bigcirc na kafelku parametru $ScvO_2/SvO_2$ lub dotknąć ikony
	ustawień oksymetr	→ zakładka Narzędzia kliniczne <mark>Narzędzia kliniczne</mark> → ikona Kalibracja ii
2	Na górze	ekrony Kalibracia oksymetrii wybrać Rodzaj oksymetrii: ScyO ₂ lub SyO ₂

4 Na ekranie **Kalibracja in vitro** wprowadzić stężenie hemoglobiny (**HGB**) lub hematokrytu (**Hct**) pacjenta. Stężenie hemoglobiny można wprowadzić za pomocą klawiatury w g/dl lub mmol/l. Dopuszczalne zakresy przedstawia tabela 11-1.

Орсја	Opis	Zakres wyboru
HGB (g/dl)	Hemoglobina	od 4,0 do 20,0
HGB (mmol/l)		od 2,5 do 12,4
Hct (%)	Hematokryt	od 12 do 60

Tabela 11-1 Opcje kalibracji in vitro

- 5 Dotknąć przycisku Kalibruj, aby rozpocząć proces kalibracji.
- 6 Po pomyślnym zakończeniu kalibracji pojawi się następujący komunikat:

Prawidłowy wynik kalibracji in vitro, wprowadź cewnik

- 7 Wprowadzić cewnik w sposób opisany w instrukcji użytkowania cewnika.
- 8 Dotknąć przycisku **Rozpocznij**. Po pomyślnej kalibracji ikona kalibracji oksymetrii pojawi się w kolorze szarym.

11.3.1 Błąd kalibracji in vitro

Jeżeli zaawansowany monitor HemoSphere nie może przeprowadzić kalibracji in vitro, pojawi się ekran podręczny blędu.

Dotknąć przycisku Kalibracja in vitro, aby powtórzyć proces kalibracji oksymetrii.

LUB

Dotknąć przycisku Anuluj, aby powrócić do menu Kalibracja oksymetrii.

11.4 Kalibracja in vivo

Funkcja kalibracji in vivo służy do przeprowadzenia kalibracji po umieszczeniu cewnika w ciele pacjenta.

UWAGA Proces ten wymaga sprawdzonego personelu do pobrania objętości krwi odrzucanej (objętości czyszczącej), a następnie próbki krwi do badania laboratoryjnego. Zmierzona wartość oksymetrii musi być uzyskana za pomocą CO-oksymetru. W celu uzyskania optymalnej dokładności kalibrację in vivo należy przeprowadzać przynajmniej co 24 godziny. Podczas kalibracji in vivo wyświetlana jest jakość sygnału. Zaleca się wykonywanie kalibracji tylko wtedy, gdy poziom SQI wynosi 3 lub 4. Patrz *Wskaźnik jakości sygnału* na stronie 181.
 1 Dotknąć ikony kalibracji oksymetrii na kafelku parametru ScvO₂/SvO₂ lub dotknąć ikony ustawień → zakładka Narzędzia kliniczne → ikona Kalibracja

oksymetrii

- 2 Na górze ekranu Kalibracja oksymetrii wybrać Rodzaj oksymetrii: ScvO₂ lub SvO₂.
- 3 Dotknąć przycisku Kalibracja in vivo.
Jeżeli konfiguracja nie powiedzie się, wyświetli się jeden z poniższych komunikatów:

Ostrzeżenie: Wykryto klin lub artefakt ściany. Zmień położenie cewnika.

LUB

Ostrzeżenie: Niestabilny sygnał.

4 Jeśli pojawia się komunikat "Wykryto klin lub artefakt ściany" lub "Niestabilny sygnał", należy podjąć próbę rozwiązania problemu w sposób opisany w tabela 14-19, "Ostrzeżenia oksymetrii żylnej", na stronie 260 i dotknąć przycisku **Skalibruj ponownie**, aby ponownie rozpocząć wyjściową konfigurację.

LUB

Dotknąć przycisku Kontynuuj, aby rozpocząć pobieranie.

- 5 Jeżeli kalibracja wyjściowa powiodła się, dotknąć przycisku Pobierz, a następnie pobrać próbkę krwi.
- 6 Pobierać próbkę krwi po woli (2 ml lub 2 cc przez 30 sekund) i wysłać ją do laboratorium w celu wykonania analizy pomiarów za pomocą CO-oksymetru.
- 7 Po otrzymaniu wyników laboratoryjnych dotknąć przycisku HGB, aby wprowadzić stężenie hemoglobiny pacjenta, i dotknąć g/dl lub mmol/l lub dotknąć przycisku Hct, aby wprowadzić stężenie hematokrytu pacjenta. Dopuszczalne zakresy przedstawia tabela 11-2.

Орсја	Opis	Zakres wyboru
HGB (g/dl)	Hemoglobina	od 4,0 do 20,0
HGB (mmol/l)		od 2,5 do 12,4
Hct (%)	Hematokryt	od 12 do 60

Tabela 11-2 Opcje kalibracji in vivo

UWAGA Po wprowadzeniu wartości HGB lub Hct system automatycznie oblicza drugą wartość. Jeżeli wybrano obie wartości, akceptowana jest ostatnia wprowadzona wartość.

- 8 Wprowadzić wartość laboratoryjną oksymetrii (ScvO₂ lub SvO₂).
- 9 Dotknąć przycisku Kalibruj. Po pomyślnej kalibracji ikona kalibracji oksymetrii w kolorze szarym.

11.5 Wskaźnik jakości sygnału

Wskaźnik jakości sygnału (SQI) jest odzwierciedleniem jakości sygnału w oparciu o stan cewnika i jego położenie w naczyniu. Podczas wykonywania pomiaru oksymetrii tkankowej jakość sygnału zależy od wskaźnika perfuzji tkankowej metodą spektroskopii w bliskiej podczerwieni. Słupki wskaźnika SQI są zapełniane w zależności od poziomu jakości sygnału oksymetrycznego. Poziom SQI jest aktualizowany co dwie sekundy po ukończeniu kalibracji oksymetrii i wyświetlany jest jeden z czterech poziomów sygnałów, jak opisano w tabela 11-3.

Symbol SQI	Kolor	Opis
att	Zielony	Wszystkie wskazania sygnału są optymalne
all	Zielony	Wskazuje umiarkowane pogorszenie jakości sygnału
11	Żółty	Wskazuje słabą jakość sygnału
.11	Czerwony	Wskazuje na poważny problem z jednym lub kilkoma wskazaniami jakości sygnału

Podczas oksymetrii wewnątrznaczyniowej jakość sygnału może ulec pogorszeniu ze względu na następujące czynniki:

- pulsację (na przykład na zaklinowanie końcówki cewnika),
- intensywność sygnału (na przykład z uwagi na zagięcie cewnika, skrzep krwi, hemodylucję),
- sporadyczny kontakt ściany naczynia z cewnikiem.

Jakość sygnału jest wyświetlana podczas kalibracji in vivo i aktualizacji funkcji HGB. Zaleca się wykonywać kalibrację tylko wtedy, gdy poziom SQI wynosi 3 lub 4. Gdy poziom SQI wynosi 1 lub 2, należy zapoznać się z częścią *Komunikaty o błędzie oksymetrii żylnej* na stronie 258, aby ustalić, na czym polega problem, i znaleźć sposób jego rozwiązania.

PRZESTROGA

A Czasami stosowanie urządzeń elektrochirurgicznych wpływa na sygnał SQI. O ile jest to możliwe, należy odsunąć sprzęt do elektrokoagulacji i przewody od zaawansowanego monitora HemoSphere i podłączyć przewody zasilające do osobnych obwodów prądu przemiennego. Jeśli problemy z jakością sygnału będą się utrzymywały, należy skontaktować się z lokalnym przedstawicielem firmy Edwards w celu uzyskania pomocy.

11.6 Przywołaj dane oksymetrii

Funkcja **Przywołaj dane oksymetrii** może być używana do przywoływania danych z przewodu do oksymetrii po odtransportowaniu pacjenta od zaawansowanego monitora HemoSphere. Pozwala na przywołanie ostatniej kalibracji pacjenta wraz z danymi demograficznymi pacjenta w celu natychmiastowego rozpoczęcia monitorowania oksymetrii. Aby korzystać z tej funkcji, dane kalibracyjne w przewodzie do oksymetrii nie mogą być starsze niż 24 godziny.

 UWAGA Jeżeli dane pacjenta zostały już wprowadzone do zaawansowanego monitora HemoSphere, przywoływana jest jedynie informacja o kalibracji systemu. Dane pacjentów są na bieżąco aktualizowane w przewodzie do oksymetrii HemoSphere.

- 1 Z cewnikiem podłączonym do przewodu do oksymetrii HemoSphere, odłączyć przewód od zaawansowanego monitora HemoSphere i transportować go razem z pacjentem. Cewnik nie powinien być odłączony od przewodu do oksymetrii.
- 2 Jeśli przewód do oksymetrii jest podłączany do innego zaawansowanego monitora HemoSphere, należy upewnić się, że dane poprzedniego pacjenta zostały usunięte.
- **3** Po przeniesieniu pacjenta ponownie podłączyć przewód do oksymetrii to zaawansowanego monitora HemoSphere i włączyć monitor.
- 4 Dotknąć szarej ikony kalibracji oksymetrii na kafelku parametru ScvO₂/SvO₂ lub dotknąć

ikony ustawień 🔅 → zakładka **Narzędzia kliniczne** 💿 Narzędzia kliniczne → ikona **Kalibracja**

oksymetrii

- 5 Dotknąć przycisku Przywołaj dane oksymetrii.
- 6 Jeśli dane z przewodu do oksymetrii nie są starsze niż 24 godziny, dotknąć przycisku Tak, aby rozpocząć monitorowanie oksymetrii, wykorzystując przywołane informacje dotyczące kalibracji. LUB

Dotknąć przycisku Nie i przeprowadzić kalibrację in vivo.

OSTRZEŻENIE Przed dotknięciem opcji **Tak** w celu przywołania danych oksymetrii należy potwierdzić, że wyświetlone dane należą do bieżącego pacjenta. Przywołanie niepoprawnych danych kalibracyjnych oksymetrii oraz danych demograficznych pacjenta będzie skutkować niedokładnymi pomiarami.

PRZESTROGA Nie należy odłączać przewodu do oksymetrii, gdy trwa kalibracja lub przywoływanie danych.

7 W menu kalibracji oksymetrii dotknąć przycisku Kalibracja in vivo, aby ponownie

skalibrować przewód. Aby przejrzeć dane pacjenta, który został przetransportowany wraz

z przewodem do oksymetrii, dotknąć ikony ustawień 🏹 → zakładka Narzędzia kliniczne

Narzędzia kliniczne → ikona Dane pacjenta

PRZESTROGA Jeżeli przewód do oksymetrii jest przenoszony z zaawansowanego monitora HemoSphere do innego zaawansowanego monitora HemoSphere, przed rozpoczęciem monitorowania należy sprawdzić, czy wzrost pacjenta, waga i BSA są prawidłowe. Jeśli to konieczne, ponownie wprowadzić dane pacjenta.

UWAGA Należy utrzymywać aktualną godzinę i datę we wszystkich zaawansowanych monitorach HemoSphere. Jeżeli data i/lub godzina przeniesione "z" zaawansowanego monitora HemoSphere różnią się tych przeniesionych "do" zaawansowanego monitora HemoSphere, może się pojawić następujący komunikat: "Dane pacjenta w przewodzie do oksymetrii są starsze niż 24 godziny — Skalibruj ponownie."

Jeżeli system wymaga ponownej kalibracji, może być wymagany 10-minutowy okres nagrzewania się przewodu do oksymetrii.

11.7 Aktualizuj HGB

Użyć opcji **Aktualizuj HGB**, aby dostosować wartość HGB lub Hct z poprzedniej kalibracji. Funkcja aktualizacji może być stosowana tylko wtedy, gdy została przeprowadzona poprzednia kalibracja lub jeśli dane kalibracyjne zostały przywołane z przewodu do oksymetrii.

- Dotknąć szarej ikony kalibracji oksymetrii ona kafelku parametru ScvO₂/SvO₂ lub dotknąć ikony ustawień i ikony ustawień i ikony ustawień i ikony a zakładka Narzędzia kliniczne ikony ikona Kalibracja oksymetrii o.
 Dotknąć przycisku Aktualizuj HGB.
 Można użyć wyświetlonych wartości HGB i Hct lub dotknąć przycisku HGB lub Hct, aby wprowadzić nową wartość.
 Dotknąć przycisku Kalibruj.
 W celu zakończenia procesu kalibracji należy dotknąć ikony anulowania ikony anulowania ikony ikony
- UWAGA W celu uzyskania optymalnej dokładności zaleca się aktualizowanie wartości HGB i Hct, gdy wystąpiła zmiana wartości Hct o co najmniej 6% lub zmiana wartości HGB o co najmniej 1,8 g/dl (1,1 mmol/l). Zmiana wartości hemoglobiny może także wpływać na wskaźnik jakości sygnału SQI. Użyć funkcji Aktualizuj HGB w celu rozwiązania problemów z jakością sygnału.

11.8 Resetowanie przewodu do oksymetrii HemoSphere

Użyć funkcji resetowania przewodu do oksymetrii HemoSphere, gdy poziom SQI jest ciągle wysoki. Zresetowanie przewodu do oksymetrii może ustabilizować jakość sygnału. Powinno być ono wykonywane wyłącznie po wyczerpaniu innych możliwości działań mających na celu rozwiązanie problemu wysokiego poziomu SQI, jak opisano w rozdziale Rozwiązywanie problemów.

UWAGA Zaawansowany monitor HemoSphere nie pozwala na zresetowanie przewodu do oksymetrii przed przeprowadzeniem kalibracji lub przywołaniem kalibracji z przewodu do oksymetrii.

- Dotknąć szarej ikony kalibracji oksymetrii na kafelku parametru ScvO₂/SvO₂ lub dotknąć ikony ustawień → zakładka Narzędzia kliniczne → ikona Kalibracja oksymetrii .
- 2 Dotknąć przycisku Resetowanie przewodu do oksymetrii.
- 3 Zostanie wyświetlony pasek postępu. Nie należy odłączać przewodu do oksymetrii.

11.9 Nowy cewnik

Użyć opcji **Nowy cewnik** za każdym razem, gdy stosowany jest nowy cewnik pacjenta. Po zatwierdzeniu opcji **Nowy cewnik** ustawienia oksymetrii muszą zostać ponownie skalibrowane. W celu uzyskania szczególowych instrukcji dotyczących umieszczenia, stosowania cewnika i rodzaju kalibracji oraz zapoznania się z odpowiednimi ostrzeżeniami, przestrogami i uwagami należy zapoznać się z instrukcją użytkowania dołączoną do każdego cewnika.

- Dotknąć szarej ikony kalibracji oksymetrii na kafelku parametru ScvO₂/SvO₂ lub dotknąć ikony ustawień → zakładka Narzędzia kliniczne → ikona Kalibracja oksymetrii .
 Do do c
- 2 Dotknąć przycisku Nowy cewnik.
- 3 Dotknąć przycisku Tak.

12

Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere

Spis treści

Monitorowanie za pomocą modulu do oksymetrii tkankowej HemoSphere	
Oksymetr tkankowy ForeSight Elite — przegląd informacji	
Łączenie modułu do oksymetrii tkankowej HemoSphere z modułem ForeSight Elite	

12.1 Monitorowanie za pomocą modułu do oksymetrii tkankowej HemoSphere

Moduł oksymetru tkankowego ForeSight Elite (FSM) to urządzenie nieinwazyjne, które mierzy bezwzględne wysycenie tkanek tlenem. Zasada działania modułu jest oparta na dwóch głównych formach hemoglobiny znajdujących się we krwi — jest to hemoglobina utlenowana (HbO₂) oraz hemoglobina odtlenowana (Hb). Każda z tych dwóch form pochłania światło w zakresie bliskiej podczerwieni na różne, mierzalne sposoby.

Poziomy nasycenia tkanek tlenem (StO₂) można ustalić na podstawie stosunku hemoglobiny utlenowanej do hemoglobiny całkowitej na poziomie mikronaczyń (tętniczki, żyłki i naczynia włosowate) w regionie, w którym znajduje się czujnik:

 $\%StO_2 = \underbrace{\begin{array}{c} Hemoglobina \\ utlenowana \\ Hemoglobina całkowita \end{array}}_{HemO_2 + Hb} = \underbrace{\begin{array}{c} HbO_2 \\ HbO_2 + Hb \end{array}}_{HbO_2 + Hb} \times 100$

Moduł FSM wykorzystuje technologię firmy Edwards w celu emisji nieszkodliwego światła w zakresie bliskiej podczerwieni (w pięciu dokładnie określonych długościach fal) przez tkankę pokrywającą (np. skórę głowy i czaszkę) do tkanki znajdującej się poniżej (np. mózgu) za pośrednictwem jednorazowego czujnika znajdującego się na skórze pacjenta. Światło odbite jest przechwytywane przez znajdujące się na czujniku detektory, co zapewnia optymalny odbiór sygnału. Po przeanalizowaniu odbitego światła moduł przekazuje informacje o poziomie nasycenia tkanek tlenem do modułu do oksymetrii tkankowej HemoSphere i zaawansowanego monitora jako liczbę bezwzględną, a dodatkowo udostępnia graficzną reprezentację wartości archiwalnych.

Pulsoksymetr odzwierciedla wyłącznie nasycenie tlenem krwi tętniczej (SpO₂), a do działania wymaga tętna; natomiast moduł FSM wykonuje pomiary nawet w warunkach bez tętna i wyświetla informacje o równowadze między zaopatrzeniem w tlen a zapotrzebowaniem na tlen w tkance docelowej (StO₂) — na

przykład mózgu, jamie brzusznej, mięśniach kończyny. Zatem wartości StO₂ pochodzące z zaawansowanego monitora HemoSphere wskazują ogólny stan wysycenia tkanki tlenem, co zapewnia bezpośrednie informacje pozwalające na podejmowanie decyzji o interwencjach w ramach opieki.

12.2 Oksymetr tkankowy ForeSight Elite — przegląd informacji

Poniższe diagramy przedstawiają przegląd cech fizycznych modulu ForeSight Elite.

Rysunek 12-2 Oksymetr tkankowy ForeSight Elite — widok z tyłu

UWAGA W celu poprawy przejrzystości w niniejszym podręczniku obrazy tylu obudowy nie przedstawiają etykiet.

12.2.1 Rozwiązania do mocowania modułu ForeSight Elite

W pakiecie modułu oksymetru tkankowego ForeSight Elite (FSM) znajduje się zacisk montażowy.

Na rysunkach (Rysunek 12-3 i rysunek 12-4) wskazano punkty mocowania na zacisku montażowym i obudowie modułu.

Rysunek 12-3 Zacisk montażowy - punkty zaczepu do prowadnicy na module

12.2.2 Instalowanie zacisku montażowego

Zacisk montażowy można zamocować na module FSM w ustawieniu pionowym (zwykle w przypadku użytkowania na ramie łóżka — patrz rysunek 12-5) albo poziomym (zwykle w przypadku mocowania na statywie — patrz rysunek 12-6).

Aby zamocować zacisk montażowy w pionie:

- 1 Na tylnej ściance modulu ustawić zacisk montażowy w taki sposób, aby skierować gniazdo w stronę prowadnicy zacisku montażowego.
- 2 Wsuwać zacisk montażowy w stronę górnej części modulu do momentu zablokowania zaczepu mocującego zacisku montażowego w zaglębieniu do unieruchomienia zacisku montażowego (w pionie).

UWAGA Zacisk montażowy nie jest przeznaczony do zamocowania z otwarciem skierowanym w górę.

Rysunek 12-5 Mocowanie zacisku montażowego w pionie (rysunek w trakcie opracowywania)

Aby zamocować zacisk montażowy w poziomie:

- 1 Ustawić zacisk montażowy w taki sposób, aby jego zaczep mocujący skierować w lewą lub w lewą stronę, ale nie w stronę zacisku montażowego.
- 2 Wsuwać zacisk montażowy po tylnej ściance modułu do momentu zablokowania zaczepu mocującego zacisku montażowego w jednym z zagłębień do unieruchomienia zacisku montażowego w poziomie.

UWAGA Zacisk montażowy można zamontować w taki sposób, aby jego otwarcie skierować w lewą lub prawą stronę.

Rysunek 12-6 Mocowanie zacisku montażowego w poziomie

12.2.3 Zdejmowanie zacisku montażowego

Aby zdjąć zacisk montażowy z tylnej ścianki modułu (patrz rysunek 12-7 na stronie 191):

1 Delikatnie podnieść zaczep mocujący zacisku montażowego, aby wysunąć go z zaglębienia.

PRZESTROGA	Zastosowanie zbyt dużej siły może spowodować wyłamanie zaczepu mocującego, co może spowodować ryzyko upadku modułu na pacjenta, osobę postronną lub operatora.
UWAGA	W celu uzyskania informacji o częściach zamiennych należy zadzwonić pod jeden z numerów działu pomocy technicznej, które są podane na wewnętrznej stronie okładki. Informacje o zatwierdzonych częściach i akcesoriach zawiera tabela B-1 na stronie 274.

2 Przesuwać zacisk montażowy w kierunku zaczepu mocującego zacisk montażowy do momentu uwolnienia zacisku montażowego z jego prowadnicy.

Rysunek 12-7 Zdejmowanie zacisku montażowego

- **3** Zdjąć zacisk montażowy z tylnej ścianki modułu.
- **PRZESTROGA**Nie należy w żaden sposób podnosić ani pociągać modulu ForeSight Elite za
żaden jego przewód ani ustawiać modulu w żadnym położeniu, które może
spowodować ryzyko upadku modulu na pacjenta, osobę postronną lub operatora.Unikać umieszczania modulu ForeSight Elite pod prześcieradłem bądź kocem,
który mógłby ograniczać przepływ powietrza wokół modulu, ponieważ może to
spowodować wzrost temperatury obudowy modulu i wywołać zagrożenie
obrażeniami ciała.

12.3 Łączenie modułu do oksymetrii tkankowej HemoSphere z modułem ForeSight Elite

Moduł do oksymetrii tkankowej HemoSphere jest zgodny z modułem oksymetru tkankowego ForeSight Elite (modułem FSM) i z czujnikami do oksymetrii tkankowej ForeSight Elite (czujnikami FSE). Moduł do oksymetrii tkankowej HemoSphere pasuje do standardowego gniazda modułu.

Rysunek 12-8 Przegląd połączeń modułu do oksymetrii tkankowej HemoSphere

UWAGA	Czujniki FSE są odpornymi na defibrylację CZĘŚCIAMI APLIKACYJNYMI TYPU BF. W myśl założeń dotyczących przeznaczenia przewodów pacjenta podłączanych do czujników, np. do modułu ForeSight Elite, elementy te nie są częściami aplikacyjnymi, ale mogą mieć styczność z ciałem pacjenta i spełniają wymagania normy IEC 60601-1 dotyczącej stosownych części aplikacyjnych.
	Moduł ForeSight Elite może być podłączony do pacjenta podczas defibrylacji.
	Moduł do oksymetrii tkankowej jest przesyłany z założonymi na gniazda połączeniowe modułu FSM pokrywami zabezpieczającymi przed wyładowaniami elektrostatycznymi (ang. electrostatic discharge, ESD). Po ich zdjęciu przy pierwszym użyciu sytemu zaleca się ich zachowanie, a następnie zakładanie na złącza elektryczne w celu ich zabezpieczenia, gdy nie są używane.
OSTRZEŻENIE	Zgodność z normą IEC 60601-1 jest zachowana jedynie wtedy, gdy moduł do oksymetrii tkankowej HemoSphere (podłączany do części aplikacyjnej, odporny na defibrylację) jest podłączony do zgodnej platformy do monitorowania.

	Podłączenie urządzeń zewnętrznych albo skonfigurowanie systemu w sposób nieopisany w niniejszej instrukcji może nie spełniać wymogów tej normy. Stosowanie urządzenia niezgodnie z instrukcją może zwiększyć ryzyko porażenia prądem elektrycznym pacjenta/operatora.
	Przed podłączeniem należy sprawdzić wszystkie przewody modułu ForeSight Elite pod kątem uszkodzeń. W przypadku zauważenia jakichkolwiek uszkodzeń nie wolno używać modułu do czasu przeprowadzenia jego serwisu lub wymiany. Skontaktować się z działem pomocy technicznej firmy Edwards. Istnieje ryzyko, że uszkodzone części mogą obniżyć wydajność modułu lub spowodować zagrożenie bezpieczeństwa.
	Aby wyeliminować jakiekolwiek ryzyko przenoszenia zanieczyszczeń między pacjentami, moduł ForeSight Elite oraz przewody należy czyścić każdorazowo po zakończeniu stosowania tych elementów u konkretnego pacjenta.
	W przypadku poważnego zanieczyszczenia modułu lub przewodów krwią albo innymi płynami ustrojowymi w celu ograniczenia ryzyka przenoszenia zanieczyszczeń i zakażeń krzyżowych te elementy należy zdezynfekować. Jeśli nie można zdezynfekować modułu ForeSight Elite lub przewodów, wówczas należy je poddać serwisowaniu, wymienić albo wyrzucić. Skontaktować się z działem pomocy technicznej firmy Edwards.
	Aby ograniczyć ryzyko uszkodzenia elementów wewnętrznych zespołów przewodów w module ForeSight Elite, należy unikać nadmiernego pociągania i zginania przewodów modułu oraz poddawania ich innym rodzajom obciążeń.
	Nie modyfikować w żaden sposób, nie naprawiać produktu ani nie wprowadzać w nim zmian. Naprawianie, modyfikowanie lub wprowadzanie zmian może wpływać na bezpieczeństwo pacjenta/operatora i/lub na działanie produktu.
PRZESTROGA	Nie wprowadzać modułu do gniazda na siłę. Należy przyłożyć równomierny nacisk, aby wsunąć moduł, a następnie zablokować w odpowiednim położeniu, czemu będzie towarzyszyć dźwięk kliknięcia.
1 Nacisnąć są dostęp	przycisk zasilania, aby włączyć zaawansowany monitor HemoSphere. Wszystkie funkcje one z poziomu ekranu dotykowego.
2 Poprawn modulu podłączy	ie ustawić, a następnie podłączyć przewód host modułu ForeSight Elite (FSM) do do oksymetrii tkankowej. Do każdego z modułów do oksymetrii tkankowej można ć maksymalnie dwa moduły ForeSight Elite.
UWAGA	Przewód host można podłączyć tylko w jeden sposób. Jeśli przy pierwszej próbie łącznik nie wchodzi do gniazda, należy je obrócić i ponowić próbę podłączenia.
	W celu odłączenia modułu ForeSight Elite od modułu do oksymetrii tkankowej HemoSphere nie należy pociągać za komunikacyjny przewód host tego modułu.

Gdy konieczne jest wyjęcie modulu do oksymetrii tkankowej HemoSphere z monitora, należy nacisnąć przycisk zwalniający, aby odblokować moduł i wysunąć go na zewnątrz.

Po podłączeniu przewodu host zaświecą się diody LED kanału 1 i kanału 2. Zaświeci się również dioda LED stanu grupy, co oznacza, że kanały modulu należą do grupy A (podłączenie do portu A na wprowadzonym module do oksymetrii tkankowej) lub grupy B (podłączenie do portu B na wprowadzonym module do oksymetrii tkankowej).

Rysunek 12-9 Dioda LED stanu modułu ForeSight Elite

- **3** Wybrać przycisk **Kontynuuj dla tego samego pacjenta** lub przycisk **Nowy pacjent** i wprowadzić dane nowego pacjenta.
- 4 Podłączyć zgodny(-e) czujnik(i) ForeSight Elite (FSE) do modułu ForeSight Elite (FSM). Do każdego z modułów FSM można podłączyć maksymalnie dwa czujniki FSE. Dostępne miejsca zamocowania czujników wskazuje tabela 12-1. Informacje dotyczące prawidłowego mocowania czujnika patrz *Mocowanie czujników na ciele pacjenta* na stronie 196 oraz instrukcja obsługi czujnika FSE.
- W oknie Wybór trybu monitorowania wybrać przycisk trybu monitorowania Inwazyjny lub Minimalnie inwazyjna odpowiednio do potrzeb.
- 6 Dotknąć przycisku Uruchomienie monitorowania.

Symbol (prawa strona)*	Symbol (lewa strona)*	Miejsce zamocowania* na ciele u osoby doroslej (≥40 kg) (rozmiar czujnika)	Miejsce zamocowania* na ciele u dziecka (<40 kg) (rozmiar czujnika)
9	£	Mózg (duży rozmiar)	Mózg (średni/mały rozmiar)
Ŕ	A	Bark (duży rozmiar)	Nie dotyczy

Tabela 12-1 Miejsca zamocowania czujnika do oksymetrii tkankowej

■ StO₂

Symbol (prawa strona)*	Symbol (lewa strona)*	Miejsce zamocowania* na ciele u osoby doroslej (≥40 kg) (rozmiar czujnika)	Miejsce zamocowania* na ciele u dziecka (<40 kg) (rozmiar czujnika)		
<u>∱</u>	X	Ramię (duży rozmiar)	Nie dotyczy		
Ŕ	Ŕ	Bok/brzuch (duży rozmiar)	Bok/brzuch (średni/mały rozmiar)		
(†	Nie dotyczy	Brzuch (średni/mały rozmiar)		
Ŕ	Ŕ	Kończyna dolna — mięsień czworogłowy (duży rozmiar)	Kończyna dolna — mięsień czworogłowy (średni rozmiar)		
<u>*</u>		Kończyna dolna — łydka (mięsień brzuchaty łydki lub mięsień piszczelowy; duży rozmiar)	Kończyna dolna — łydka (mięsień brzuchaty łydki lub mięsień piszczelowy; średni rozmiar)		
*Symbole są kodowane kolorami odpowiednio do kanału grupy modułu ForeSight Elite: kolor zielony odpowiada kanałowi A, a kolor niebieski — (pokazany) odpowiada kanałowi B					

Tabela 12-1 Miejsca zamocowania czujnika do oksymetrii tkankowej (ciąg dalszy)

- 7 Jeżeli StO₂ nie jest aktualnym parametrem kluczowym, należy dotknąć wyświetlanej etykiety parametru, która znajduje się wewnątrz kafelka dowolnego parametru, aby wybrać StO₂ <K> jako parametr kluczowy z menu konfiguracji kafelka. <K> oznacza kanał czujnika. Kanały dostępne w przypadku modułu FSM A to A1 i A2, a w przypadku modułu FSM B kanały B1 oraz B2.
- 8 Wskazanie kanału pojawi się w lewym górnym rogu kafelka parametru. Dotknąć

ikony z sylwetką pacjenta 🎢 w kafelku parametru w celu otwarcia okna

Lokalizacja czujnika.

9 Wybrać tryb monitorowania pacjenta doroslego 🗛 🗼 lub dziecka 🥼

UWAGATryb czujnika zostanie automatycznie wybrany na podstawie wprowadzonej masy
ciała pacjenta. Tryb czujnika dla dorosłych stosowany jest u pacjentów o masie
ciała ≥ 40 kg.

10 Wybrać miejsce zamocowania czujnika na ciele pacjenta. Listę dostępnych miejsc zamocowania czujników zawiera tabela 12-1. Miejsca zamocowania czujnika są oznaczone kolorami odpowiednio do portu połączeniowego do oksymetrii tkankowej HemoSphere:

- Zielony: Miejsca zamocowania modułu FSM podłączonego do portu A na module do oksymetrii tkankowej HemoSphere
- Niebieski: Miejsca zamocowania modułu FSM podłączonego do portu B na module do oksymetrii tkankowej HemoSphere
- 11 Dotknąć ikony ekranu głównego 💦, aby wrócić do ekranu monitorowania.

12.3.1 Mocowanie czujników na ciele pacjenta

W poniższych sekcjach opisano sposób przygotowania pacjenta do monitorowania. Dodatkowe informacje na temat sposobu umieszczania czujnika na ciele pacjenta są dostępne w instrukcjach dołączonych do opakowania czujnika ForeSight Elite.

12.3.1.1 Wybór miejsca przymocowania czujnika

Aby zapewnić bezpieczeństwo pacjenta i właściwe gromadzenie danych, przy wyborze miejsca na czujnik należy rozważyć poniższe zagadnienia.

OSTRZEŻENIE	Czujniki nie są sterylne i dlatego nie należy ich umieszczać na skórze z otarciami, skórze popękanej ani poranionej. Zaleca się ostrożność w przypadku nakładania czujników na miejsca z delikatną skórą. Umieszczanie czujników, przyklejanie plastra lub przyciskanie takiego miejsca może zmniejszyć krążenie i/lub spowodować pogorszenie stanu skóry.
	Nie umieszczać czujników na miejscach ze słabą perfuzją. Aby zapewnić najlepsze przyleganie czujnika, należy unikać powierzchni skóry z nierównościami. Nie umieszczać czujników nad miejscami z wodobrzuszem, zapaleniem tkanki łącznej, odmą czaszkową ani obrzękiem.
	Jeśli będą wykonywane zabiegi elektrokauteryzacji, wówczas czujniki i elektrody elektrokauteryzacyjne należy umieszczać w jak największych odstępach, aby zapobiec niepożądanym oparzeniom skóry. Zaleca się zachowanie odległości co najmniej 15 cm (6 cali).
PRZESTROGA	Czujników nie należy umieszczać na obszarach o dużym zagęszczeniu włosów.
	Czujnik musi być umieszczony na czystej, suchej skórze. Obecność zanieczyszczeń, płynu, olejku, pudru, potu lub włosów, które mogą pogorszyć dobry kontakt między czujnikiem a skórą, wpłynie na poprawność pobranych danych i może skutkować wystąpieniem komunikatu alarmowego.
UWAGA	Pigmentacja skóry nie wpływa na poprawność zebranych danych. Moduł ForeSight Elite automatycznie kompensuje zmiany pigmentacji skóry.
	W sytuacji, gdy lokalizacji wybranej tkanki nie można wyczuć palpacyjnie ani nie jest możliwa jej wzrokowa ocena, wówczas zalecane jest zastosowanie obrazowania USG lub RTG.

Tabela 12-2 zawiera wytyczne wyboru czujnika odpowiednio do trybu monitorowania pacjenta, masy ciała pacjenta oraz części ciała.

			Część ciała				
Tryb pacjenta	Czujnik	Masa ciała	Mózg	Bok	Brzuch	Nogi	Ramiona/ mięśnie naramienne
Osoba dorosła	Duży	≥40 kg	\checkmark	\checkmark		\checkmark	\checkmark
Tryb dziecka	Średni	≥3 kg	\checkmark	\checkmark	~	\checkmark	
Tryb	Mały	<8 kg	\checkmark				
dziecka/ noworodka		<5 kg	\checkmark	\checkmark	~		
Tryb	Mały,	<8 kg	\checkmark				
dziecka/ noworodka	nieprzylepny	<5 kg	\checkmark	\checkmark	\checkmark		

Tabela 12-2 Matryca wyboru czujnika

UWAGA

Podłączenie czujnika w rozmiarze nieodpowiednim do aktualnego trybu monitorowania pacjenta spowoduje, że odpowiedni kanał wyświetli alert na pasku stanu. Jeśli jest to jedyny podłączony czujnik, może pojawić się monit o przelączenie trybów (na tryb osoby dorosłej lub dziecka).

Podłączenie czujnika w rozmiarze nieodpowiednim do wybranej części ciała spowoduje, że odpowiedni kanał wyświetli alert na pasku stanu. Jeśli jest to jedyny podłączony czujnik, może pojawić się monit o wybranie innej części ciała lub użycie czujnika innego rozmiaru.

OSTRZEŻENIE

ZŻENIE Z modułem ForeSight Elite można używać wyłącznie akcesoria dostarczone przez firmę Edwards. Akcesoria firmy Edwards zapewniają bezpieczeństwo pacjenta i zachowują integralność, dokładność i kompatybilność elektromagnetyczną modułu ForeSight Elite. Podłączenie czujnika innego niż wyprodukowany przez firmę Edwards spowoduje odpowiedni alert w tym kanale, a ponadto nie zostanie zarejestrowana żadna wartość StO₂.

> Czujniki są przeznaczone do użytku u jednego pacjenta i nie mogą być przygotowywane do ponownego użycia — ponownie użyte czujniki stwarzają zagrożenie przeniesienia zanieczyszczeń lub zakażenia.

Dla każdego pacjenta należy używać nowego czujnika, a po użyciu należy go wyrzucić. Utylizacja powinna odbywać się zgodnie z przepisami obowiązującymi lokalnie w szpitalu i instytucji.

Jeśli czujnik jest w jakikolwiek sposób uszkodzony, nie wolno go używać.

Zawsze należy zapoznać się z informacjami na opakowaniu czujnika.

12.3.1.2 Przygotowywanie miejsca przymocowania czujnika

Aby przygotować skórę pacjenta do umieszczenia czujnika, należy:

- 1 Upewnić się, że obszar skóry, na którym ma zostać umieszczony czujnik, jest czysty, suchy, nieuszkodzony oraz wolny od pudru, olejku i płynu.
- 2 W razie potrzeby wybrane miejsce należy ogolić.
- 3 Do delikatnego oczyszczenia wybranego miejsca umieszczenia czujnika należy użyć odpowiedniego środka czyszczącego.

W pakietach dużych i średnich czujników znajduje się gazik nasączony alkoholem. Gazika nasączonego alkoholem nie należy używać w przypadku noworodków ani na delikatnej skórze. W przypadku pacjentów o delikatnej skórze lub z obrzękiem można przykleić pod czujnikiem plaster Tegaderm lub Mepitel.

4 Przed nałożeniem czujników należy pozostawić skórę do całkowitego wyschnięcia.

12.3.1.3 Nakładanie czujników

- 1 Wybrać odpowiedni czujnik (patrz tabela 12-2 na stronie 197) i wyjąć go z opakowania.
- 2 Zdjąć warstwę ochronną z czujnika i ją wyrzucić (rysunek 12-10).

Rysunek 12-10 Zdejmowanie warstwy ochronnej z czujnika

UWAGA Jeśli używany jest mały czujnik nieprzylepny, należy zmierzyć i przyciąć opaskę czujnika, aby dopasować jej długość do pacjenta.

- Skrócić opaskę czujnika z dala od pacjenta. Nie przecinać opaski czujnika, gdy jest ona założona na pacjencie. Nie przecinać żadnej innej części czujnika.
- Zalożyć opaskę czujnika na pacjenta tak, aby nadruk znajdował się od zewnętrznej strony.
- Nie napinać nadmiernie opaski czujnika, gdyż nacisk może zostać przeniesiony na dziecko.

3 Zamocować czujnik w wybranym miejscu na ciele pacjenta.

Zastosowanie w okolicy mózgu (rysunek 12-11): Wybrać na czole lokalizację, w której zostaną liniowo ułożone czujniki: powyżej brwi i tuż poniżej linii włosów.

Rysunek 12-11 Umieszczenie czujnika (w obrębie mózgu)

Zastosowanie w obszarach innych niż mózg (rysunek 12-12): Wybrać miejsce zapewniające najlepszy dostęp do właściwej tkanki mięśni szkieletowych (jeśli nie można wyczuć mięśnia palcami, może występować zbyt dużo tkanki tłuszczowej lub obrzęk).

- Ramię: umieścić czujnik na mięśniu naramiennym (staw barkowy), bicepsie (ramię) lub na mięśniu ramienno-promieniowym.
- Noga: umieścić czujnik na mięśniu czworogłowym (udo), brzuchatym łydki (łydka) lub na mięśniu piszczelowym (łydka). Umieścić czujnik tak, aby złącze było skierowane w stronę stóp.
- Bok/brzuch: umieścić czujnik na mięśniu najszerszym grzbietu (bok) lub zewnętrznym skośnym mięśniu brzucha (brzuch).

Rysunek 12-12 Umieszczenie czujnika (w miejscach innych niż okolica mózgu)

UWAGA	W przypadku monitorowania tkanki mięśnia umieścić czujnik na środku wybranego obszaru mięśnia (np. na środku w górnej połowie łydki — zgodnie ze schematem).
	Mięsień charakteryzujący się znaczną atrofią może nie zawierać wystarczającej ilości tkanki do monitorowania.
	Jeśli wymagane jest monitorowanie pod kątem skutków ograniczenia krążenia w kończynie, należy umieścić czujnik na kończynie badanej oraz w tym samym miejscu na przeciwległej kończynie.
OSTRZEŻENIE	Podczas nakładania czujników zachować najwyższą ostrożność. Obwody czujników są wykonane z materiałów przewodzących i nie mogą się stykać z żadnymi innymi uziemionymi częściami przewodzącymi — mogą się stykać wyłącznie z monitorami EEG lub monitorami entropii. Takie zetknięcie przerywa izolację pacjenta i likwiduje ochronę zapewnianą przez czujnik.

OSTRZEŻENIE Nieprawidłowe nałożenie czujników może spowodować niedokładne pomiary. Czujniki niewłaściwie nałożone lub częściowo zerwane mogą spowodować albo zwiększenie, albo zmniejszenie odczytywanego poziomu wysycenia tlenem.

> Czujnika nie należy umieszczać w takim miejscu, w którym będzie obciążany masą ciała pacjenta. Przedłużone okresy nacisku (spowodowane na przykład umieszczeniem przylepca na czujniku albo tym, że pacjent obciąża czujnik, leżąc na nim) powodują nacisk czujnika na skórę, co może prowadzić do obrażeń skóry i obniżenia sprawności czujnika.

> Miejsca zamocowania czujników należy sprawdzać nie rzadziej niż co 12 godzin w celu zmniejszenia ryzyka nieprawidłowego przyklejenia czujnika, upośledzenia krążenia i naruszenia ciągłości skóry. Jeśli stan krążenia lub ciągłość skóry zostały naruszone, czujnik należy umieścić w innym miejscu.

12.3.1.4 Podłączanie czujników do przewodów

- **1** Upewnić się, że moduł ForeSight Elite jest podłączony do modułu do oksymetrii tkankowej, a czujniki są poprawnie umieszczone na skórze pacjenta.
- 2 Użyć zacisków na przewodzie czujnika, aby go zamocować i zapobiec odciągnięciu przewodu od pacjenta.

OSTRZEŻENIE Do modułu ForeSight Elite nie należy podłączać więcej niż jednego pacjenta, ponieważ takie podłączenie przerywa izolację pacjenta i likwiduje ochronę zapewnianą przez czujnik.

PRZESTROGA	W przypadku użytkowania w otoczeniach z oświetleniem diodowym może pojawić się konieczność zasłonięcia czujników przed podłączeniem do przewodu, ponieważ niektóre systemy o wysokim natężeniu światła mogą zakłócać działanie funkcji czujnika, która polega na wykrywaniu światła w zakresie bliskiej podczerwieni.
	Nie należy w żaden sposób podnosić ani pociągać modułu ForeSight Elite za żaden jego przewód, ani ustawiać modułu ForeSight Elite w żadnym położeniu, które może spowodować ryzyko upadku modułu na pacjenta, osobę postronną lub operatora.

3 Ustawić złącze czujnika przed złączem przewodu czujnika, a oznaczenia na każdym z nich ustawić w jednej linii (rysunek 12-13).

Rysunek 12-13 Podłączanie czujnika do przewodu przedwzmacniacza

- **4** Włożyć złącze czujnika prosto do złącza przewodu czujnika, aż zablokuje się w odpowiednim położeniu.
- 5 Delikatnie pociągnąć czujnik, aby sprawdzić, czy czujnik jest całkowicie osadzony w złączu.
- **6** Sprawdzić, czy pełne podłączenie czujnika spowodowało zmianę koloru diody LED stanu kanału na module ForeSight Elite (FSM) z białego na zielony. Patrz rysunek 12-14.

Rysunek 12-14 Podłączanie czujnika do przewodu przedwzmacniacza

PRZESTROGA	Po rozpoczęciu monitorowania pacjenta nie należy wymieniać czujnika ani odłączać czujnika na dłużej niż 10 minut, aby uniknąć ponownego uruchomienia początkowego obliczenia StO ₂ .
UWAGA	Jeśli po rozpoczęciu monitorowania u nowego pacjenta moduł FSM nie może prawidłowo odczytać danych czujnika, na pasku stanu może zostać wyświetlony komunikat informujący o konieczności sprawdzenia, czy czujniki zostały prawidłowo umieszczone na ciele pacjenta.
	Należy upewnić się, że czujniki prawidłowo przylegają do ciała pacjenta, a następnie odrzucić komunikat i rozpocząć monitorowanie.

12.3.2 Odłączanie czujników po monitorowaniu

Po zakończeniu monitorowania pacjenta należy zdjąć czujniki z ciała pacjenta i odłączyć czujniki od przewodu czujnika, postępując zgodnie z opisem w instrukcjach zawartych w opakowaniu czujnika ForeSight Elite.

12.3.3 Uwagi dotyczące monitorowania

12.3.3.1 Użytkowanie modułu podczas defibrylacji

OSTRZEŻENIE	Moduł został zaprojektowany w taki sposób, aby sprzyjać zapewnianiu bezpieczeństwa pacjenta. Wszystkie części modułu są "odpornymi na defibrylację częściami aplikacyjnymi typu BF", są chronione przed skutkami wyładowania defibrylatora i mogą pozostać przyczepione do ciała pacjenta. W trakcie wyładowania defibrylatora i nie dłużej niż dwadzieścia (20) sekund po nim odczyty modułu mogą być niedokładne.			
	W przypadku korzystania z tego sprzętu z defibrylatorem nie jest wymagane podejmowanie żadnych osobnych działań, ale w celu zapewnienia odpowiedniej ochrony przed skutkami działania defibrylatora należy używać wyłącznie czujników dostarczanych przez firmę Edwards.			
	Podczas defibrylacji nie należy dotykać ciała pacjenta, ponieważ może to spowodować poważne obrażenia lub zgon.			

12.3.3.2 Zakłócenia

PRZESTROGA

GA Obecność źródła silnego pola elektromagnetycznego (np. aparatury elektrochirurgicznej) może mieć negatywny wpływ na pomiary. Podczas użytkowania takiego sprzętu pomiary mogą być niedokładne.

Podwyższone poziomy karboksyhemoglobiny (ang. carboxyhemoglobin, COHb) lub methemoglobiny (ang. methemoglobin, MetHb) mogą prowadzić do niedokładnych lub błędnych pomiarów, podobnie jak barwniki wewnątrznaczyniowe oraz wszelkie substancje zawierające barwniki, które zmieniają zwykle zabarwienie krwi. Do innych czynników, które mogą wpływać na dokładność pomiaru, należą między innymi: mioglobina, hemoglobinopatie, niedokrwistość, lokalne nagromadzenie się krwi pod skórą, zakłócenia wynikające z ciał obcych na ścieżce czujnika, bilirubinemia, barwniki zastosowane zewnętrznie (tatuaże), wysoki poziom Hgb lub HCt i znamiona. PRZESTROGA W przypadku użytkowania w otoczeniach z oświetleniem diodowym może pojawić się konieczność zasłonięcia czujników przed podłączeniem do przewodu, ponieważ niektóre systemy o wysokim natężeniu światła mogą zakłócać działanie funkcji czujnika, która polega na wykrywaniu światła w zakresie bliskiej podczerwieni.

12.3.3.3 Interpretowanie wartości StO₂

OSTRZEŻENIE Jeśli dokładność jakiejkolwiek wartości wyświetlanej na monitorze budzi wątpliwości, należy w inny sposób określić parametry życiowe pacjenta. Działanie systemu alarmowego związanego z monitorowaniem pacjenta musi być regularnie sprawdzane oraz zawsze w przypadku wątpliwości dotyczących integralności produktu.
 Działanie modułu ForeSight Elite należy testować co najmniej raz na 6 miesięcy zgodnie z podręcznikiem serwisowym HemoSphere. Nieprzestrzeganie tego zalecenia może prowadzić do obrażeń ciała. Jeśli moduł nie odpowiada, nie wolno go używać do czasu przeprowadzenia jego przeglądu lub wymiany. Dane kontaktowe działu pomocy technicznej znajdują się na wewnętrznej stronie okładki.

UWAGAW przypadku pacjentów z całkowitym obustronnym zamknięciem tętnic szyjnych
zewnętrznych (ang. external carotid artery, ECA) wyniki pomiarów mogą być
niższe od oczekiwanych.

Tabela 12-3 podsumowuje metodologię walidacji związaną z modułem FSM.

Populacja pacjentów	Czujnik ForeSight	Wartość referencyjna dotycząca okolicy mózgu	Wartość referencyjna dotycząca okolicy innej niż mózg	Typ pomiaru	Zakres masy ciała pacjentów
Osoba dorosła	Duży	CO-oksymetria opuszki żyły szyjnej oraz próbki krwi tętniczej	CO-oksymetria żyły centralnej i próbki krwi tętniczej	Jednopunktowy	≥ 40 kg
Pacjenci pediatryczni — młodzież, dzieci, niemowlęta i noworodki	Średni	CO-oksymetria żyły szyjnej wewnętrznej oraz próbki krwi tętniczej i żylnej	CO-oksymetria żyły centralnej i próbki krwi tętniczej	Jednopunktowy	≥ 3 kg

Tabela 12-3 Metodologia walidacji StO₂

Populacja pacjentów	Czujnik ForeSight	Wartość referencyjna dotycząca okolicy mózgu	Wartość referencyjna dotycząca okolicy innej niż mózg	Typ pomiaru	Zakres masy ciała pacjentów
Pacjenci pediatryczni — młodzież, dzieci, niemowlęta i noworodki	Mały	CO-oksymetria żyły szyjnej wewnętrznej oraz próbki krwi tętniczej	CO-oksymetria żyły centralnej i próbki krwi tętniczej	Jednopunktowy	od 3 do 8 kg
Pacjenci pediatryczni — noworodki (urodzone w terminie, przedwcześnie, z niską masą urodzeniowa, z bardzo niską masą urodzeniową)	Mały	FORE-SIGHT MC3010 ¹	CO-oksymetria żyły pępowinowej i próbki poddane pulsoksymetrii	Dane StO ₂ uśredniane w oknach dwuminutowych ²	< 5 kg
¹ Badanie, którego celem była walidacja dla okolic mózgu — w odróżnieniu od innych badań walidacyjnych ForeSight Elite —					

Tabela 12-3 Metodologia walidacji StO₂ (ciąg dalszy)

¹ Badanie, którego celem była walidacja dla okolic mózgu — w odróżnieniu od innych badań walidacyjnych ForeSight Elite — nie obejmowało pomiarów inwazyjnych z powodu trudności, jakich doświadczały centra medyczne, z uzyskiwaniem zgody na wprowadzanie cewnika do żyły szyjnej wewnętrznej u bardzo małych pacjentów.

² Dane StO₂ były uśredniane w oknach dwuminutowych w przypadku noworodków urodzonych w terminie, wcześniaków z niską masą urodzeniową (ang. low birth weight, LBW) i bardzo niską masą urodzeniową (ang. very low birth weight, VLBW) z następujących powodów: 1) w celu ograniczenia wpływu gwałtownych zmian StO₂ spowodowanych zmianą ułożenia ciała lub dotykiem, ponieważ parametry hemodynamiczne u wcześniaków LBW i VLBW nie są tak stabilne, jak u noworodków z prawidłową masą urodzeniową, oraz 2) aby umożliwić pomiary przy użyciu obu czujników FORE-SIGHT MC3010 i ForeSight Elite albo w wielu miejscach na brzuchu w tym samym czasie znamionowym — takie rozwiązanie było stosowane u najmniejszych noworodków, u których jednocześnie tylko jeden czujnik mieścił się na głowie albo w ustalonym miejscu na brzuchu.

12.3.4 Licznik czasu: sprawdzanie stanu skóry

Miejsca zamocowania czujników do pomiarów oksymetrii tkankowej muszą być sprawdzane nie rzadziej niż co 12 godzin w celu zmniejszenia ryzyka nieprawidłowego przyklejenia czujnika, upośledzenia krążenia i naruszenia ciągłości skóry. Funkcja **przypomnienia o sprawdzeniu stanu skóry** domyślnie wyświetla przypomnienie co 12 godzin. Możliwa jest zmiana odstępu czasowego, po którym wyświetli się powiadomienie:

1 Dotknąć w dowolnym miejscu kafelka parametru $\operatorname{StO}_2 \rightarrow$ zakładka Lokalizacja

czujnika Lokalizacja czujnika

- 2 Dotknąć przycisku wartości funkcji przypomnienia o sprawdzeniu stanu skóry, aby wybrać odstęp czasu między powiadomieniami o sprawdzaniu skóry. Możliwe są następujące opcje:
 2 godziny, 4 godziny, 6 godzin, 8 godzin lub 12 godzin (ustawienie domyślne).
- **3** W celu zresetowania licznika czasu wybrać opcję **resetowania** na przycisku wartości funkcji **przypomnienia o sprawdzeniu stanu skóry**.

12.3.5 Ustawianie czasu uśredniania

Możliwe jest dostosowanie czasu uśredniania w celu uzyskania średniej wartości z punktów danych z monitorowania. Krótsze czasy uśredniania ograniczają filtrowanie nieregularnych punktów danych lub punktów danych z zakłóceniami.

1 Dotknąć w dowolnym miejscu kafelka parametru $StO_2 \rightarrow zakładka$ Lokalizacja

czujnika	Lokalizacja czujnika
----------	----------------------

2 Dotknąć przycisku wartości funkcji Uśrednianie, aby wskazać odstęp czasowy powiadomień dotyczących sprawdzania stanu skóry. Możliwe są następujące opcje: Powoli, Normalnie (ustawienie domyślne) oraz Szybko.

12.3.6 Wskaźnik jakości sygnału

Wskaźnik jakości sygnału (ang. signal quality indicator, SQI), wyświetlany w obrębie kafelków parametrów skonfigurowanych w przypadku pomiarów oksymetrii tkankowej, informuje o jakości sygnału mierzonej na podstawie wskaźnika perfuzji tkankowej metodą spektroskopii w bliskiej podczerwieni. Patrz *Wskaźnik jakości sygnału* na stronie 181.

12.3.7 Ekran stanu fizjologicznego w trybie oksymetrii tkankowej

Podczas monitorowania z użyciem modulu do oksymetrii tkankowej HemoSphere dostępne są trzy dodatkowe ekrany stanu fizjologicznego informujące o zależnościach między wartościami oksymetrii z danego miejsca zamocowania czujnika a parametrami dotyczącymi układu sercowo-naczyniowego. Te trzy widoki przedstawia rysunek 12-15 poniżej. Domyślny ekran stanu fizjologicznego podczas monitorowania z użyciem modulu do oksymetrii tkankowej to widok oksymetrii tkankowej, który na pierwszej pozycji pokazuje rysunek 12-15. Dotknąć ikony serca, aby wyświetlić główny ekran stanu fizjologicznego, który opisano w części *Ekran stanu fizjologicznego* na stronie 92. Aby powrócić do widoku oksymetrii tkankowej, dotknąć ikony lupy.

oksymetria tkankowa

oksymetria mózgowa/układu sercowo-naczyniowego

oksymetria mózgowa

Rysunek 12-15 Ekrany stanu fizjologicznego w trybie oksymetrii tkankowej

Oksymetria tkankowa — w widoku tym wyświetlane są monitorowane wartości pomiarów oksymetrii tkankowej, w tym z miejsc zamocowania czujników mózgowych, oraz dowolne monitorowane parametry dotyczące układu sercowo-naczyniowego pokazywane na głównym ekranie stanu fizjologicznego, który opisano w części *Ekran stanu fizjologicznego* na stronie 92. Aby powrócić do tego ekranu po przejrzeniu innych ekranów stanu fizjologicznego, należy dotknąć ikony lupy.

Oksymetria mózgowa/układu sercowo-naczyniowego — widok ten przypomina główny ekran stanu fizjologicznego, ale dodatkowo zawiera wartości dotyczące oksymetrii mózgowej, jeśli są dostępne. W celu wyświetlenia tego widoku należy dotknąć ikony serca lub mózgu na ekranie stanu fizjologicznego w trybie oksymetrii tkankowej.

Oksymetria mózgowa — w widoku oksymetrii mózgowej wyświetlane są wartości pomiarów oksymetrii tkankowej ze skonfigurowanych czujników mózgowych. W celu wyświetlenia tego widoku należy dotknąć ikony mózgu na ekranie stanu fizjologicznego w trybie oksymetrii tkankowej.

13

Funkcje zaawansowane

Spis treści

Funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI)	208
Rozszerzone monitorowanie parametrów	.229
Test odpowiedzi na podane płyny	.233

13.1 Funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI)

Podczas stosowania czujnika Acumen IQ podłączonego do cewnika tętnicy promieniowej funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI) powiadamia lekarza, gdy u pacjenta zostanie wykryty trend wskazujący na możliwość wystąpienia zdarzenia niedociśnienia oraz powiązanych parametrów hemodynamicznych. Zdarzenie niedociśnienia jest zdefiniowane jako średnie ciśnienie tętnicze (MAP) < 65 mmHg przez co najmniej minutę. Dokładność przedstawianych pomiarów jest zależna od kilku czynników: linia tętnicza musi działać w sposób wiarygodny (bez tłumienia sygnału), podłączony czujnik ciśnienia linii tętniczej musi być poprawnie ustawiony i odpowiednio wyzerowany, a dane demograficzne pacjenta (wiek, płeć, wzrost i waga) muszą być dokładnie wprowadzone do urządzenia.

PRZESTROGA	Efektywność parametru HPI ustalono na podstawie danych dotyczących krzywej
	ciśnienia tętnicy promieniowej. Nie oceniano efektywności parametru HPI
	na podstawie wartości ciśnienia tętniczego mierzonego w innych miejscach
	(np. w tętnicy udowej).

Funkcja Acumen HPI jest przeznaczona do stosowania u leczonych chirurgicznie i nieleczonych chirurgicznie pacjentów, u których prowadzone jest zaawansowane monitorowanie parametrów hemodynamicznych. Dodatkowe dane ilościowe dotyczące stanu fizjologicznego pacjenta, dostarczane przez funkcję Acumen HPI, mają wyłącznie charakter informacyjny; nie należy podejmować żadnych decyzji terapeutycznych wyłącznie w oparciu o wartość parametru Wskaźnik predykcji niedociśnienia (Acumen HPI).

Środki ostrożnościJeśli w ocenie lekarza wartość średniego ciśnienia tętniczego (MAP) < 65 mmHg nie będzie wystarczająco istotna dla konkretnego pacjenta, lekarz może wyłączyć całkowicie funkcję HPI w menu ustawień parametru, a jeśli informacje dostępne na drugim ekranie są użyteczne, wówczas może wyciszyć alarm HPI z ekranu Alarmy/wartości docelowe.

PRZESTROGA	 Niedokładne pomiary FT-CO mogą być spowodowane przez takie czynniki jak: Niepoprawnie wyzerowany i/lub wypoziomowany czujnik/przetwornik. Nadmiernie lub niewystarczająco tłumione przewody ciśnienia.
	Nadmierne wahania ciśnienia krwi. Niektóre warunki, które powodują

wahania ciśnienia krwi, to między innymi:

- * Aparaty do kontrapulsacji wewnątrzaortalnej.
- Każda sytuacja kliniczna, w której ciśnienie tętnicze jest uznawane za niedokładne lub niereprezentatywne dla ciśnienia aortalnego, między innymi następujące sytuacje:
 - * Ekstremalne zwężenie naczyń obwodowych, które powoduje uzyskiwanie nieodpowiedniej krzywej ciśnienia w tętnicy promieniowej.
 - * Warunki hiperdynamiczne występujące po przeszczepieniu wątroby.
- Nadmierne ruchy pacjenta.

• Zakłócenia powodowane przez aparat do elektrokauteryzacji lub elektrochirurgii. Niedomykalność zastawki aortalnej może powodować zbyt wysokie oszacowanie objętości wyrzutowej/pojemności minutowej serca w zależności od zaawansowania schorzenia zastawek oraz objętości krwi wracającej do lewej komory.

Wskaźnik predykcji niedociśnienia (Acumen HPI), który może zostać skonfigurowany jako parametr kluczowy na wszystkich ekranach monitorowania, jest wyświetlany jako wartość całkowita z zakresu od 0 do 100, przy czym wyższe wartości wskazują wyższe prawdopodobieństwo wystąpienia zdarzenia niedociśnienia. Ponadto funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI) udostępnia trzy dodatkowe konfigurowalne parametry — dP/dt, Ea_{dyn} oraz PPV, które razem z SVV ułatwiają podejmowanie decyzji na podstawie obciążenia wstępnego [SVV lub PPV], kurczliwości [dP/dt] i obciążenia następczego [Ea_{dyn}]. Dodatkowe informacje na temat SVV, dP/dt i Ea_{dyn} zawierają następujące części: *Wskaźnik predykcji niedociśnienia (Acumen HPI)* na stronie 210, *Dodatkony ekran HPI* na stronie 217 oraz *Zastosowanie kliniczne* na stronie 219.

W celu aktywacji funkcji programowej Acumen HPI platforma wymaga wprowadzenia hasła dostępu do ekranu Zarządzanie funkcjami, gdzie należy wpisać klucz aktywacji. W celu uzyskania dodatkowych informacji na temat włączania tej zaawansowanej funkcji należy skontaktować się z lokalnym przedstawicielem firmy Edwards.

Wartości HPI, podobnie jak innych parametrów monitorowanych, są aktualizowane co 20 sekund. Gdy wartość HPI przekroczy 85, zostanie uruchomiony alarm o wysokim priorytecie. Jeśli wartość HPI przekroczy 85 przez dwa kolejne odczyty (łącznie 40 sekund), wówczas pojawi się ekran podręczny alertu wysokiego HPI z zaleceniem sprawdzenia parametrów hemodynamicznych pacjenta. Informacje dotyczące stanu hemodynamicznego związanego z niedociśnieniem są dostępne dla użytkownika na dodatkowym ekranie HPI. Informacje te zawierają kilka parametrów kluczowych (MAP, CO, SVR, PR i SV), a także bardziej zaawansowane wskaźniki obciążenia wstępnego, kurczliwości i obciążenia następczego (SVV lub PPV, dP/dt, Ea_{dyn}). Dodatkowo parametry hemodynamiczne pacjenta mogą być oceniane poprzez przegląd aktualnie skonfigurowanych parametrów kluczowych — na przykład SVV, PPV, CO i SVR.

Gdy funkcja Acumen HPI zostanie aktywowana, użytkownik może wybrać opcję konfiguracji wskaźnika predykcji niedociśnienia (HPI) jako parametru kluczowego, może go wyświetlić na pasku informacji albo nie wyświetlać go. Parametry dP/dt, Ea_{dvn} i PPV również można skonfigurować jako parametry kluczowe.

Informacje dotyczące konfiguracji tego parametru znajdują się w częściach "HPI jako parametr kluczowy" i "HPI na pasku informacji". Patrz *HPI jako parametr kluczowy* na stronie 212 i *HPI na pasku informacji* na stronie 215.

Funkcje alarmu i alertu dla wartości HPI będą się różniły pod względem wybranej opcji wyświetlania wartości HPI, co przedstawia tabela 13-1.

Opcja wyświetlania	Alarm dźwiękowy i wizualny	Ekran podręczny alertu
Parametr kluczowy	Tak	Tak
Pasek informacji	Nie	Tak
Brak wyświetlania	Nie	Nie

Wartości graniczne alarmu HPI nie są regulowane (inaczej niż w przypadku innych parametrów monitorowanych), ponieważ HPI nie jest parametrem fizjologicznym z wybieranym zakresem docelowym (tak jak na przykład pojemność minutowa serca), a raczej przypomina prawdopodobny stan fizjologiczny. Wartości graniczne alarmu są wyświetlane w oprogramowaniu, ale elementy sterujące przeznaczone do zmiany wartości granicznych alarmu są wyłączone. Wartość graniczna alarmu dla parametru HPI (> 85 dla zakresu alarmu czerwonego) jest wartością stałą, której nie można modyfikować.

Wskazówki wizualne i dźwiękowe dostępne dla użytkownika, gdy wartość HPI jest > 85 (zakres alarmu czerwonego), są wynikiem analizy wielu zmiennych krzywej ciśnienia tętniczego oraz danych demograficznych pacjentow, a także zastosowania zależnego od danych modelu opracowanego w toku retrospektywnego tworzenia adnotacji dotyczących epizodów niedociśnienia oraz innych epizodów. Wartość graniczną alarmu HPI przedstawia tabela 13-2 na stronie 211 oraz tabela D-4 na stronie 285. Charakterystykę działania algorytmu dla progu alarmu wynoszącego 85 przedstawia tabela 13-9, która jest dostępna w części dotyczącej walidacji klinicznej.

Parametry dP/dt, Ea_{dyn} i PPV można skonfigurować jako parametry kluczowe. PPV i dP/dt zachowują się jak inne monitorowane parametry, jednak Ea_{dyn} nie jest parametrem, w odniesieniu do którego generowane są alarmy. W przypadku Ea_{dyn} nie są dostępne zakresy alarmów/wartości docelowych, a wskaźniki stanu wartości docelowych są zawsze białe. W celach referencyjnych linia kreskowana jest widoczna przy wartości 0,8 na wykresie trendu graficznego Ea_{dyn} .

13.1.1 Wskaźnik predykcji niedociśnienia (Acumen HPI)

Wartość HPI jest aktualizowana co 20 sekund i wyświetlana jako wartość prawdopodobieństwa wystąpienia zdarzenia niedociśnienia na skali od 0 do 100. Im wyższa jest ta wartość, tym większe jest prawdopodobieństwo wystąpienia zdarzenia niedociśnienia (MAP < 65 mmHg przez co najmniej jedną minutę).

Algorytm parametru HPI wykorzystuje dane z pierwszych dziesięciu minut monitorowania w celu wyznaczenia "wartości bazowej". W związku z tym działanie urządzenia w ciągu tych pierwszych dziesięciu minut może być inne. Tabela 13-2 przedstawia szczegółowe wyjaśnienie i interpretację elementów graficznych wyświetlania wskaźnika HPI (linia trendu, segment pokrętła [wyświetlacz na kokpicie], alarmy dźwiękowe oraz wartość parametru [wyświetlacz w postaci kafelka]), a także zalecane działanie użytkownika, gdy HPI zostanie skonfigurowany jako parametr kluczowy.

OSTRZEŻENIE

Funkcja Wskaźnik predykcji niedociśnienia (Acumen HPI) nie powinna być jedyną podstawą leczenia pacjentów. Przed rozpoczęciem leczenia zaleca się sprawdzenie stanu hemodynamicznego pacjenta.

Tabela 13-2 Elementy graficzne oraz sygnały dźwiękowe dotyczące wartości HPI

Wartość HPI	Elementy graficzne	Sygnały dźwiękowe	Interpretacja ogólna	Zalecane działanie użytkownika
HPI ≤ 85	Biały	Brak	Parametry hemodynamiczne pacjenta wskazują na to, że istnieje niewielkie lub umiarkowane prawdopodobieństwo wystąpienia zdarzenia niedociśnienia. Niska wartość HPI nie wyklucza możliwości wystąpienia zdarzenia niedociśnienia w ciągu następnych 5–15 minut u pacjentów leczonych chirurgicznie lub w ciągu następnych 20–30 minut u pacjentów nieleczonych chirurgicznie bez względu na wartość MAP.	Następuje kontynuacja monitorowania parametrów hemodynamicznych pacjenta. Należy zachować czujność w odniesieniu do zmiany parametrów hemodynamicznych pacjenta — w tym celu należy korzystać z głównego ekranu monitorowania, dodatkowego ekranu HPI, wyświetlacza HPI oraz sprawdzać trendy parametrów i parametrów życiowych
HPI > 85	Czerwony (migający)	Ton alarmu o wysokim priorytecie	 Prawdopodobieństwo wystąpienia zdarzenia niedociśnienia u pacjenta leczonego chirurgicznie w ciągu 15 minut jest wysokie. Prawdopodobieństwo wystąpienia zdarzenia niedociśnienia u pacjenta nieleczonego chirurgicznie w ciągu 20 minut jest wysokie. 	Sprawdzić parametry hemodynamiczne pacjenta, korzystając z parametrów z ekranu dodatkowego i innych parametrów z ekranu głównego, w celu ustalenia możliwej przyczyny wysokiego prawdopodobieństwa niedociśnienia i wybrania odpowiedniego sposobu działania
HPI > 85 i wartość jest niezmienna przez dwa kolejne odczyty (40 sekund)	Czerwony (migający) Ekran podręczny	Ton alarmu o wysokim priorytecie	 Prawdopodobieństwo wystąpienia zdarzenia niedociśnienia u pacjenta leczonego chirurgicznie w ciągu 15 minut jest wysokie. Prawdopodobieństwo wystąpienia zdarzenia niedociśnienia u pacjenta nieleczonego chirurgicznie w ciągu 20 minut jest wysokie. 	Należy potwierdzić ekran wybraną metodą Sprawdzić parametry hemodynamiczne pacjenta, korzystając z parametrów z ekranu dodatkowego i innych parametrów z ekranu głównego, w celu ustalenia możliwej przyczyny wysokiego prawdopodobieństwa niedociśnienia i wybrania odpowiedniego sposobu działania
HPI = 100	Czerwony (migający) Ekran podręczny	Ton alarmu o wysokim priorytecie	U pacjenta występuje niedociśnienie.	Należy potwierdzić ekran wybraną metodą Sprawdzić parametry hemodynamiczne pacjenta, korzystając z parametrów z ekranu dodatkowego i innych parametrów z ekranu głównego, w celu ustalenia możliwej przyczyny niedociśnienia i wybrania odpowiedniego sposobu działania

UWAGAJeśli parametr HPI jest wyświetlany na pasku informacji, wówczas zmiany
elementu graficznego nie spowodują zmiany kolorów ani alarmów. Zamiast tego,
gdy parametr HPI przekroczy wartość 85 w kolejnych aktualizacjach, użytkownik
będzie powiadamiany poprzez wyświetlenie ekranu podręcznego alertu
wysokiego HPI.

13.1.2 HPI jako parametr kluczowy

Po aktywacji funkcji Acumen HPI użytkownik może skonfigurować wartość HPI jako parametr kluczowy, wykonując czynności, których opis zawiera część Zmiana parametrów na stronie 82.

Sposób wyświetlania HPI różni się pod kilkoma względami od wyświetlania innych parametrów kluczowych. Sposób wyświetlania innych parametrów kluczowych opisuje część *Wskaźniki stanu* na stronie 84.

Tabela 13-3 opisuje podobieństwa i różnice między HPI a innymi parametrami kluczowymi.

Podobieństwa	Różnice
 Aktualizacja wartości co 20 sekund Alarm dźwiękowy, gdy wartość > wartość graniczna alarmu Alarm wizualny, gdy wartość > wartość graniczna alarmu Może wyświetlać zmianę procentową (%), jeśli skonfigurowano Alarm dźwiękowy można wyłączyć 	 Kafelek parametru kluczowego HPI nie zawiera koloru docelowego wyświetlanego kolorową czcionką w zależności od stanu wskażnika klinicznego/alarmu Kafelek parametru kluczowego HPI zawiera klawisz skrótu w prawym górnym rogu, który zapewnia bezpośredni dostęp do dodatkowego ekranu HPI Ekran podręczny alertu HPI wyświetli się, gdy wartość HPI przekroczy wysoką wartość graniczną alarmu po dwóch kolejnych aktualizacjach lub wartość HPI wyniesie 100 Wartość HPI jest dostępna jako parametr kluczowy wyłącznie po wprowadzeniu klucza aktywacji Wartość graniczna alarmu HPI nie jest regulowana Parametr HPI wyświetlany jako trend na głównym ekranie monitorowania nie zawiera regionu wartości docelowych w zielonym kolorze z czerwonymi strzałkami przy górnej i dolnej wartości granicznej, ponieważ nie jest to parametr fizjologiczny z zakresem wartości docelowych. Zamiast tego HPI jest ilościowym wskazaniem stanu fizjologicznego, który jest stosowany do informowania użytkowników o tym, czy u pacjenta występuje trend wskazujący na prawdopodobieństwo zdarzenia niedociśnienia. W szczególności: * Gdy parametr HPI ma wartość 85 lub niższą, wówczas elementy graficzne (wyświetlana liczba, linia trendu lub segment pokrętła) mają kolor biały, a lekarz powinien w dalszym ciągu monitorować parametry hemodynamiczne pacjenta, korzystając z głównego ekranu monitorowania, dodatkowego ekranu HPI, wyświetlanza HPI, oraz sprawdzać trendy parametrów i parametry życiowe. * Gdy HPI przekroczy wartość 85, wówczas elementy graficzne (wyświetlana liczba, linia trendu lub segment pokrętła) mają kolor biały, a lekarz powinien w dalszym ciągu monitorować parametry hemodynamiczne pacjenta, korzystając z głównego ekranu monitorowania, dodatkowego ekranu HPI, wyświetlacza HPI, oraz sprawdzać trendy parametrów z ekranu dodatkowego i innych parametrów z ekranu głównego, w celu ustalenia możliwej przyczyny wystęłeowania niedociśnienia (lub przyczyny występowa

Rysunek 13-1 Kafelek parametru kluczowego HPI

Wartość HPI będzie wyświetlana jak przedstawia rysunek 13-1, jeśli została skonfigurowana jako parametr kluczowy na wszystkich ekranach z wyjątkiem ekranu kokpitu (rysunek 13-2). Więcej informacji na temat ekranu kokpitu zawiera część *Ekran kokpitu* na stronie 93.

Rysunek 13-2 Ekran kokpitu parametru kluczowego HPI

Na wszystkich ekranach monitorowania w prawym górnym rogu kafelka parametru kluczowego HPI znajduje się ikona skrótu Po naciśnięciu tego klawisza skrótu wyświetli się dodatkowy ekran HPI pokazany

na stronie 218.

Na wszystkich ekranach monitorowania, poza ekranem kokpitu, kolor czcionki wartości parametru oznacza stan tego parametru, jak przedstawia tabela 13-4. Na ekranie kokpitu parametr HPI ma takie same zakresy alarmu i wartości docelowych, ale wartość jest wyświetlana w sposób, który przedstawia rysunek 13-2.

Kolor stanu parametru	Dolna wartość graniczna	Górna wartość graniczna			
Szary	Usterka				
Biały	10	85			
Czerwony/szary migający	86	100			

Tabela 13-4 Kolory stanu parametru HPI

13.1.3 Alarm HPI

Gdy wartość HPI została skonfigurowana jako parametr kluczowy i przekracza górną wartość progową wynoszącą 85, aktywuje się alarm o wysokim priorytecie, który wskazuje użytkownikowi, że u pacjenta może występować trend wskazujący na możliwość wystąpienia zdarzenia niedociśnienia. Obejmuje on dźwięk alarmowy, czerwony kolor statusu parametru i migającą wartość parametru. Próg alarmu HPI, który przedstawia tabela 13-4, dzieli zakresy wyświetlania na obszary o niższym i wyższym prawdopodobieństwie wystąpienia zdarzenia niedociśnienia. Algorytm parametru HPI wykorzystuje elementy wyodrębnione z pomiarów Acumen IQ — niektóre z nich są porównywane do początkowej wartości bazowej ustalonej w ciągu pierwszych 10 minut sesji monitorowania pacjenta — do opartego na danych modelu, który został opracowany w toku retrospektywnej analizy bazy danych krzywych ciśnienia tętniczego zarejestrowanych u pacjentów z oddziałów intensywnej terapii i z sal operacyjnych, u których występowały odnotowane zdarzenia niedociśnienia (zdefiniowane jako MAP < 65 mmHg przez co najmniej 1 minutę) oraz zdarzenia niezwiązane z niedociśnieniem. Parametr HPI jest wyświetlany jako wartość całkowita z zakresu od 0 do 100. W ocenie prawdopodobieństwa wystąpienia zdarzenia niedociśnienia w oparciu o wartość HPI należy brać pod uwagę zarówno wyświetlaną wartość z zakresu od 0 do 100, jak i kolor wyświetlanej wartości parametru (biały/czerwony). Głośność dostępnego alarmu HPI, podobnie jak głośność innych alarmów dostępnych na zaawansowanej platformie monitorowania HemoSphere, jest regulowana. Informacje dotyczące wyciszania alarmu i konfiguracji głośności alarmu zawiera część Alarmy/wartości docelowe na stronie 127. Wystąpienie alarmu HPI zostanie zarejestrowane w pliku pobierania danych, gdy po aktualizacji nastąpi przekroczenie wartości granicznej alarmu HPI.

PRZESTROGA

Na podstawie parametru HPI nie zawsze można otrzymać z wyprzedzeniem ostrzeżenie o trendzie wskazującym na możliwość wystąpienia zdarzenia niedociśnienia w sytuacjach, w których interwencja kliniczna skutkuje nagłym niefizjologicznym zdarzeniem niedociśnienia. W razie takiej sytuacji funkcja HPI spowoduje natychmiastowo: wyświetlenie ekranu podręcznego alertu wysokiej wartości, wystąpienie alarmu o wysokim priorytecie oraz wyświetlenie wartości HPI równej 100 informującej o tym, że u pacjenta właśnie trwa zdarzenie niedociśnienia.

13.1.4 HPI na pasku informacji

Nawet gdy parametr HPI nie jest skonfigurowany jako kluczowy, jego wartość jest wciąż wyliczana i wyświetlana na pasku informacji, co przedstawia rysunek 13-3.

Rysunek 13-3 Pasek informacji z parametrem HPI

13.1.5 Wyłączanie wskaźnika HPI na pasku informacji

Aby wyłączyć wskaźnik HPI na pasku informacji:

- 1 Dotknąć ikony ustawień 🏹 → zakladki Ustawienia 🐼 Ustawienia
- 2 Dotknąć przycisku Zaawansowana konfiguracja i wprowadzić wymagane hasło.
- 3 Dotknąć przycisku Ustawienia parametru.
- 4 Dotknąć przycisku Ustawienia HPI.
- 5 Dotknąć przełącznika Zawsze włączaj alert, kiedy HPI jest wysoki, aby przełączyć na opcję Wyłączony. Patrz rysunek 13-4.

Aby ponownie włączyć wskaźnik HPI na pasku informacji, należy powtórzyć czynności opisane w punktach 1–4 i w punkcie 5 przelączyć ustawienie przelącznika na wartość **Włączony**.

Narzędzia kliniczne // Wybie	rz opcję	Ustawienia	(i)	Pomoc		
£	Ustaw	ienia HP	1			
Zawsze włączaj alert, kiedy HPI jest wysoki						
Włączony						

Rysunek 13-4 Ustawienia parametru — wskaźnik predykcji niedociśnienia

Funkcja HPI pozostaje dostępna, nawet gdy wartość HPI nie wyświetla się na ekranie. Jeśli parametr HPI został skonfigurowany jako kluczowy, alarmy i alerty będą się włączać w sposób opisany w części *Alarm HPI* na stronie 215.

13.1.6 Ekran podręczny alertu wysokiej wartości HPI

Gdy wartość HPI przekracza 85 po dwóch kolejnych 20-sekundowych aktualizacjach lub osiągnie wartość 100 w dowolnym czasie, uaktywnia się ekran podręczny alertu wysokiej wartości HPI. Patrz rysunek 13-5. Ten ekran podręczny zaleca sprawdzenie stanu hemodynamicznego pacjenta i wyświetla się, gdy parametr HPI został skonfigurowany jako kluczowy lub pojawia się na pasku informacji.

OSTRZEŻENIE Funkcja Wskaźnik predykcji niedociśnienia (Acumen HPI) nie powinna być jedyną podstawą leczenia pacjentów. Przed rozpoczęciem leczenia zaleca się sprawdzenie stanu hemodynamicznego pacjenta.
Aby sprawdzić stan hemodynamiczny pacjenta na dodatkowym ekranie HPI (patrz *Dodatkowy ekran HPI* na stronie 217) i potwierdzić ekran podręczny alertu wysokiej wartości HPI, należy dotknąć przycisku **Więcej informacji**. Aby potwierdzić ekran podręczny alertu wysokiej wartości HPI bez sprawdzania stanu hemodynamicznego pacjenta na dodatkowym ekranie HPI, należy dotknąć przycisku **Potwierdź**.

Rysunek 13-5 Ekran podręczny alertu wysokiej wartości HPI

Po potwierdzeniu ekranu podręcznego:

- Ekran podręczny zostanie usunięty z wyświetlacza.
- Alarm dźwiękowy HPI zostanie wyciszony na czas aktywności alertu.
- Alert wysokiej wartości HPI zostanie potwierdzony.

Przycisk **Więcej informacji** jest włączony, gdy wyświetlany jest dowolny ekran monitorowania. Po dotknięciu przycisku **Więcej informacji** na ekranie podręcznym alertu wysokiej wartości HPI zostanie wyświetlony dodatkowy ekran HPI. Gdy przycisk **Więcej informacji** jest wyłączony, dostęp do dodatkowego ekranu HPI można wciąż uzyskać, jak opisano w części *Dodatkony ekran HPI* na stronie 217.

Informacje na temat wylączania ekranu podręcznego alertu HPI zawiera część *Wyłączanie wskaźnika HPI na pasku informacji* na stronie 216.

13.1.7 Dodatkowy ekran HPI

Dodatkowy ekran HPI zawiera informacje o stanie hemodynamicznym pacjenta. Na tym ekranie można szybko sprawdzić parametry hemodynamiczne pacjenta dotyczące niedociśnienia. Można uzyskać do niego dostęp w dowolnym momencie podczas monitorowania hemodynamicznego przy użyciu czujnika Acumen IQ.

Dodatkowy ekran HPI, wraz z innymi parametrami kluczowymi na ekranie monitorowania, może udostępniać użyteczne informacje na temat przyczyn dużego prawdopodobieństwa niedociśnienia lub przyczyn wystąpienia niedociśnienia. Do parametrów wyświetlanych na dodatkowym ekranie HPI należą następujące parametry kluczowe:

- Pojemność minutowa serca (CO)
- Częstość tętna (PR)
- Średnie ciśnienie tętnicze (MAP)
- Objętość wyrzutowa (SV)
- Systemowy opór naczyniowy (SVR)

Dodatkowe parametry zaawansowane są uporządkowane na ekranie według obciążenia wstępnego, kurczliwości oraz obciążenia następczego. Do tych parametrów zaawansowanych należą:

- Zmienna objętości wyrzutowej (SVV) lub wahanie ciśnienia tętniczego (PPV)
- Nachylenie fali skurczowej (dP/dt)
- Podatność dynamiczna tętnic (Ea_{dyn})

Aby przełączać wyświetlanie PPV lub SVV, dotknąć nazwy aktualnie wyświetlanego parametru (PPV lub SVV) na dodatkowym ekranie HPI. Dla wszystkich parametrów na dodatkowym ekranie HPI wyświetlana jest także wartość procentowa zmiany oraz kierunek zmiany (strzałka w górę/w dól) w przedziale czasu wybranym przez użytkownika, a także niewielkie wykresy trendu graficznego. Wyświetla się także krzywa ciśnienia tętniczego. Wszystkie okna parametrów są obramowane kolorem aktualnego stanu wartości docelowej, co odpowiada funkcji wskaźnika wizualnego kafelków parametrów.

Rysunek 13-6 Dodatkowy ekran HPI

Aby uzyskać dostęp do dodatkowego ekranu HPI, należy wykonać jedną z poniższych czynności:

- Dotknąć przycisku Więcej informacji Więcej informacji na ekranie podręcznym alertu wysokiej wartości HPI.
- Dotknąć przycisku wskaźnika HPI HPI 84 /100 na pasku informacji.
- Dotknąć ikony skrótu parametru kluczowego HPI
- Dotknąć ikony Ustawienia 💽 → zakładki Narzędzia kliniczne 💿 Narzędzia klini \rightarrow

ikony Dodatkowy ekran HPI

UWAGA Ekran dodatkowy HPI jest dostępny także wtedy, gdy funkcja HPI została aktywowana, ale czujnik Acumen IQ nie został podłączony.

Skale wartości parametrów wyświetlanego trendu graficznego są zgodne z aktualnie skonfigurowanymi skalami na ekranie monitorowania trendu graficznego. Patrz *Wyreguluj wagę* na stronie 134. Skala czasu odpowiada aktualnie wybranej wartości **Zmieniony %**. Bieżąca wartość interwalu zmiany jest wyświetlana w górnej części dodatkowego ekranu HPI. Skonfigurować interwal zmiany bezpośrednio na dodatkowym ekranie HPI, dotykając wyświetlonego interwalu.

Wyświetlane wykresy trendu można wyłączać, dotykając specjalnego przełącznika. Po wyłączeniu wykresów wartości parametrów staną się większe i zastąpią wykresy trendu. Patrz rysunek 13-7.

Aby wyświetlić większy wykres trendu graficznego, należy dotknąć wykresu dowolnego parametru. Wykres trendu graficznego wybranego parametru wyświetli się w miejscu wykresu krzywej ciśnienia krwi. Patrz rysunek 13-7. Wyświetlany wykres nie jest aktualizowany wraz z monitorowanymi wartościami otrzymywanymi po uzyskaniu dostępu do wykresu trendu. Aby zakończyć wyświetlanie powiększonego wykresu trendu graficznego, dotknąć w dowolnym miejscu dodatkowego ekranu HPI. Limit czasu na wykresie trendu graficznego wynosi trzydzieści sekund.

Informacje dotyczące pochodnych parametrów — patrz tabela C-1, dodatek C, Równania stosowane do obliczania parametrów pacjenta.

Rysunek 13-7 Dodatkowy ekran HPI — wyświetlanie wartości w postaci trendu graficznego

13.1.8 Zastosowanie kliniczne

Parametr Wskaźnik predykcji niedociśnienia (Acumen HPI) może zostać skonfigurowany jako parametr kluczowy na ekranie monitorowania lub może być wyświetlany tylko na pasku informacji w prawym dolnym rogu ekranu monitorowania, jak opisano w części *Funkcja programowa Wskaźnik predykcji niedociśnienia (Acumen HPI)* na stronie 208.

- Gdy parametr HPI jest wyświetlany na pasku informacji:
- Gdy druga z kolei wartość HPI przekroczy 85, pojawia się ekran podręczny alertu wysokiej wartości.
- Należy sprawdzać parametry hemodynamiczne pacjenta, korzystając z parametrów z dodatkowego ekranu HPI i innych parametrów z ekranu głównego, w celu ustalenia możliwej przyczyny wysokiego prawdopodobieństwa niedociśnienia i wyboru odpowiedniego sposobu działania.

Gdy parametr HPI jest skonfigurowany jako parametr kluczowy, wówczas wykres trendu pojawia się na ekranie monitorowania:

- Alarm występuje wtedy, gdy HPI przekroczy 85.
- Gdy HPI jest równe 85 lub niższe:
 - * Linia trendu i wartość mają kolor biały.
 - * Następuje kontynuacja monitorowania parametrów hemodynamicznych pacjenta. Należy zachować czujność w odniesieniu do zmiany parametrów hemodynamicznych pacjenta w tym celu należy korzystać z głównego ekranu monitorowania, dodatkowego ekranu HPI, wyświetlacza HPI oraz sprawdzać trendy parametrów i parametrów życiowych.
- Gdy wartość HPI przekroczy 85, należy sprawdzić parametry hemodynamiczne pacjenta, korzystając z parametrów z dodatkowego ekranu HPI i innych parametrów z ekranu głównego, w celu ustalenia możliwej przyczyny wysokiego prawdopodobieństwa niedociśnienia i wybrania odpowiedniego sposobu działania.
- Gdy w kolejnych trzech odczytach średnie ciśnienie tętnicze ma wartość poniżej 65 mmHg, oznacza to wystąpienie zdarzenia niedociśnienia:
 - * Wyświetlana wartość parametru HPI wynosi 100.
 - * Należy sprawdzać parametry hemodynamiczne pacjenta, korzystając z parametrów z dodatkowego ekranu HPI i innych parametrów z ekranu głównego, w celu ustalenia możliwej przyczyny niedociśnienia i wybrania odpowiedniego sposobu działania.

13.1.9 Parametry dodatkowe

- Zmienna objętości wyrzutowej (SVV) oraz wahanie ciśnienia tętniczego (PPV) czułe miary dynamiczne reakcji na płyny, które przewidują, czy po zwiększeniu obciążenia wstępnego poprzez podanie większej ilości płynów lub zmniejszenie żylnej objętości nieściśniętej na skutek zastosowania mechanizmów lub leków kompensacyjnych — serce odpowie zwiększoną objętością wyrzutową [1]. Niskie wartości SVV lub PPV wskazują, że pacjent nie reaguje na płyny; wysokie wartości wskazują, że pacjent reaguje na płyny; jest również szara strefa pomiędzy nimi [6].
- Nachylenie fali skurczowej (dP/dt) maksymalne odchylenie w górę krzywej ciśnienia tętniczego z tętnicy obwodowej. dP/dt ciśnienia tętniczego (ustalone metodą obliczeniową podczas wypływu) będzie mieć wartości bezwzględne niższe niż dP/dt-max ciśnienia w lewej komorze przy takiej samej objętości, ale ich zmiany są ze sobą silnie skorelowane [1, 2].

UWAGA	Nie badano parametru dP/dt mierzonego w tętnicy obwodowej jako wskaźnika
	kurczliwości lewej komory we wszystkich populacjach pacjentów.

Podatność dynamiczna tętnic (Ea_{dyn}) — miara obciążenia następczego lewej komory przez układ tętniczy (podatności tętniczej) względem podatności lewej komory, obliczana jako stosunek PPV do SVV [8]. Podatność tętnic jest integracyjnym parametrem obciążenia tętnic, który uwzględnia systemowy opór naczyniowy (SVR), całkowitą podatność tętnic (C) oraz przedziały czasu skurczu i rozkurczu [9, 10].

Korelacja tych parametrów ze stanem fizjologicznym, a także ich stosunek do wyniku klinicznego, zostały dobrze przebadane i jest wiele pozycji w piśmiennictwie dotyczących tych zależności.

Większość interwencji mających na celu leczenie SV (lub SVI) i MAP wpływa przede wszystkim na SV, a także na czynniki wyznaczające SV, do których należą obciążenie wstępne, kurczliwość, obciążenie następcze. Przed podjęciem decyzji dotyczących leczenia należy uzyskać informacje na temat wszystkich trzech aspektów, ponieważ często są one ze sobą powiązane.

Wykorzystanie parametru SVV jako miary obciążenia wstępnego jest ograniczone do pacjentów poddawanych wentylacji mechanicznej ze stabilną częstotliwością wentylacji i stabilnymi objętościami oddechowymi, u których nie jest stosowane wdmuchiwanie powietrza [6, 7]. Wskaźnika SVV najlepiej używać w połączeniu z oceną objętości wyrzutowej lub pojemności minutowej serca.

dP/dt najlepiej używać w połączeniu ze zmienną objętości wyrzutowej i objętością wyrzutową lub oceną pojemności minutowej serca.

PRZESTROGA	Zachować ostrożność podczas korzystania ze wskaźnika dP/dt u pacjentów z ciężką stenozą aorty, ponieważ stenoza może ograniczać połączenie między lewą komorą a obciążeniem następczym.
	Chociaż parametr dP/dt jest w głównej mierze uzależniony od zmian kurczliwości lewej komory, może na niego wpływać obciążenie następcze podczas stanów wazoplegicznych (braku oddziaływania żylno-tętniczego). W tych okresach parametr dP/dt może nie odzwierciedlać zmian kurczliwości lewej komory.

Normalizacja podatności tętnic przez podatność komory powoduje, że ich stosunek staje się wskaźnikiem dopasowania między lewą komorą a układem tętniczym. Jeśli dopasowanie jest osiągnięte, wówczas istnieje optymalny transfer krwi z lewej komory do układu tętniczego bez utraty energii i z optymalną pracą wyrzutową [3, 8, 9].

Wykazano, że Ea_{dyn} dostarcza wskazania potencjalnej odpowiedzi w postaci obciążenia następczego w celu zwiększenia MAP poprzez podanie objętości pacjentom wentylowanym mechanicznie [4] i pacjentom oddychającym spontanicznie [5], którzy reagują na obciążenie wstępne objętością. Odpowiedź w postaci obciążenia następczego w celu zwiększenia MAP jest potencjalnie większa przy wartościach $Ea_{dyn} > 0,8$ [4, 5, 8].

Stosowanie parametru Ea_{dyn} nie jest ograniczone tylko do pacjentów, którzy są wentylowani mechanicznie, ponieważ jest to parametr wyliczeniowy przedstawiany jako stosunek PPV/SVV [5, 8]. Ea_{dyn} najlepiej używać w połączeniu ze zmienną objętości wyrzutowej (u pacjentów wentylowanych) i objętością wyrzutową lub z oceną pojemności minutowej serca.

Parametry SVV lub PPV, dP/dt i Ea_{dyn} charakteryzują się tym, że często wzajemnie od siebie zależą. Podanie objętości w celu zwiększenia obciążenia wstępnego i zwiększenia objętości wyrzutowej prowadzi do zwiększenia pojemności minutowej serca i ciśnienia tętniczego, a to powoduje zwiększenie obciążenia następczego komory. Zwiększenie obciążenia następczego (zwiększenie ciśnienia aortalnego) poprzez zwiększenie systemowego oporu naczyniowego doprowadzi do zmniejszenia objętości wyrzutowej. Jednak wynikowa zwiększona objętość późnoskurczowa prowadzi do dodatkowego zwiększenia objętości późnorozkurczowej, ponieważ po wyrzucie w komorze pozostaje więcej krwi, a ta dodatkowa krew jest dodawana do powrotu żylnego, co zwiększa napelnienie komory, zwiększając kurczliwość (mechanizm Franka-Starlinga) i częściowo kompensuje zmniejszenie objętości wyrzutu wywołane początkowym wzrostem obciążenia następczego.

SVV lub PPV, dP/dt i Ea_{dyn} powinny być traktowane jako integracyjne parametry ułatwiające podejmowanie decyzji dotyczących interwencyjnego leczenia SV lub SV i MAP.

13.1.10 Walidacja kliniczna

Przeprowadzono retrospektywne kliniczne badania walidacyjne w celu oceny wartości diagnostycznej wskaźnika HPI w zakresie przewidywania zdarzeń niedociśnienia i zdarzeń niezwiązanych z niedociśnieniem u pacjentów leczonych chirurgicznie i nieleczonych chirurgicznie.

13.1.10.1 Pacjenci leczeni chirurgicznie

Dotychczas przeprowadzono dwa badania, w których oceniano skuteczność diagnostyczną wskaźnika HPI u pacjentów leczonych chirurgicznie. Pierwsze retrospektywne kliniczne badanie walidacyjne, mające na celu ocenę skuteczności diagnostycznej wskaźnika HPI w zakresie przewidywania wystąpienia zdarzeń niedociśnienia i zdarzeń niezwiązanych z niedociśnieniem, obejmowało 52 pacjentów leczonych chirurgicznie. Tabela 13-5 przedstawia dane demograficzne pacjentów. Liczba segmentów zdarzeń niedociśnienia uwzględnionych w analizie wyniosła 1058, a łączna liczba segmentów zdarzeń niezwiązanych z niedociśnieniem uwzględnionych w analizie starzeń segmentów zdarzeń niezwiązanych z niedociśnieniem uwzględnionych w analizie wyniosła 521.

Drugie retrospektywne kliniczne badanie walidacyjne obejmowało 204 pacjentów i dostarczyło dodatkowych dowodów dotyczących skuteczności diagnostycznej wskaźnika HPI w zakresie przewidywania wystąpienia zdarzeń niedociśnienia i niezwiązanych z niedociśnieniem. Tabela 13-5 zawiera dane demograficzne pacjentów. Liczba segmentów dotyczących zdarzeń niedociśnienia uwzględnionych w analizie wyniosła 1923, a łączna liczba segmentów zdarzeń niezwiązanych z niedociśnieniem uwzględnionych w analizie wyniosła 3731.

Opis	Kliniczne badanie walidacyjne (N=52)	Kliniczne badanie walidacyjne (N=204)
Liczba pacjentów	52	204
Płeć (mężczyźni)	29	100
Wiek	58,3±11,3	56,7±14,4
BSA	1,8±0,2	1,9±0,3

Tabela 13-5 Dane demograficzne pacjentów (leczonych chirurgicznie)

52 pacjentów leczonych chirurgicznie można podzielić na dwie grupy — takich, którzy przeszli interwencję niekardiologiczną obarczoną wysokim ryzykiem (n=25; 48,1%), oraz takich, którzy przeszli operację wątroby (n=27; 51,9%).

204 pacjentów leczonych chirurgicznie można podzielić na następujące grupy — takich, którzy przeszli operację neurologiczną (n=73; 35,8%), operację w obszarze jamy brzusznej (n=58; 28,4%), operację w obszarze klatki piersiowej (n=8; 3,9%), operację serca (n=6; 3,0%), oraz takich, którzy przeszli inny zabieg chirurgiczny (n=59; 28,9%).

Tabela 13-9 przedstawia wyniki omówionych klinicznych badań walidacyjnych.

13.1.10.2 Pacjenci nieleczeni chirurgicznie

Przeprowadzono dwa badania, w których oceniano skuteczność diagnostyczną wskaźnika HPI u pacjentów nieleczonych chirurgicznie. W pierwszym badaniu, będącym retrospektywnym klinicznym badaniem walidacyjnym, oceniono skuteczność diagnostycznego wskaźnika HPI w zakresie przewidywania wystąpienia zdarzeń niedociśnienia i niezwiązanych z niedociśnieniem. Badanie obejmowało 298 pacjentów nieleczonych chirurgicznie. Tabela 13-6 przedstawia dane demograficzne pacjentów. Liczba segmentów zdarzeń niedociśnienia uwzględnionych w analizie wyniosła 13 911, a łączna liczba segmentów zdarzeń niezwiązanych z niedociśnieniem uwzględnionych w analizie wyniosła 48 490.

Sposób dalszego podziału 298 pacjentów nieleczonych chirurgicznie przedstawia tabela 13-7 poniżej.

Drugie retrospektywne kliniczne badanie walidacyjne obejmowało 228 pacjentów i dostarczyło dalszych dowodów dotyczących skuteczności diagnostycznej wskaźnika HPI w zakresie przewidywania wystąpienia zdarzeń niedociśnienia i niezwiązanych z niedociśnieniem. Tabela 13-6 przedstawia dane demograficzne pacjentów. Liczba segmentów zdarzeń niedociśnienia uwzględnionych w analizie wyniosła 23 205, a łączna liczba segmentów zdarzeń niezwiązanych z niedociśnieniem uwzględnionych w analizie wyniosła 82 461.

Sposób dalszego podziału 228 pacjentów nieleczonych chirurgicznie przedstawia tabela 13-8 poniżej.

Tabela 13-6 Dane demo	graficzne pacjentów	(nieleczonyc	h chirurgicznie)
-----------------------	---------------------	--------------	------------------

Opis	Walidacyjne (N=298)	Niezależne (N=228)
Liczba pacjentów	298	228
Płeć (mężczyźni)	191	128
Wiek	62,6±15,1	63,9±15,6
BSA	1,9±0,3	1,9±0,2

Tabela 13-7 Charakterystyka pacjentów nieleczonych chirurgicznie (N=298)

Diagnoza	Liczba pacjentów	% wszystkich
Cukrzyca	1	0,3
Choroba zakaźna	1	0,3
Wątroba	1	0,3
Tętniak	2	0,7
Zatrucie	2	0,7
Niewydolność nerek	2	0,7
Udar mózgu	2	0,7
Krwotok	4	1,3
Nie określono	4	1,3
Inne	5	1,7
Wstrząs kardiogenny	7	2,3
Zawał serca	8	2,7
Choroba układu oddechowego/ płucnego	8	2,7
Ciężka hipowolemia	8	2,7
Serce	12	4,0
Pacjent po operacji wątroby	25	8,4

Diagnoza	Liczba pacjentów	% wszystkich
Wstrząs septyczny	25	8,4
Pacjent po operacji (innej niż serca lub wątroby)	46	15,4
Posocznica	65	21,8
Pacjent po operacji serca	70	23,5

Tabela 13-7 Charakterystyka pacjentów nieleczonych chirurgicznie (N=298) (ciąg dalszy)

Tabela 13-8 Charakterystyka pacjentów nieleczonych chirurgicznie (N=228)

Diagnoza	Liczba pacjentów	% wszystkich
Choroba układu sercowo- naczyniowego	67	29,5
Krwawienie	24	10,5
Posocznica	19	8,3
Inne	60	26,2
Rak	20	8,7
Choroba układu oddechowego	13	5,7
Schorzenie ortopedyczne	10	4,4
Choroba neurologiczna	3	1,3
Choroba przewodu pokarmowego lub wątroby	12	5,4

Tabela 13-10 przedstawia wyniki omówionych klinicznych badań walidacyjnych.

Zdarzenie niedociśnienia, którego opis zawierają tabela 13-9 i tabela 13-10, jest wyliczane poprzez rozpoznanie segmentu (o długości przynajmniej 1 minuty), w którym wartość MAP wszystkich punktów w sekcji wynosi < 65 mmHg. Punkt danych zdarzenia (dodatniego) jest wybierany jako próbka poprzedzająca o 5 minut zdarzenie niedociśnienia. Jeśli kolejne zdarzenia niedociśnienia są oddalone od siebie o mniej niż 5 minut, wówczas próbka dodatnia jest zdefiniowana jako pierwsza próbka następująca bezpośrednio po poprzednim zdarzeniu niedociśnienia.

Zdarzenie niezwiązane z niedociśnieniem, którego opis zawierają tabela 13-9 i tabela 13-10, jest wyliczane poprzez identyfikację segmentów takich punktów danych, że segment jest oddalony o co najmniej 20 minut od jakichkolwiek zdarzeń niedociśnienia, a wszystkie punkty danych w tym segmencie mają wartość MAP > 75 mmHg. Z każdego segmentu zdarzenia niezwiązanego z niedociśnieniem pobierany jest jeden punkt danych, który dotyczy niezdarzenia (ujemny).

Jak przedstawiają tabela 13-9 i tabela 13-10, wynik prawdziwie dodatni to dowolny punkt danych zdarzenia (dodatni) z wartością wskaźnika HPI wyższą od wybranego progu lub równą temu progowi. Czułość to stosunek liczby zdarzeń prawdziwie dodatnich do łącznej liczby zdarzeń (dodatnich), przy czym zdarzenie dodatnie jest zdefiniowane jako punkt danych poprzedzający zdarzenie niedociśnienia maksymalnie o 5 minut. Falszywie ujemny jest dowolny dodatni punkt danych z wartością wskaźnika HPI niższą niż wartość progowa.

Jak przedstawiają tabela 13-9 i tabela 13-10, wynik prawdziwie ujemny to dowolny ujemny punkt danych (niezdarzenia) z wartością wskaźnika HPI niższą od wybranego progu. Swoistość to stosunek wyników prawdziwie ujemnych do łącznej liczby niezdarzeń (ujemnych), przy czym wynik ujemny jest zdefiniowany

jako punkt danych oddalony o co najmniej 20 minut od jakiegokolwiek zdarzenia niedociśnienia. Falszywie dodatni jest jakikolwiek ujemny punkt danych z wartością wskaźnika HPI większą od progu lub równą temu progowi.

Kliniczne badanie walidacyjne	Wartość progowa wskaźnika HPI	PPV [przedział ufności]	NPV [przedział ufności]	Swoistość (%) [95% przedział ufności]	Liczba prawdziwie ujemnych / liczba niezdarzeń	Czułość (%) [95% przedział ufności]	Liczba prawdziwie dodatnich/ liczba zdarzeń	AUC
(N=52)	85	99,9 (=886/887) [99,7; 100,0]	75,1 (=520/692) [71,9; 78,4]	99,8 [99,4; 100,0]	520/521	83,7 [81,5; 86,0]	886/1058	0,95
(N=204)	85	98,3 (=1265/1287) [97,6; 99,0]	84,9 (=3709/4367) [83,9; 86,0]	99,4 [99,2; 99,7]	3709/3731	65,8 [63,7; 67,9]	1265/1923	0,88

Tabela 13-9 Kliniczne badania walidacyjne* (pacjenci leczeni chirurgicznie)

* Dane z badań prowadzonych przez firmę Edwards Lifesciences

Tabela 13-10 Kliniczne badania walidacyjne* (pacjenci nieleczeni chirurgicznie)

Zestaw danych	Wartość progowa wskaźnika HPI	PPV (%) [95% przedział ufności]	NPV (%) [95% przedział ufności]	Swoistość (%) [95% przedział ufności]	Liczba prawdziwie ujemnych / liczba niezdarzeń	Czułość (%) [95% przedział ufności]	Liczba prawdziwie dodatnich / liczba zdarzeń	AUC
Walida- cyjne (N=298)	85	93,1 (=11 683/ 12 550) [92,6; 93,5]	95,5 (=47 623/ 49 851) [95,3; 95,7]	98,2 (=47 623/ 48 490) [98,1; 98,3]	47 623/ 48 490	84,0 (=11 683/ 13 911) [83,4; 84,6]	11 683/ 13 911	0,94
Nieza- leżne (N=228)	85	86,2 (=19 932/ 23 116) [85,8; 86,7]	96,0 (=79 277/ 82 550) [95,9; 96,2]	96,1 (=79 277/ 82 461) [96,0; 96,3]	79 277/ 82 461	85,9 (=19 932/ 23 205) [85,4; 86,3]	19 932/ 23 205	0,94

* Dane z badań prowadzonych przez firmę Edwards Lifesciences

Tabela 13-11 zawiera odsetki zdarzeń niedociśnienia oraz dane dotyczące czasu do zdarzenia dla podanego zakresu wskaźnika HPI dotyczącego leczonych chirurgicznie pacjentów biorących udział w klinicznym badaniu walidacyjnym (N=52). Dane są prezentowane przy użyciu okien czasowych, które zostały wybrane w oparciu o przeciętną szybkość rozwoju zdarzeń niedociśnienia u pacjentów leczonych chirurgicznie. Dlatego na podstawie danych z klinicznego badania walidacyjnego (N=52) tabela 13-11 przedstawia dane dotyczące pacjentów leczonych chirurgicznie dla 15-minutowego okna czasowego. Ta analiza jest wykonywana poprzez pobieranie próbek dotyczących poszczególnych pacjentów z walidacyjnego zestawu danych i przeszukiwanie w celu znalezienia zdarzenia niedociśnienia w 15-minutowym oknie wyszukiwania. Gdy zdarzenie niedociśnienia zostanie znalezione dla konkretnej próbki, wówczas rejestrowany jest czas do zdarzenia, który jest czasem między próbką a zdarzeniem niedociśnienia. Statystyka czasu do zdarzenia jest średnim czasem zdarzenia z wszystkich próbek, dla których w oknie wyszukiwania wystąpiło zdarzenie.

Tabela 13-12 zawiera odsetki zdarzeń niedociśnienia oraz dane dotyczące czasu do zdarzenia dla podanego zakresu wskaźnika HPI dotyczącego nieleczonych chirurgicznie pacjentów biorących udział w klinicznym badaniu walidacyjnym (N=298). Dane są prezentowane przy użyciu okien czasowych, które zostały wybrane w oparciu o przeciętną szybkość rozwoju zdarzeń niedociśnienia u pacjentów nieleczonych chirurgicznie. Dlatego na podstawie danych z klinicznego badania walidacyjnego (N=298) tabela 13-12 przedstawia dane dotyczące pacjentów nieleczonych chirurgicznie dla 120-minutowego okna czasowego. Ta analiza jest wykonywana poprzez pobieranie próbek dotyczących poszczególnych pacjentów z walidacyjnego zestawu danych i przeszukiwanie w celu znalezienia zdarzenia niedociśnienia w 120-minutowym oknie wyszukiwania.

Gdy zdarzenie niedociśnienia zostanie znalezione dla konkretnej próbki, wówczas rejestrowany jest czas do zdarzenia, który jest czasem między próbką a zdarzeniem niedociśnienia. Statystyka czasu do zdarzenia jest średnim czasem zdarzenia z wszystkich próbek, dla których w oknie wyszukiwania wystąpiło zdarzenie.

Częstość zdarzeń, którą zawierają tabela 13-11 i tabela 13-12, jest stosunkiem liczby próbek ze zdarzeniem w oknie wyszukiwania do łącznej liczby próbek. Takie wyliczenia zostały wykonane dla każdego przedziału wskaźnika HPI w zakresie od 10 do 99, co przedstawiają tabela 13-11 i tabela 13-12.

Odsetek alarmów HPI, po których nastąpiło zdarzenie nadciśnienia u pacjentów nieleczonych chirurgicznie przy zastosowaniu 30-minutowego okna czasowego, wyniósł 86,3% [81,6%; 90,8%] w przypadku zbioru danych walidacyjnych oraz 85,5% [80,8%; 90,6%] w przypadku zbioru danych niezależnych. Tę wartość predykcyjną dodatnią (ang. positive predictive value, PPV) definiuje się jako stosunek alarmów prawdziwych (po których w ciągu 30 minut nastąpiło zdarzenie niedociśnienia) do całkowitej liczby alarmów w ciągu 30 minut.

PRZESTROGA Informacje dotyczące parametru HPI, które zawierają tabela 13-11 i tabela 13-12, przedstawiono jako wytyczne ogólne i nie mogą być traktowane jako dane przypadków indywidualnych. Przed rozpoczęciem leczenia zaleca się sprawdzenie stanu hemodynamicznego pacjenta. Patrz *Zastosowanie kliniczne* na stronie 219.

Zakres HPI	Częstość zdarzeń (%)	Czas do zdarzenia w minutach: mediana [10. percentyl, 90. percentyl]
10–14	14,2	8,0 [4,7; 12,7]
15–19	16,6	6,7 [3,3; 12,6]
20–24	15,4	7,0 [3,3; 14,0]
25–29	16,9	7,8 [3,7; 13,4]
30–34	22,5	9,0 [3,7; 14,0]
35–39	27,4	8,0 [3,3; 13,3]
40–44	31,8	8,3 [3,0; 13,7]
45–49	40,4	8,3 [3,3; 13,7]
50–54	43,4	7,7 [2,7; 13,3]
55–59	44,3	7,3 [3,0; 13,1]
60–64	57,0	6,7 [2,7; 12,8]
65–69	56,8	5,7 [2,3; 12,3]
70–74	67,2	5,7 [2,0; 11,7]
75–79	81,0	4,7 [2,0; 11,0]
Zakres HPI	Częstość zdarzeń (%)	Czas do zdarzenia w minutach: mediana [10. percentyl, 90. percentyl]

Tabela 13-11 Walidacja kliniczna (pacjenci leczeni chirurgicznie [N=52])

Tabela 13-11 Walidacja kliniczna (pacjenci leczeni chirurgicznie [N=52]) (ciąg dalszy)

80–84	84,2	5,0 [1,7; 12,3]
85–89	92,9	4,0 [1,7; 10,3]
90–94	95,8	3,7 [1,3; 10,0]
95–99	97,6	1,3 [0,3; 8,0]

Tabela 13-12 Walidacja kliniczna (pacjenci nieleczeni klinicznie [N=298])

Zakres wskaźnika HPI	Częstość zdarzeń (%)	Czas do zdarzenia w minutach: Mediana [10. percentyl; 90. percentyl]
10–14	13,8	51,0 [10; 104,0]
15–19	17,2	48,7 [10; 102,3]
20–24	20,8	51,0 [9,9; 105,3]
25–29	25,1	48,5 [9,3; 104,0]
30–34	29,6	48,2 [9,3; 102,3]
35–39	35,2	45,0 [8,3; 102,0]
40–44	38,0	43,7 [7,0; 101,7]
45–49	41,3	39,3 [6,3; 100,0]
50–54	43,7	38,7 [5,7; 99,3]
55–59	46,1	35,3 [5,3; 96,7]
60–64	53,0	28,7 [4,0; 93,7]
65–69	60,2	16,0 [2,7; 88,0]
70–74	67,8	9,0 [1,7; 70,7]
75–79	76,3	7,0 [1,4; 44,7]
80–84	85,3	5,7 [1,3; 19,0]
85–89	89,9	5,0 [1,0; 16,7]
90–94	94,9	3,6 [1,0; 13,7]
95–99	99,6	1,3 [0,3; 8,3]

13.1.11 Piśmiennictwo

- 1 De Hert et al, Evaluation of Left Ventricular Function in Anesthetized Patients Using Femoral Artery dP/dtmax. Journal of Cardiothoracic and Vascular Anesthesia 2006; 20(3): 325–330.
- **2** Tartiere et al, Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur Journal of Heart Failure 2007; 9: 477–483.
- 3 Monge Garcia MI, Orduna PS, Cecconi M. Understanding arterial load. Intensive Care Med 2016; 42: 1625–1627.
- **4** Monge Garcia MI, Manuel Gracia Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, Cecconi M. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Critical Care 2014; 18: 626–637.
- 5 Cecconi M, Monge Garcia MI, Romero MG, Mellinghof J, Caliandro F, Grounds RM, Rhodes A. 2015. The Use of Pulse Pressure Variation and Stroke Volume Variation in Spontaneously Breathing Patients to Assess Dynamic Arterial Elastance and to Predict Arterial Pressure Response to Fluid Administration. Anesth Analg 2015; 120: 76–84.
- 6 Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness. A "gray zone" approach. Anesthesiology 2011; 115: 231–241.
- 7 Cannesson M, Musard H, Desebbe O, Boucau C, Simon R, Henaine R, Lehot JJ. The Ability of Stroke Volume Variations Obtained with Vigileo/FloTrac System to Monitor Fluid Responsiveness in Mechanically Ventilated. Anesth Analg 2009; 108: 513–517.
- 8 Pinsky MR. Protocolized Cardiovascular Management Based on Ventricular-arterial Coupling. In: Functional Hemodynamic Monitoring. Update in Intensive Care and Emergency Medicine (44). Springer-Verlag, Berlin, 2004, str. 381–395.
- **9** Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol, Heart Circ Physiol 1983; 245: H773–H780.
- **10** Chantler PD, Lakatta EG, Najjar S. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 2008; 105: 1342–1351.

13.2 Rozszerzone monitorowanie parametrów

Zaawansowana platforma monitorowania HemoSphere udostępnia narzędzia umożliwiające prowadzenie **leczenia ukierunkowanego na cel** (ang. Goal Directed Therapy, **GDT**), pozwalające użytkownikowi na monitorowanie parametrów kluczowych i utrzymywanie ich w optymalnych zakresach wartości. Rozszerzone śledzenie parametrów umożliwia lekarzom tworzenie i monitorowanie dostosowanych protokolów.

13.2.1 Śledzenie GDT

13.2.1.1 Wybór kluczowego parametru i wartości docelowej

1 Dotknąć ikony monitorowania GDT 🕢 na pasku nawigacji, aby otworzyć ekran menu GDT.

Rysunek 13-8 Ekran menu GDT – wybór kluczowego parametru

2 Dotknąć górnej połowy ikony wyboru **Parametr/Cel** Parametr i na panelu parametrów wybrać

odpowiedni parametr. Można śledzić maksymalnie cztery parametry kluczowe.

3 Dotknąć dolnej połowy ikony wyboru **Parametr/Cel** Parametr/ Cel Parametr/ Cel

wartość zakresu. Wybrany operator ($<, \le, >$ lub \ge) i wartość reprezentują górną lub dolną granicę podczas śledzenia parametru. Dotknąć klawisza Enter

Rysunek 13-9 Ekran menu GDT wybór wartości docelowej

- 4 Dotknąć dowolnego wybranego parametru, aby zmienić go na inny dostępny parametr, albo dotknąć przycisku **Brak** na panelu wyboru parametrów, aby usunąć ten parametr z monitorowania.
- 5 Aby wyświetlić i wybrać ustawienia parametru/wartości docelowej z poprzedniej sesji monitorowania GDT, dotknąć zakładki Wartości bieżące.
 - Portac Portac
- 6 Dotknąć przycisku OK, aby rozpocząć monitorowanie GDT.

Rysunek 13-10 Aktywne śledzenie GDT

13.2.1.2 Aktywne śledzenie GDT

Podczas aktywnego śledzenia GDT obszar rysowania wykresu trendu parametrów w zakresie wartości docelowej zostaje zacieniony na niebiesko. Patrz rysunek 13-10, "Aktywne śledzenie GDT", na stronie 230.

Panel sterowania śledzeniem GDT. Nacisnąć przycisk śledzenia GDT, aby zatrzymać lub zakończyć aktywne śledzenie. Po zatrzymaniu śledzenia obszar rysowania wykresu trendu parametrów w zakresie wartości docelowej zostaje zacieniony na szaro.

Wartość docelowa czasu trwania (Time-In-Target[™]). Jest to główna dana wyjściowa rozszerzonego śledzenia parametrów. Jest ona wyświetlana poniżej ikony Wartość docelowa czasu

trwania (Time-In-Target) w prawym górnym rogu wykresu trendu graficznego parametru. Wartość ta odpowiada sumarycznemu procentowi czasu pozostawania podczas aktywnej sesji śledzenia parametru w zakresie wartości docelowej.

Kolory wskaźnika wartości docelowej kafelka parametru. Tabela 13-13 określa kolory wskaźnika klinicznej wartości docelowej podczas monitorowania GDT.

Kolor	Wskazanie
Niebieski	Wartość śledzonego parametru mieści się obecnie w skonfigurowanym zakresie wartości docelowych.
Czarny	Wartość śledzonego parametru jest obecnie poza skonfigurowanym zakresem wartości docelowych.
Czerwony	Wartość śledzonego parametru jest obecnie niższa od dolnej wartości granicznej alarmu lub wyższa od górnej wartości granicznej alarmu.
Szary	Śledzony parametr jest niedostępny, występuje stan usterki, wstrzymano śledzenie GDT lub wartość docelowa nie została osiągnięta.

Tabela 13-13 Kolory wskaźnika stanu wartości docelowej GDT

Czas trendu skali automatycznej. Po zainicjowaniu aktywnego śledzenia GDT skala czasu graficznych trendów jest automatycznie dopasowywana w celu zmieszczenia wszystkich śledzonych danych dla bieżącej sesji w obrębie rysunku. Początkowa wartość skali czasu graficznych trendów jest ustawiana na 15 minut i zwiększana w miarę przekraczania przez czas śledzenia 15 minut. **Czas trendu skali automatycznej** można wyłączyć za pomocą podręcznego menu ustawiania skali w trybie GDT.

UWAGA

Podczas wyświetlania aktywnego śledzenia GDT na ekranie trendu graficznego menu wyboru parametrów są wyłączone.

13.2.1.3 Historyczne GDT

Aby wyświetlić ostatnie sesje śledzenia GDT, należy dotknąć ikony danych historycznych. W dolnej części ekranu zostanie wyświetlony baner "**Wyświetlanie historycznej sesji GDT**". Podczas wyświetlania historycznej (archiwalnej) sesji GDT bieżące wartości parametrów są wyświetlane w kafelkach parametrów kluczowych. Aby wyświetlić inne historyczne sesje GDT, dotknąć przycisków przewijania. Pomiary zmiany procentowej wyświetlane na ekranie trendu przedstawiają zmianę procentową między dwiema wartościami historycznymi.

13.2.2 Optymalizacja SV

W trybie optymalizacji SV zakres docelowy SV/SVI dla śledzenia GDT jest wybierany na podstawie bieżących trendów SV. Umożliwia to użytkownikowi identyfikację optymalnej wartości SV podczas aktywnego monitorowania zarządzaniem płynów.

- 1 Dotknąć ikony monitorowania GDT 🕥 na pasku nawigacji.
- 2 Wybrać SV lub SVI jako parametr kluczowy.
- 3 NIE określać wartości docelowej w dolnej połowie ikony wyboru Parametr/Cel

zamiast tego należy dotknąć przycisku **OK**, aby rozpocząć wybieranie wartości docelowej na wykresie trendu.

- 4 Obserwować trend SV, stosując konieczne zarządzanie płynem, aby osiągnąć optymalną wartość.
- 5 Dotknąć ikony dodawania wartości docelowej po prawej stronie wykresu trendu SV/SVI. Linia trendu zmieni kolor na niebieski.
- 6 Aby wyświetlić wartość linii trendu, dotknąć w obszarze wykresu. Pojawi się ikona wartości docelowej wraz z ikoną otwartej kłódki. Na poziomie znajdującym się 10% poniżej wartości kursora wartości docelowej będzie wyświetlona pozioma biała linia przerywana. Obszar rozciągający się między tą linią a szczytem osi Y zostanie zacieniony na niebiesko.
- 7 W razie potrzeby dotknąć przycisku zakończenia wyboru wartości docelowej (2006), aby powrócić do monitorowania zarządzania płynami.
- 8 Dotknąć ikony wartości docelowej **272**, aby zaakceptować wyświetlany zakres docelowy i rozpocząć monitorowanie GDT.
- **9** Ikony edycji wartości docelowej **60** można dotknąć w dowolnym momencie po wybraniu wartości docelowej, aby dostosować wartość docelową SV/SVI.
- **10** Ikony monitorowania GDT om można dotknąć w dowolnym momencie, gdy tryb GDT jest

aktywny, aby zakończyć sesję monitorowania GDT.

13.2.3 Pobieranie raportu GDT

Ekran Pobieranie danych umożliwia użytkownikowi eksportowanie raportów GDT na dysk USB. Patrz *Pobieranie danych* na stronie 138.

13.3 Test odpowiedzi na podane płyny

Dzięki funkcji **Test odpowiedzi na podane płyny (FRT)** lekarze mogą ocenić reakcję na obciążenie wstępne. Reakcja na obciążenie wstępne jest oceniana przez śledzenie zmian parametrów **SV**, **SVI**, **CO** lub **CI** w odpowiedzi na obciążenie płynem (**Bierne uniesienie nóg** lub **Bolus płynowy**).

Aby rozpocząć test:

Dotknąć ikony ustawień → zakładki Narzędzia kliniczne
 Dotknąć przycisku Test odpowiedzi na podane płyny

 Image: Comparison of the set of the s

Rysunek 13-11 Test odpowiedzi na podane płyny — ekran Nowy test

3 Na karcie Nowy test (patrz rysunek 13-11) dotknąć odpowiedniego rodzaju testu: Bierne uniesienie nóg lub Bolus płynowy.

W celu wyświetlenia krótkiej instrukcji dotyczącej uruchamiania testu należy dotknąć symbolu znaku zapytania. W celu uzyskania szczególowych instrukcji należy wykonać poniższe czynności.

UWAGA Interpretacja testu odpowiedzi na podane płyny (ang. fluid responsiveness test, FRT) jest bezpośrednio skorelowana z czasem odpowiedzi monitorowanego parametru. Czasy odpowiedzi monitorowanych parametrów mogą się zmieniać w zależności od trybu monitorowania i są bezpośrednio związane z zastosowanym rozwiązaniem technicznym. Częstość aktualizacji parametrów wybranych w teście FRT, gdy włączony jest tryb minimalnie inwazyjny, jest uzależniona od czasu uśredniania CO (patrz tabela 6-4 na stronie 122).

13.3.1 Test biernego uniesienia nóg

Bierne uniesienie nóg jest czułą, nieinwazyjną metodą oceny zdolności reagowania na płyn przez pacjenta. Podczas tego testu symulowane jest obciążenie płynem podczas przepływu krwi żylnej z dolnej części ciała do serca.

- 1 Dotknąć opcji **Bierne uniesienie nóg** i zaznaczyć ją w zakładce **Nowy test**. W zakładce **Nowy test** wyświetlane są opcje menu konfiguracji testu.
- 2 Wybrać Parametr do analizy: SV, SVI, CO lub CI (tylko w trybie monitorowania minimalnie inwazyjnego).
- 3 Wybrać opcję Czas trwania obciążenia: 1 minuta, 1 min 30 s lub 2 min.
- **4** Ułożyć pacjenta w pozycji półleżącej. Dotknąć przycisku **Rozpocznij pomiar podstawy**, aby rozpocząć pomiar podstawy.

UWAGAWartość podstawy jest średnią z wielu odczytów. Podczas wykonywania pomiarów
pacjent nie powinien się poruszać i musi znajdować się w tej samej pozycji.

5 Na ekranie **Pomiar podstawy** będzie wyświetlany wykres trendu wybranego parametru oraz czasomierz przedstawiający pozostały czas pomiaru podstawy.

UWAGA	Aby przerwać pomiar podstawy, należy dotknąć przycisku ANULUJ i powrócić
	do ekranu Nowy test .

- 6 Po zakończeniu pomiaru podstawy uzyskana wartość wyświetli się pod trendem graficznym. Aby zmierzyć ponownie wartość podstawy, należy dotknąć przycisku ROZPOCZNIJ PONOWNIE.
- 7 Aby przejść do pomiaru Pomiar przy biernym uniesieniu nóg, należy ułożyć pacjenta na wznak i dotknąć przycisku ROZPOCZNIJ, a następnie pasywnie unieść nogi pacjenta pod kątem 45 stopni w ciągu pięciu sekund. Zostanie wyświetlony czasomierz odliczający pięć sekund do rozpoczęcia pomiaru obciążenia.
- 8 Zostanie wyświetlony nowy czasomierz rozpoczynający **Czas trwania obciążenia**. Podczas pomiaru pacjent powinien znajdować się w tej samej pozycji.

UWAGAPrzed wykonaniem wystarczającej liczby pomiarów można dotknąć przycisku
ANULUJ, aby przerwać test. Zostanie wyświetlone okno podręczne z
potwierdzeniem. Dotknięcie przycisku Anuluj test powoduje powrót do ekranu
konfiguracji testu (zakładka Nowy test).

Po wykonaniu wystarczającej liczby pomiarów przycisk **ANULUJ** przestanie być dostępny. Aby zatrzymać test i przeanalizować zmierzone dane przed upływem pełnego czasu, należy dotknąć przycisku **ZAKOŃCZ TERAZ**.

9 Po zakończeniu testu zostanie wyświetlona wartość **Parametr** będąca odpowiedzią na obciążenie płynem. Patrz rysunek 13-12. Dotknąć ikony powrotu, aby wykonać kolejny test, lub ikony ekranu głównego, aby powrócić do głównego ekranu monitorowania.

Rysunek 13-12 Test odpowiedzi na podane płyny — ekran wyników

13.3.2 Test bolusa płynowego

Test **Bolus płynowy** jest wrażliwą metodą oceny zdolności reagowania na płyn przez pacjenta. Podczas tego testu bolus płynowy jest podawany pacjentowi, a następnie można ocenić reakcję na obciążenie wstępne, śledząc wartość SV, SVI, CO lub CI.

- 1 Dotknąć i zaznaczyć opcję **Bolus płynowy** na karcie **Nowy test**. W zakładce **Nowy test** wyświetlane są opcje menu konfiguracji testu.
- 2 Wybrać Parametr do analizy: SV, SVI, CO lub CI (tylko w trybie monitorowania minimalnie inwazyjnego).
- 3 Wybrać opcję Czas trwania obciążenia: 5 minut, 10 minut lub 15 minut.
- 4 Dotknąć przycisku Rozpocznij pomiar podstawy, aby rozpocząć pomiar podstawy.

UWAGA Wartość podstawy jest średnią z wielu odczytów. Podczas wykonywania pomiarów pacjent nie powinien się poruszać i musi znajdować się w tej samej pozycji. **5** Na ekranie **Pomiar podstawy** będzie wyświetlany wykres trendu wybranego parametru oraz czasomierz przedstawiający pozostały czas pomiaru podstawy.

UWAGA	Aby przerwać pomiar podstawy, należy dotknąć przycisku ANULUJ i powrócić do ekranu Nowy test .
6	Po zakończeniu pomiaru podstawy uzyskana wartość wyświetli się pod trendem graficznym. Aby zmierzyć ponownie wartość podstawy, należy dotknąć przycisku ROZPOCZNIJ PONOWNIE .
7	Aby kontynuować Pomiar przy bolusie płynowym, należy podać bolus płynowy i dotknąć przycisku ROZPOCZNIJ po rozpoczęciu podawania bolusa.
8	Zostanie wyświetlony nowy czasomierz rozpoczynający Czas trwania obciążenia. Podczas pomiaru pacjent powinien znajdować się w tej samej pozycji.
UWAGA	Przed wykonaniem wystarczającej liczby pomiarów można dotknąć przycisku ANULUJ , aby przerwać test. Zostanie wyświetlone okno podręczne z potwierdzeniem. Dotknięcie przycisku Anuluj test powoduje powrót do ekranu konfiguracji testu (zakładka Nowy test).
	Po wykonaniu wystarczającej liczby pomiarów przycisk ANULUJ przestanie być dostępny. Aby zatrzymać test i przeanalizować zmierzone dane przed upływem pełnego czasu, należy dotknąć przycisku ZAKOŃCZ TERAZ .

9 Po zakończeniu testu zostanie wyświetlona wartość **Parametr** będąca odpowiedzią na obciążenie płynem. Patrz rysunek 13-12. Dotknąć ikony powrotu, aby wykonać kolejny test, lub ikony ekranu głównego, aby powrócić do głównego ekranu monitorowania.

13.3.3 Archiwalne wyniki testów

Użytkownik może wyświetlić wyniki poprzednich testów na karcie **Wyniki archiwalne**. Zostanie wyświetlona lista wszystkich testów odpowiedzi aktualnego pacjenta na podane płyny. Aby wyświetlić podsumowanie testu, należy wyróżnić określony test za pomocą przycisków przewijania i dotknąć przycisku **Wybierz**. Zostanie wyświetlone okno podręczne z konfiguracjami testowymi, punktami ze znacznikami czasu oraz zmierzonymi wartościami **Parametrów**.

14

Rozwiązywanie problemów

Spis treści

Pomoc ekranowa	237
	-57
Światla stanu monitora	238
Komunikacja za pomocą przewodu ciśnienia	239
Dane komunikacyjne na czujniku modułu ForeSight Elite2	240
Komunikaty o błędzie zaawansowanego monitora HemoSphere	241
Komunikaty o blędzie modułu HemoSphere Swan-Ganz2	245
Komunikaty o błędach przewodu ciśnienia2	251
Komunikaty o błędzie oksymetrii żylnej	258
Komunikaty o błędzie oksymetrii tkankowej2	261

Tematy pomocy opisane w tym rozdziale i wyświetlane na ekranach pomocy monitora są związane z typowymi warunkami blędów. Na stronie eifu.edwards.com — jako uzupełnienie tych błędów udostępniono listę nierozwiązanych anomalii i kroków rozwiązywania problemów. Ta lista jest powiązana z numerem modelu zaawansowanego monitora HemoSphere (HEM1) i wersją oprogramowania wskazaną na stronie uruchamiania (patrz Procedura uruchamiania na stronie 63). W wyniku ciągłych ulepszeń produktu lista problemów jest stale aktualizowana i kompilowana.

14.1 Pomoc ekranowa

Ekran główny pomocy umożliwia użytkownikowi przejście do określonych tematów pomocy w przypadku problemów z zaawansowaną platformą do monitorowania HemoSphere. Usterki, alerty i ostrzeżenia informują użytkownika o wystąpieniu stanu blędu, wpływającego na pomiary parametrów. Usterki są stanami alarmu technicznego, powodującego zawieszenie pomiaru parametrów. Kategoria ekranu pomocy dostarcza konkretnych wskazówek dotyczących usterek, ostrzeżeń, alertów i rozwiazywania problemów.

1 Dotknąć ikony ustawień

- 2 Dotknąć przycisku **Pomoc**, aby uzyskać dostęp do głównego ekranu pomocy.
- 3 Dotknąć przycisku Wersje, aby wyświetlić wersje oprogramowania i numery seryjne monitora i podłączonych modułów/przewodów.

LUB

Dotknąć przycisku kategorii pomocy odpowiadającego technologii, do której potrzebna jest pomoc: Monitorowanie, Moduł Swan-Ganz, Przewód ciśnienia, Oksymetria żylna lub Oksymetria tkankowa.

- 4 Dotknąć typu pomocy odpowiednio do typu komunikatu: Usterki, Alerty, Ostrzeżenia lub Rozwiązywanie problemów.
- 5 Pojawi się nowy ekran z listą wybranych komunikatów.
- **6** Dotknąć komunikatu lub problemu do rozwiązania na liście, następnie dotknąć **Wybierz**, aby uzyskać dostęp do informacji dla tego komunikatu lub problemu. Aby wyświetlić pelną listę, za pomocą przycisków strzałek przesuwać podświetlenie w dół i w górę listy. Na następnym ekranie wyświetla się komunikat wraz z możliwymi przyczynami i sugerowanymi działaniami.

14.2 Światła stanu monitora

Zaawansowany monitor HemoSphere wyposażono we wzrokowy wskaźnik alarmu w celu ostrzegania użytkownika o stanach alarmowych. Więcej informacji o stanach alarmów fizjologicznych o średnim i wysokim priorytecie — patrz *Priorytety alarmów* na stronie 286. Przycisk zasilania monitora ma zintegrowaną diodę LED, która wskazuje stan zasilania przez cały czas.

Rysunek 14-1 Wskaźniki LED zaawansowanego monitora HemoSphere

D wzrokowy wskaźnik alarmu

② stan zasilania monitora

Tabela 14-1 Wzrokow	v wskaźnik alarmu zaav	wansowanego mor	nitora HemoS	phere
	y wonazinin alarina zaal	nunoomunogo moi		/p11010

Stan alarmu	Kolor	Wzór światła	Sugerowane działanie
Alarm fizjologiczny o wysokim priorytecie	Czerwony	Na przemian WŁĄCZANIE/ WYŁĄCZANIE	Stan alarmu fizjologicznego wymagający natychmiastowej uwagi Określony stan alarmu — patrz pasek stanu
Usterki techniczne i alerty o wysokim priorytecie	Czerwony	Na przemian WŁĄCZANIE/ WYŁĄCZANIE	Stan alarmu wymagający natychmiastowej uwagi Jeżeli określony stan alarmu technicznego jest nieodwracalny, ponownie uruchom system Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterki techniczne i alerty o średnim priorytecie	Żółty	Na przemian WŁĄCZANIE/ WYŁĄCZANIE	Stan alarmu wymagający pilnej uwagi Określony stan alarmu — patrz pasek stanu

Tabela 14-1 Wzrokowy wskaźnik alarmu zaawansowanego monitora HemoSphere (ciąg dalszy)

Stan alarmu	Kolor	Wzór światła	Sugerowane działanie
Alarm fizjologiczny o średnim priorytecie	Żółty	Na przemian WŁĄCZANIE/ WYŁĄCZANIE	Stan alarmu wymagający pilnej uwagi Określony stan alarmu — patrz pasek stanu
Alert techniczny o niskim priorytecie	Żółty	Światło ciągłe	Stan alarmu niewymagający natychmiastowej uwagi Określony stan alarmu — patrz pasek stanu

Tabela 14-2 Światło zasilania zaawansowanego monitora HemoSphere

Stan monitora	Kolor	Wzór światła	Sugerowane działanie
Włączone zasilanie monitora	Zielony	Światło ciągłe	Brak
Wyłączone zasilanie monitora Monitor podłączony do sieci zasilającej prądem przemiennym Ładowanie baterii	Żółty	Na przemian WŁĄCZANIE/ WYŁĄCZANIE	Oczekiwanie na naładowanie baterii przed odłączeniem od sieci zasilającej prądem przemiennym.
Wyłączone zasilanie monitora Monitor podłączony do sieci zasilającej prądem przemiennym Brak ładowania baterii	Żółty	Światło ciągłe	Brak
Wyłączone zasilanie monitora	Brak światła	Światło wyłączone	Brak

14.3 Komunikacja za pomocą przewodu ciśnienia

Dioda LED przewodu ciśnienia wskazuje stan czujnika ciśnienia lub przetwornika.

Rysunek 14-2 Dioda LED przewodu ciśnienia

		Á				
Tabela	14-3	Swiatło	komunikac	11	nrzewodu	ciśnienia
IUNCIU	1 - 0	Omatio	Komanikao	J.	p12011044	olonionia

Stan	Kolor	Wzór światła	Sugerowane działanie
Nie podłączono czujnika/przetwornika ciśnienia	Brak światła	Światło wyłączone	Brak
Czujnik przetwornik/ciśnienia jest podłączony, ale jeszcze niewyzerowany	Zielone	Na przemian WŁĄCZANIE/ WYŁĄCZANIE	Wyzerować czujnik ciśnienia, aby rozpocząć monitorowanie
Czujnik/przetwornik ciśnienia jest wyzerowany	Brak światła	Światło wyłączone	Brak. Podłączony czujnik ciśnienia może aktywnie monitorować sygnał ciśnienia
Alarm techniczny o średnim priorytecie dotyczący czujnika/przetwornika ciśnienia	Żółty	Na przemian WŁĄCZANIE/ WYŁĄCZANIE	Sprawdzić na ekranie typ usterki technicznej. Odpowiednie sugerowane działania można znaleźć w menu pomocy lub w poniższych tabelach

14.4 Dane komunikacyjne na czujniku modułu ForeSight Elite

Dioda LED modulu oksymetru tkankowego ForeSight Elite wskazuje stan kanałów czujnika do oksymetrii tkankowej.

Rysunek 14-3 Wskaźniki LED na module oksymetru tkankowego ForeSight Elite

Tabela 14-4 Sposób świecenia	komunikacyjnej diody LED na	module ForeSight Elite
------------------------------	-----------------------------	------------------------

Wskaźnik LED	Kolor	Wskazanie
Stan kanału 1	Biały	Nie podłączono czujnika
	Zielony	Podłączono czujnik
Stan kanału 2	Biały	Nie podłączono czujnika
	Zielony	Podłączono czujnik
Stan modułu	Zielony	Kanały związane z portem A na module do oksymetrii tkankowej HemoSphere
	Niebieski	Kanały związane z portem B na module do oksymetrii tkankowej HemoSphere

PRZESTROGAJeśli którakolwiek z diod LED modułu ForeSight Elite nie włącza się, modułu nie
wolno używać, dopóki nie zostanie poddany serwisowaniu lub wymianie.
Skontaktować się z działem pomocy technicznej firmy Edwards. Istnieje ryzyko,
że uszkodzone części mogą obniżyć wydajność modułu.

14.5 Komunikaty o błędzie zaawansowanego monitora HemoSphere

14.5.1 Usterki/alerty systemu

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Gniazdo modułu 1 —	Moduł 1 nie jest prawidłowo umieszczony	Usuń moduł i włóż go ponownie
awaria sprzętu	Punkty połączenia gniazda lub modułu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do gniazda modułu 2
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Gniazdo modułu 2 —	Moduł 2 nie jest prawidłowo umieszczony	Usuń moduł i włóż go ponownie
awaria sprzętu	Punkty połączenia gniazda lub modułu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do gniazda modułu 1
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Port przewodu 1 —	Przewód nie jest prawidłowo umieszczony	Usuń przewód i włóż go ponownie
awaria sprzętu	Punkty połączenia gniazda lub portu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do portu przewodu 2
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Port przewodu 2 —	Przewód nie jest prawidłowo umieszczony	Usuń przewód i włóż go ponownie
awaria sprzętu	Punkty połączenia gniazda lub portu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do portu przewodu 1
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Gniazdo modułu 1 — awaria oprogramowania	Wystąpił błąd oprogramowania związany z modułem umieszczonym w gnieździe modułu 1	Skontaktuj się z serwisem firmy Edwards
Usterka: Gniazdo modułu 2 — awaria oprogramowania	Wystąpił błąd oprogramowania związany z modułem umieszczonym w gnieździe modułu 2	Skontaktuj się z serwisem firmy Edwards
Usterka: Port przewodu 1 — awaria oprogramowania	Wystąpił błąd oprogramowania związany z przewodem umieszczonym w porcie przewodu 1	Skontaktuj się z serwisem firmy Edwards
Usterka: Port przewodu 2 — awaria oprogramowania	Wystąpił błąd oprogramowania związany z przewodem umieszczonym w porcie przewodu 2	Skontaktuj się z serwisem firmy Edwards
Usterka: Gniazdo modułu 1 —	Moduł 1 nie jest prawidłowo umieszczony	Usuń moduł i włóż go ponownie
błąd komunikacji	Punkty połączenia gniazda lub modułu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do gniazda modułu 2
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Gniazdo modułu 2 —	Moduł 2 nie jest prawidłowo umieszczony	Usuń moduł i włóż go ponownie
błąd komunikacji	Punkty połączenia gniazda lub modułu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do gniazda modułu 1
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Port przewodu 1 —	Przewód nie jest prawidłowo umieszczony	Usuń przewód i włóż go ponownie
Drąd Komunikacji	Punkty połączenia gniazda lub portu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do portu przewodu 2
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards

Tabela 14-5 Usterki/alerty systemu

Tabela 14-5 Usterki/alerty systemu (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Port przewodu 2 —	Przewód nie jest prawidłowo umieszczony	Usuń przewód i włóż go ponownie
błąd komunikacji	Punkty połączenia gniazda lub portu	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	są uszkodzone	Spróbuj przełączyć do portu przewodu 1
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Monitor — niezgodna	Wykryto aktualizację oprogramowania	Skontaktuj się z serwisem firmy Edwards
wersja oprogramowania	niezgodną wersję oprogramowania	
Usterka: Gniazdo modułu 1 —	Wykryto aktualizację oprogramowania	Skontaktuj się z serwisem firmy Edwards
niezgodna wersja	zakończoną niepowodzeniem lub	
Uprogramowania		Skontaktui sia z sanujaam firmu Edwarda
niezgodna wersja	zakończoną niepowodzeniem lub	Skontaktuj się z serwisem inny Edwards
oprogramowania	niezgodną wersję oprogramowania	
Usterka: Port przewodu 1 —	Wykryto aktualizację oprogramowania	Skontaktuj się z serwisem firmy Edwards
oprogramowania	niezgodną wersję oprogramowania	
Usterka: Port przewodu 2 —	Wykryto aktualizację oprogramowania	Skontaktuj się z serwisem firmy Edwards
niezgodna wersja	zakończoną niepowodzeniem lub	
Ustorka: Wyknita drugi moduł	Mykpite kilka podłaczonych modułów	Odłacz jeden moduł Swan Ganz
Swan-Ganz	Swan-Ganz	
Usterka: Moduł Swan-Ganz	Moduł HemoSphere Swan-Ganz usunięty	Potwierdź, że moduł jest prawidłowo umieszczony
odłączony	w trakcie monitorowania	Usuń moduł i włóż go ponownie
	Moduł HemoSphere Swan-Ganz nie został wykryty	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	Punkty połaczenia gniazda lub modułu sa	Spróbuj przełączyć do innego gniazda modułu
	uszkodzone	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Port przewodu	Przewód ciśnienia odłączony w trakcie	Upewnij się, że przewód ciśnienia jest podłączony
<#>* — Odłączony przewód ciśnienia	monitorowania	Sprawdź, czy przewód ciśnienia jest prawidłowo podłączony
	Nie wykryto przewodu cisnienia	do czujnika/przetwornika
	przewodu ciśnienia	brakujących wtyków
		Odłącz i ponownie podłącz przewód ciśnienia
		Spróbuj przełączyć do drugiego portu przewodu
		pomocy technicznej firmy Edwards
Usterka: Wykryto drugi	Wykryto kilka podłączonych przewodów do	Odłącz jeden przewód do oksymetrii
przewód do oksymetrii	oksymetrii	
Usterka: Odłączony przewód	Nie wykryto podłączenia przewodu do	Sprawdź podłączenie przewodu do oksymetrii/cewnika
do oksymetni	HemoSphere	Sprawdź złącze przewodu do oksymetrii pod kątem wygietych/brakujacych wtyków
	Wygięte lub brakujące wtyki złącza przewodu do oksymetrii	
Usterka: Awaria wewnętrzna	Awaria wewnętrzna systemu	Włącz i wyłącz system
systemu		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Bateria wyczerpana	Bateria jest wyczerpana, a system wyłączy	Podłącz zaawansowany monitor HemoSphere do innego
	się w ciągu 1 minuty, jeżeli nie zostanie podłączony do zasilania	źródła zasilania, aby uniknąć utraty zasilania i wznowić monitorowanie
Usterka: Zbyt wysoka	Wewnętrzna temperatura monitora jest na	Ustaw monitor z dala od wszelkich źródeł ciepła
temperatura systemu — system bliski zamkniecia	krytycznie wysokim poziomie	Upewnij się, że otwory wentylacyjne monitora są drożne
	niedrożne	i wome ou kurzu leteli problem dalej występują, skoptaktuj się z dzielom
		pomocy technicznej firmy Edwards

Alert: Awaria modułu

Alert: Przesyłanie sygnału ciśnienia nie jest aktywne

*uwaga: <#> to numer portu: 1 lub 2.

bezprzewodowego

Wyłącz i ponownie włącz połączenie bezprzewodowe

Przejdź do ekranu Wyzeruj i krzywa i naciśnij przycisk przesyłania sygnału ciśnienia (ikonę krzywej) po

wyzerowaniu monitora pacjenta Odłącz przewód wyjścia ciśnienia

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Wyjście ciśnienia —	Przewód wyjścia ciśnienia nie jest	Włóż ponownie przewód wyjścia ciśnienia
awaria sprzętu	prawidłowo podłączony	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	Punkty połączenia gniazda lub portu są uszkodzone	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Utrata łączności	Utrata komunikacji HL7	Sprawdź połączenie z siecią Ethernet
z systemem HIS	Słaba jakość połączenia z siecią Ethernet	Sprawdź połączenie Wi-Fi
	Słaba jakość połączenia Wi-Fi	Jeżeli problem nadal występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Wykryto drugi czujnik ciśnienia do pomiaru CO	Wykryto kilka przewodów ciśnienia z czujnikami do pomiaru CO	Odłącz jeden z czujników CO przewodu ciśnienia
Alert: Zbyt wysoka temperatura	Wewnętrzna temperatura monitora osiąga	Ustaw monitor z dala od wszelkich źródeł ciepła
systemu	krytycznie wysoki poziom Otwory wentylacyjne monitora sa	Upewnij się, że otwory wentylacyjne monitora są drożne i wolne od kurzu
	niedrożne	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Alert: Wskaźniki LED monitora	Błąd sprzętowy wskaźnika alarmu	Włącz i wyłącz system
nie działają	wizualnego lub błąd komunikacji	Jeżeli problem dalej występuje, skontaktuj się z działem
	Usterka wskaźnika alarmu wizualnego	pomocy technicznej firmy Edwards
Alert: Brzęczyk systemu nie	Błąd sprzętowy głośników lub błąd	Włącz i wyłącz system
Uzlafa	Usterka głośnika płyty głównej	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Alert: Słaba bateria	Poziom naładowania baterii wynosi mniej	Podłącz zaawansowany monitor HemoSphere do innego
	niż 20% lub bateria wyładuje się w ciągu	źródła zasilania, aby uniknąć utraty zasilania
	8 minut	
Alert: Bateria odłączona	Umieszczona wcześniej bateria nie została wykryta	Potwierdź, że bateria jest prawidłowo osadzona we wnęce
	Słabe połaczenie baterij	Wyjmij i ponownie włóż zestaw baterii
		Wymien zestaw baterii monitora HemoSphere
		pomocy technicznej firmy Edwards
Alert: Serwisowanie baterii	Wystąpił wewnętrzny błąd baterii	Włącz i wyłącz system
	Bateria nie jest już w stanie utrzymać	Jeśli błąd się utrzymuje, wymienić zestaw baterii

odpowiedniej funkcjonalności systemu

Doszło do wewnętrznej awarii sprzętu

Wykryto podłączenie nowego kanału ciśnienia monitora pacjenta

przy pełnym naładowaniu

w module bezprzewodowym

Tabela 14-5 Usterki/alerty systemu (ciąg dalszy)

14.5.2 Ostrzeżenia systemowe

Komunikat	Możliwe przyczyny	Sugerowane działania
Bateria wymaga formatowania	Wskaźnik gazu nie jest zsynchronizowany z rzeczywistym statusem pojemności baterii	Aby zapewnić nieprzerwany pomiar, upewnić się, że zaawansowany monitor HemoSphere jest podłączony do gniazdka elektrycznego
		Formatowanie baterii (upewnić się, że żaden pomiar nie jest aktywny):
		 Podłączyć monitor do gniazdka elektrycznego, aby w pełni naładować baterię Pozostawić w pełni naładowaną baterię na co najmniej dwie godziny Odłaczyć monitor od gniazdka elektrycznego
		i kontynuować użytkowanie systemu zasilanego baterią
		 Zaawansowany monitor HemoSphere wyłączy się automatycznie, gdy bateria w pełni się wyczerpie Pozostawić w pełni rozładowaną baterię na co najmniej pięć godzin
		 Podłączyć monitor do gniazdka elektrycznego, aby w pełni naładować baterię
		Jeśli monit o konieczności sformatowania baterii wciąż się pojawia, wymienić zestaw baterii
Serwisowanie baterii	Wystąpił wewnętrzny błąd baterii	Włącz i wyłącz system
		Jeśli błąd się utrzymuje, wymienić zestaw baterii

Tabela 14-6 Ostrzeżenia zaawansowanego monitora HemoSphere

14.5.3 Błędy klawiatury numerycznej

Tabela 14-7 Błędy klawiatury numerycznej

Komunikat	Możliwe przyczyny	Sugerowane działania
Wartość poza zakresem (xx-yy)	Wprowadzona wartość jest wyższa lub niższa od dozwolonego zakresu.	Komunikat wyświetlany, gdy użytkownik wprowadzi wartość spoza zakresu. W wyświetlanym komunikacie "xx" oraz "yy" są zastąpione granicami zakresu.
Wartość ma być ≤ xx	Wprowadzona wartość mieści się w zakresie, ale jest wyższa niż ustawienie wysokiej wartości, np. ustawienie wysokiej skali. "xx" oznacza powiązaną wartość.	Wprowadzić niższą wartość.
Wartość ma być ≥ xx	Wprowadzona wartość mieści się w zakresie, ale jest niższa niż ustawienie niskiej wartości, np. ustawienie niskiej skali. "xx" oznacza powiązaną wartość.	Wprowadzić wyższą wartość.
Wprowadzono nieprawidłowe hasło	Wprowadzone hasło jest nieprawidłowe.	Wprowadzić prawidłowe hasło.
Wprowadź prawidłową godzinę	Wprowadzona godzina jest nieprawidłowa, np. 25:70.	Wprowadzić prawidłową godzinę w formacie 12- lub 24-godzinnym.
Wprowadź prawidłową datę	Wprowadzona data jest nieprawidłowa, np. 33.13.009.	Wprowadzić prawidłową datę.

14.6 Komunikaty o błędzie modułu HemoSphere Swan-Ganz

14.6.1 Usterki/alerty CO

Tabela 14-8 Usterki/alerty CO modułu HemoSphere Swan-Ganz

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: CO — temperatura krwi poza zakresem (< 31°C lub > 41°C)	Temperatura monitorowanej krwi jest < 31°C lub > 41°C	 Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej: sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej Wznów monitorowanie CO, gdy temperatura krwi znajdzie się w odpowiednim zakresie
Usterka: CO — pojemność minutowa serca < 1,0 l/min*	Zmierzona wartość CO < 1,0 l/min	Postępuj zgodnie z obowiązującym w placówce protokołem, aby zwiększyć wartość CO
Usterka: CO — pamięć cewnika; użyj trybu Bolus	Słabe połączenie włókna termicznego cewnika	Sprawdź, czy włókno termiczne jest odpowiednio podłączone
	Awaria przewodu CCO pacjenta Błąd CO cewnika Przewód CCO pacjenta jest połączony	Sprawdź połączenia włókna termicznego cewnika/ przewodu CCO pacjenta pod kątem wygiętych/ brakujących wtyków
	z przewodem porty testowe	Przeprowadz test przewodu CCO pacjenia
		Utivi te du Belue CO
		Wurnieć courtik do nomieru CO
Usterka: CO — weryfikacja	Awaria przewodu CCO pacjenta	Przeprowadź test przewodu CCO pacjenta
cewinka, uzyj trybu bolus	Błąd CO cewnika	Wymien przewod CCO pacjenta
	Podłączony cewnik nie jest cewnikiem	Užyj trybu Bolus CO
		Upewnij się, że cewnik jest cewnikiem CCO firmy Edwards
Usterka: CO — sprawdź	Nie wykryto podłączenia włókna	Sprawdź połączenia przewodu CCO pacjenta i cewnika
połączenia cewnikatermicznego cewnika i termistorai przewodówAwaria przewodu CCO pacjenta	termicznego cewnika i termistora Awaria przewodu CCO pacjenta	Odłącz złącza termistora i włókna termicznego i sprawdź, czy nie mają wygiętych/brakujących wtyków
		Przeprowadź test przewodu CCO pacjenta
		Wymień przewód CCO pacjenta
Usterka: CO — sprawdź połączenie włókna termicznego	Nie wykryto podłączenia włókna termicznego cewnika	Sprawdź, czy włókno termiczne cewnika jest odpowiednio podłączone do przewodu CCO pacjenta
Aw	Awaria przewodu CCO pacjenta Podłaczony cewnik nie jest cewnikiem	Odłącz złącze włókna termicznego i sprawdź, czy nie ma wygiętych/brakujących wtyków
	CCO firmy Edwards	Przeprowadź test przewodu CCO pacjenta
		Wymień przewód CCO pacjenta
		Upewnij się, że cewnik jest cewnikiem CCO firmy Edwards
		Użyj trybu Bolus CO

Tabela 14-8 Usterki/alerty CO modułu HemoSphere Swan-Ganz (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: CO — sprawdź ustawienie włókna termicznego	Przepływ wokół włókna termicznego może być ograniczony Włókno termiczne może stykać się ze ścianą naczynia Cewnik nie jest w ciele pacjenta	 Przepłucz światło cewnika Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej: sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej Wznów monitorowanie CO
Usterka: CO — sprawdź połączenie termistora	Nie wykryto podłączenia termistora cewnika Monitorowana temperatura krwi wynosi < 15°C lub > 45°C Awaria przewodu CCO pacjenta	Sprawdź, czy termistor cewnika jest odpowiednio podłączony do przewodu CCO pacjenta Sprawdź, czy temperatura krwi wynosi 15–45°C Odłącz złącze termistora i sprawdź, czy nie ma wygiętych/ brakujących wtyków Przeprowadź test przewodu CCO pacjenta Wymień przewód CCO pacjenta
Usterka: CO — procesor sygnału, użyj trybu Bolus	Błąd przetwarzania danych	Wznów monitorowanie CO Wyłącz monitor i włącz go ponownie, aby przywrócić sprawność systemu Użyj trybu Bolus CO
Usterka: CO — utrata sygnału termicznego*	Sygnał termiczny wykryty przez monitor jest zbyt słały, aby mógł zostać przetworzony Zakłócenia ze strony urządzenia do kompresji sekwencyjnej	 Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej: sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej Wyłącz tymczasowo urządzenie do kompresji sekwencyjnej zgodnie z procedurą obowiązującą w placówce Wznów monitorowanie CO
Usterka: Moduł Swan-Ganz	Zakłócenia ze strony urządzenia do elektrokauteryzacji Awaria wewnętrzna systemu	Odłącz przewód CCO pacjenta podczas zabiegu elektrokauteryzacji Wyjmij moduł i włóż go ponownie, aby zresetować Jeżeli problem dalej występuje, należy skontaktować się z działem pomocy technicznej firmy Edwards
Alert: CO — dostosowanie sygnału — kontynuacja	Wykryto duże wahania temperatury krwi w tętnicy płucnej Zakłócenia ze strony urządzenia do kompresji sekwencyjnej Włókno termiczne cewnika ustawione nieprawidłowo	 Poczekaj dłużej, aż monitor zmierzy i wyświetli wartość CO Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej: sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej Zmniejszenie dyskomfortu pacjenta może ograniczyć wahania temperatury Wyłącz tymczasowo urządzenie do kompresji sekwencyjnej zgodnie z procedurą obowiązującą w placówce

Tabela 14-8 Usterki/alerty CO modułu HemoSphere Swan-Ganz (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Alert: CO — niestabilna temp. krwi — kontynuacja	Wykryto duże wahania temperatury krwi w tętnicy płucnej Zakłócenia ze strony urządzenia do kompresji sekwencyjnej	Zaczekaj na zaktualizowanie pomiaru CO Zmniejszenie dyskomfortu pacjenta może ograniczyć wahania temperatury Wyłącz tymczasowo urządzenie do kompresji sekwencyjnej zgodnie z procedurą obowiązującą w placówce
* Usterki powodujące blokadę. Aby wyciszyć alert, należy dotknąć ikony wyciszania. Aby odwołać alert, należy ponownie uruchomić monitorowanie.		

14.6.2 Usterki/alerty EDV i SV

Tabela 14-9 Usterki/alerty EDV i SV modułu HemoSphere Swan-Ganz

Komunikat	Możliwe przyczyny	Sugerowane działania
Alert: EDV — utrata sygnału częstości akcji serca	Uśredniona w czasie częstość akcji serca pacjenta poza zakresem (HR śr. < 30 lub > 200 bpm) Nie wykryto częstości akcji serca Nie wykryto podłączenia przewodu interfejsu EKG	Zaczekaj, aż średnia częstość akcji serca znajdzie się w zakresie Wybierz odpowiednią konfigurację odprowadzeń, aby zmaksymalizować liczbę czynników wyzwalających akcję serca Sprawdź, czy przewód łączący zaawansowany monitor HemoSphere i monitor przyłóżkowy jest odpowiednio podłączony Wymień przewód interfejsu EKG
Alert: EDV — przekroczenie wartości granicznej HR	Uśredniona w czasie częstość akcji serca pacjenta poza zakresem (HR śr. < 30 lub > 200 bpm)	Zaczekaj, aż średnia częstość akcji serca znajdzie się w zakresie Wybierz odpowiednią konfigurację odprowadzeń, aby zmaksymalizować liczbę czynników wyzwalających akcję serca Sprawdź, czy przewód łączący zaawansowany monitor HemoSphere i monitor przyłóżkowy jest odpowiednio podłączony Wymień przewód interfejsu EKG
Alert: EDV — dostosowanie sygnału — kontynuacja	Tor oddechowy pacjenta mógł ulec zmianie Zakłócenia ze strony urządzenia do kompresji sekwencyjnej Włókno termiczne cewnika ustawione nieprawidłowo	 Poczekaj dłużej, aż monitor zmierzy i wyświetli wartość EDV Wyłącz tymczasowo urządzenie do kompresji sekwencyjnej zgodnie z procedurą obowiązującą w placówce Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej: sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej
Alert: SV — utrata sygnału częstości akcji serca	Uśredniona w czasie częstość akcji serca pacjenta poza zakresem (HR śr. < 30 lub > 200 bpm) Nie wykryto częstości akcji serca Nie wykryto podłączenia przewodu interfejsu EKG	Zaczekaj, aż średnia częstość akcji serca znajdzie się w zakresie Wybierz odpowiednią konfigurację odprowadzeń, aby zmaksymalizować liczbę czynników wyzwalających akcję serca Sprawdź, czy przewód łączący zaawansowany monitor HemoSphere i monitor przyłóżkowy jest odpowiednio podłączony Wymień przewód interfejsu EKG

14.6.3 Usterki/alerty iCO

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: iCO — sprawdź połączenie sondy roztworu do wstrzykiwań	Nie wykryto sondy temperatury roztworu do wstrzykiwań	Sprawdź połączenie między przewodem CCO pacjenta a sondą temperatury roztworu do wstrzykiwań
	Usterka sondy temperatury roztworu	Zmień sondę temperatury roztworu do wstrzykiwań
	do wstrzykiwań	Wymień przewód CCO pacjenta
	Awaria przewodu CCO pacjenta	
Usterka: iCO — sprawdź połączenie termistora	Nie wykryto podłączenia termistora cewnika	Sprawdź, czy termistor cewnika jest odpowiednio podłączony do przewodu CCO pacjenta
	Monitorowana temperatura krwi wynosi	Sprawdź, czy temperatura krwi wynosi 15–45°C
	< 15°C lub > 45°C Awaria przewodu CCO pacjenta	Odłącz złącze termistora i sprawdź, czy nie ma wygiętych/ brakujących wtyków
		Wymień przewód CCO pacjenta
Usterka: iCO — nieprawidłowa	Wstrzykiwana objętość sondy typu inline	Zmień objętość roztworu do wstrzykiwań na 5 ml lub 10 ml
objętość roztworu do wstrzykiwań	musi wynosić 5 ml lub 10 ml	W przypadku roztworu do wstrzykiwań o objętości 3 ml użyj sondy do pomiaru temperatury w łaźni
Usterka: iCO — temperatura	Temperatura roztworu do wstrzykiwań	Sprawdź temperaturę roztworu do wstrzykiwań
roztworu do wstrzykiwań poza zakresem, sprawdź sondę	< 0°C, > 30°C lub > B1 Usterka sondy temperatury roztworu	Sprawdź złącza sondy roztworu do wstrzykiwań pod kątem wygiętych/brakujących wtyków
	do wstrzykiwań	Zmień sondę temperatury roztworu do wstrzykiwań
	Awaria przewodu CCO pacjenta	Wymień przewód CCO pacjenta
Usterka: iCO — temperatura	Monitorowana temperatura krwi wynosi	Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej:
krwi poza zakresem	< 31°C lub > 41°C	 sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml
		 sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia
		 rozważyć ocenę prawidłowości położenia cewnika na zdiecju RTG klatki piersjowej
		Wznów iniekcje bolusa, gdy temperatura krwi znajdzie się w zakresie
Alert: iCO — niestabilna wartość wyjściowa	Wykryto duże wahania temperatury krwi w tętnicy płucnej	Zaczekaj dłużej na ustabilizowanie temperatury bazowej krwi
		Użyj trybu ręcznego
Alert: iCO — nie wykryto krzywej	Nie wykryto wstrzyknięcia bolusa przez ponad 4 minuty (tryb automatyczny) lub 30 sekund (tryb ręczny)	Uruchomić ponownie monitorowanie bolusa CO i kontynuować wstrzykiwanie
Alert: iCO — przedłużona	Krzywa termodylucji powoli powraca	Sprawdź właściwą technikę wstrzykiwania
krzywa	do poziomu wyjściowego	Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej:
	Port roztworu do wstrzykiwań w koszulce introduktora	 sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml
	Możliwa wada przeciekowa serca	 sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia
		 rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej
		Upewnij się, że port roztworu do wstrzykiwań znajduje się na zewnątrz koszulki introduktora
		Użyto mrożonego roztworu do wstrzykiwań i/lub 10 ml objętości roztworu do wstrzykiwań do utworzenia dużego sygnału termicznego

Tabela 14-10 Usterki/alerty iCO modułu HemoSphere Swan-Ganz (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Alert: iCO — nieregularna krzywa	Krzywa termodylucji zawiera wielokrotne wartości szczytowe	 Sprawdź właściwą technikę wstrzykiwania Sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej: sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej Użyto mrożonego roztworu do wstrzykiwań i/lub 10 ml objętości roztworu do wstrzykiwań do utworzenia dużego sygnału termicznego
Alert: iCO — ciepły roztwór do wstrzykiwań	Temperatura roztworu do wstrzykiwań w zakresie 8°C względem temperatury krwi Usterka sondy temperatury roztworu do wstrzykiwań Awaria przewodu CCO pacjenta	Użyj roztworu do wstrzykiwań o niższej temperaturze Zmień sondę temperatury roztworu do wstrzykiwań Wymień przewód CCO pacjenta

14.6.4 Usterki/alerty SVR

Tabela 14-11 Usterki/alerty SVR modułu HemoSphere Swan-Ganz

Komunikat	Możliwe przyczyny	Sugerowane działania
Alert: SVR — Utrata sygnału ciśnienia z podległego monitora CVP	Port analogowego sygnału wejściowego zaawansowanego monitora HemoSphere nie został skonfigurowany do odbioru	Sprawdź w zaawansowanym monitorze HemoSphere prawidłowy zakres napięć i wartości niskiego/wysokiego napięcia dla monitora zewnętrznego
	sygnału CVP Nie wykryto podłączenia przewodu interfejsu analogowego sygnału wejściowego	Sprawdź, czy przewód łączący zaawansowany monitor HemoSphere i monitor przyłóżkowy jest odpowiednio podłączony Sprawdź odpowiednie wartości wzrostu i wagi oraz
	Niedokładny sygnał wejściowy Awaria monitora zewnętrznego	jednostki miar BSA pacjenta Sprawdź, obecność sygnału w urządzeniu analogowego sygnału wyiściowego monitora zewnetrznego
		Zmień moduł urządzenia zewnętrznego, jeśli jest używany
Alert: SVR — skonfiguruj analogowy sygnał wejściowy lub wprowadź CVP w celu monitorowania SVR	Port analogowego sygnału wejściowego zaawansowanego monitora HemoSphere nie został skonfigurowany do odbioru sygnału CVP Wartość CVP nie została wprowadzona	Użyj ekranu ustawień analogowego sygnału wejściowego do skonfigurowania portów 1 lub 2 jako wyjść sygnału CVP monitora zewnętrznego Wprowadź wartość CVP

14.6.5 Rozwiązywanie problemów ogólnych

Tabela 14-12 Rozwiązywanie problemów ogólnych związanychz przewodem ciśnienia HemoSphere

Komunikat	Możliwe przyczyny	Sugerowane działania
Podłącz moduł HemoSphere Swan-Ganz do monitorowania CO	Podłączenie do modułu HemoSphere Swan-Ganz nie zostało wykryte	Umieść moduł HemoSphere Swan-Ganz w gnieździe 1 lub gnieździe 2 monitora Usuń moduł i włóż go ponownie

Tabela 14-12 Rozwiązywanie problemów ogólnych związanych z przewodem ciśnienia HemoSphere (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Podłącz przewód CCO pacjenta w celu monitorowania CO	Nie wykryto połączenia między modułem HemoSphere Swan-Ganz a przewodem CCO pacjenta	Sprawdź połączenie między przewodem CCO pacjenta a wprowadzonym modułem HemoSphere Swan-Ganz
		Odłącz przewód CCO pacjenta i sprawdź pod kątem wygiętych/brakujących wtyków
		Wymień przewód CCO pacjenta
Podłącz termistor w celu monitorowania CO	Nie wykryto połączenia między przewodem CCO pacjenta a termistorem cewnika Awaria przewodu CCO pacjenta	Sprawdź, czy termistor cewnika jest odpowiednio podłączony do przewodu CCO pacjenta
		Odłącz złącze termistora i sprawdź pod kątem wygiętych/ brakujących wtyków
		Przeprowadź test przewodu CCO pacjenta
		Wymień przewód CCO pacjenta
Podłącz włókno termiczne w celu monitorowania CO	Nie wykryto połączenia między przewodem CCO pacjenta a włóknem termicznym cewnika Awaria przewodu CCO pacjenta	Sprawdź, czy włókno termiczne cewnika jest odpowiednio podłączone do przewodu CCO pacjenta
		Odłącz złącze włókna termicznego i sprawdź pod kątem wygiętych/brakujących wtyków
	Podłączony cewnik nie jest cewnikiem	Przeprowadź test przewodu CCO pacjenta
	CCO firmy Edwards	Wymień przewód CCO pacjenta
		Upewnij się, że cewnik jest cewnikiem CCO firmy Edwards
Podłącz sondę iniektatu w celu monitorowania iCO	Nie wykryto połączenia między przewodem CCO pacjenta a sondą	Sprawdź połączenie między przewodem CCO pacjenta a sondą temperatury iniektatu
	temperatury iniektatu	Zmień sondę temperatury iniektatu
	Usterka sondy temperatury iniektatu	Wymień przewód CCO pacjenta
	Awaria przewodu CCO pacjenta	
Podłącz wejścia analogowe w celu monitorowania SVR	Nie wykryto podłączenia przewodu interfejsu analogowego sygnału wejściowego	sprawoz, czy przewod łączący platformę monitorowania i monitor przyłóżkowy jest prawidłowo podłączony
		Sprawdź, czy na analogowym urządzeniu wyjściowym monitora zewnętrznego jest wyświetlany sygnał
Skonfiguruj wejścia analogowe w celu monitorowania SVR	Porty analogowego sygnału wejściowego zaawansowanego monitora HemoSphere nie zostały skonfigurowane do odbioru sygnałów MAP i CVP	Użyj ekranu ustawień analogowego sygnału wejściowego do skonfigurowania portów 1 i 2 jako wyjść sygnałów MAP i CVP monitora zewnętrznego
Podłącz wejście EKG w celu monitorowania EDV lub SV	Nie wykryto podłączenia przewodu interfejsu EKG	Sprawdź, czy przewód łączący zaawansowany monitor HemoSphere i monitor przyłóżkowy jest odpowiednio podłączony
		Zmień przewód interfejsu EKG
CI > CO	Nieprawidłowa BSA pacjenta BSA < 1	Sprawdź jednostki miary i wartości ciężaru ciała i wzrostu pacjenta
CO ≠ iCO	Nieprawidłowo wprowadzone informacje o bolusie	Upewnij się, że stała obliczeniowa, objętość roztworu do wstrzykiwań i rozmiar cewnika zostały wybrane
	Usterka termistora lub sondy roztworu do wstrzykiwań Niestabilna temperatura wyjściowa zakłócająca pomiaty CO bolusa	prawidłowo Użyto mrożonego roztworu do wstrzykiwań i/lub 10 ml
		objętości roztworu do wstrzykiwań do utworzenia dużego sygnału termicznego
		Sprawdź właściwą technikę wstrzykiwania
		Zmień sondę temperatury roztworu do wstrzykiwań
SVR > SVRI	Nieprawidłowa BSA pacjenta BSA < 1	Sprawdź jednostki miary i wartości ciężaru ciała i wzrostu pacjenta

Tabela 14-12 Rozwiązywanie problemów ogólnych związanych z przewodem ciśnienia HemoSphere (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Średnie HR zaawansowanego monitora HemoSphere ≠ HR monitora pacjenta	Monitor zewnętrzny nie jest optymalnie skonfigurowany dla wyjściowego sygnału ECG Awaria monitora zewnętrznego Awaria przewodu interfejsu ECG Podwyższone tętno pacjenta Do obliczenia średniego HR zaawansowany monitor HemoSphere wykorzystuje do 3 minut danych dotyczacych HR	Zatrzymać CO i sprawdzić, czy tętno jest takie samo na monitorze HemoSphere i monitorze zewnętrznym
		Wybrać odpowiednie rozmieszczenie elektrod, aby zmaksymalizować wzbudzanie tętna i zminimalizować odczyt impulsu przedsionkowego Sprawdzić sygnał wyjściowy z zewnętrznego urządzenia monitorującego Zaczekać na ustabilizowanie się HR pacjenta Zmienić przewód interfejsu ECG
MAP i CVP zaawansowanego monitora HemoSphere ≠ monitor zewnętrzny	Zaawansowana platforma monitorowania HemoSphere jest nieprawidłowo skonfigurowana	Sprawdzić poprawny zakres napięcia i wartości niskiego/ wysokiego napięcia na zaawansowanym monitorze HemoSphere dla monitora zewnętrznego
	Niedokładny sygnał wejściowy Awaria monitora zewnetrznego	Potwierdzić właściwe jednostki pomiaru dla wartości napięcia analogowego portu wejścia (mmHg lub kPa)
		Sprawdzić poprawność wprowadzonych wartości wzrostu/masy ciała i jednostek pomiaru powierzchni ciała pacjenta (BSA)
		Sprawdzić, czy na analogowym urządzeniu wyjściowym zewnętrznego monitora jest sygnał
		Zmienić przewód interfejsu wejścia analogowego

14.7 Komunikaty o błędach przewodu ciśnienia

14.7.1 Ogólne usterki/alerty przewodu ciśnienia

Tabela 14-13 Ogólne usterki/alerty przewodu ciśnienia HemoSphere

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Port przewodu <#>* — Przewód ciśnienia	Awaria wewnętrzna systemu	Odłącz i ponownie podłącz przewód ciśnienia
		Odsuń przewód od wszelkich źródeł ciepła i izolujących powierzchni
		Jeżeli przewód jest nagrzany, przed dalszą obsługą należy pozostawić go, aby się schłodził
		Wyłącz monitor i włącz go ponownie, aby przywrócić sprawność platformy
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Port przewodu <#>* —	Usterka przewodu lub czujnika	Odłącz czujnik i sprawdź pod kątem wygiętych/
Czujnik ciśnienia	Uszkodzony lub wadliwy czujnik	brakujących styków
		Wymień czujnik ciśnienia
		Wymień przewód ciśnienia
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Port przewodu <#>* —	Czujnik ciśnienia odłączony w trakcie monitorowania	Sprawdź połączenie cewnika
Odłączony czujnik ciśnienia		Sprawdź przewód ciśnienia i czujnik oraz skontroluj pod
	Nie wykryto połączeń przewodów	kątem brakujących wtyków
	Usterka przewodu ciśnienia lub czujnika firmy Edwards	Wymień przewód ciśnienia firmy Edwards
		Wymień czujnik do pomiaru CO/ciśnienia firmy Edwards
	Awaria wewnętrzna systemu	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards

Tabela 14-13 Ogólne usterki/alerty przewodu ciśnienia HemoSphere (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Port przewodu <#>*— niezgodny czujnik ciśnienia	Wykryto czujnik firmy innej niż Edwards Usterka przewodu lub czujnika Awaria wewnętrzna systemu	Sprawdź, czy jest używany czujnik ciśnienia firmy Edwards Odłącz czujnik i sprawdź pod kątem wygiętych/ brakujących styków Wymień czujnik ciśnienia Wymień przewód ciśnienia Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Port przewodu <#>*— niestabilna krzywa ciśnienia	Krzywa ciśnienia tętniczego jest niewystarczająca do dokładnego pomiaru CO Naruszenie ciągłości linii monitorowania ciśnienia Za wysokie ciśnienie skurczowe lub za niskie cisnienie rozkurczowe Trwa przepłukiwanie linii płynów	Sprawdź zestaw do ciągłego pomiaru CO firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę mankietu ciśnieniowego Sprawdź krzywą ciśnienia pod kątem ostrego niedociśnienia, nadciśnienia i artefaktów związanych z ruchem Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione Upewnij się, że czujnik do pomiaru CO firmy Edwards jest wyrównany z osią flebostatyczną pacjenta Wyzeruj czujnik do pomiaru CO firmy Edwards w zaawansowanym monitorze HemoSphere w celu wyzerowania przetwornika oraz potwierdź połączenie przewodu ciśnienia Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼. Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową zestawu do ciągłego pomiaru CO firmy Edwards Odłacz i ponownie podłacz przewód ciśnienia
Alert: Port przewodu <#> — Zwolnij przycisk zerowania przewodu ciśnienia *uwaga: <#> to numer portu: 1 lut	Przycisk zerowania przewodu ciśnienia jest naciskany od ponad 10 sekund Usterka przewodu ciśnienia o 2.	Zwolnij przycisk zerowania przewodu ciśnienia Sprawdź, czy przycisk prawidłowo wraca do położenia wyjściowego Wymień przewód ciśnienia
14.7.2 Usterki/alerty CO

Tabela 14-14 Usterki/alerty CO przewodu ciśnienia HemoSphere	
--	--

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: CO — Sprawdź krzywą tętniczego	Krzywa ciśnienia tętniczego jest niewystarczająca do dokładnego pomiaru CO	Sprawdź zestaw do ciągłego pomiaru CO firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę mankietu ciśnieniowego
	Słaba krzywa ciśnienia w dłuższym okresie czasu Naruszenie ciagłości linii monitorowania	Sprawdź krzywą ciśnienia pod kątem ostrego niedociśnienia, nadciśnienia i artefaktów związanych z ruchem
	ciśnienia Za wysokie ciśnienie skurczowe lub	Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu
	za niskie ciśnienie rozkurczowe	Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione
		Upewnij się, że czujnik do pomiaru CO firmy Edwards jest wyrównany z osią flebostatyczną pacjenta
		Wyzeruj czujnik do pomiaru CO firmy Edwards w zaawansowanym monitorze HemoSphere w celu wyzerowania przetwornika oraz potwierdź połączenie przewodu ciśnienia
		Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼
		Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową zestawu do ciągłego pomiaru CO firmy Edwards
Usterka: CO — nieprawidłowa krzywa ciśnienia tętniczego	Usterka przewodu ciśnienia lub czujnika firmy Edwards Awaria wewpetrzna systemu	Sprawdź zestaw do pomiaru CO firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę mankietu ciśnieniowego
	Stan pacjenta skutkuje niskim ciśnieniem tętna	Sprawdź krzywą ciśnienia pod kątem ostrego niedociśnienia, nadciśnienia i artefaktów związanych z ruchem
	ciśnienia Czujnik do pomiaru CO nie jest wyrównany z osią flebostatyczną pacjenta	Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu
		Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione
		Upewnij się, że czujnik do pomiaru CO firmy Edwards jest wyrównany z osią flebostatyczną pacjenta
		Wyzeruj czujnik do pomiaru CO firmy Edwards w zaawansowanym monitorze HemoSphere w celu wyzerowania przetwornika oraz potwierdź połączenie przewodu ciśnienia
		Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼
		Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową zestawu do pomiaru CO firmy Edwards
		Sprawdź przewód ciśnienia firmy Edwards i czujnik oraz skontroluj pod kątem brakujących wtyków
		Wymień przewód ciśnienia firmy Edwards
		Wymień czujnik do pomiaru CO firmy Edwards
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards

Tabela 14-14 Usterki/alerty CO przewodu ciśnienia HemoSphere (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: CO — odłączono	Ciśnienie tętnicze jest niskie i nie	Sprawdź połączenie cewnika tętniczego
złącze ciśnienia tętniczego	wykazuje pulsacji Odłączony cewnik tętniczy	Sprawdź przewód ciśnienia firmy Edwards i czujnik CO oraz skontroluj pod kątem brakujących wtyków
	Nie wykryto połączeń przewodów	Wymień przewód ciśnienia firmy Edwards
	Usterka przewodu ciśnienia firmy Edwards	Wymień czujnik do pomiaru CO firmy Edwards
	lub czujnika CO Awaria wewnętrzna systemu	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Alert: CO — niestabilny sygnał ciśnienia tętniczego	Krzywa ciśnienia tętniczego jest niewystarczająca do dokładnego pomiaru CO	Sprawdź zestaw do ciągłego pomiaru CO firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę mankietu ciśnieniowego
	Naruszenie ciągłości linii monitorowania ciśnienia tętniczego Za wysokie ciśnienie skurczowe lub	Sprawdź krzywą ciśnienia pod kątem ostrego niedociśnienia, nadciśnienia i artefaktów związanych z ruchem
	za niskie ciśnienie rozkurczowe	Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu
		Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione
		Upewnij się, że czujnik do pomiaru CO firmy Edwards jest wyrównany z osią flebostatyczną pacjenta
		Wyzeruj czujnik do pomiaru CO firmy Edwards w zaawansowanym monitorze HemoSphere w celu wyzerowania przetwornika oraz potwierdź połączenie przewodu ciśnienia
		Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼
		Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową zestawu do ciągłego pomiaru CO firmy Edwards
Alert: CO — niskie ciśnienie tętna	Naruszenie ciągłości linii monitorowania ciśnienia Stan pacienta skutkuje niskim	Sprawdź zestaw do pomiaru CO firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę mankietu ciśnieniowego
ciśnieniem tę	śnieniem tętna	Sprawdź krzywą ciśnienia pod kątem ostrego niedociśnienia, nadciśnienia i artefaktów związanych z ruchem
		Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu
		Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione
		Upewnij się, że czujnik do pomiaru CO firmy Edwards jest wyrównany z osią flebostatyczną pacjenta
		Wyzeruj czujnik do pomiaru CO firmy Edwards w zaawansowanym monitorze HemoSphere w celu wyzerowania przetwornika oraz potwierdź połączenie przewodu ciśnienia
		Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼
		Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową zestawu do pomiaru CO firmy Edwards

Tabela 14-14 Usterki/alerty CO przewodu ciśnienia HemoSphere (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Alert: CO — niestabilna krzywa ciśnienia	Krzywa ciśnienia tętniczego jest niewystarczająca do dokładnego pomiaru CO	Sprawdź zestaw do ciągłego pomiaru CO firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę mankietu ciśnieniowego
	Naruszenie ciągłości linii monitorowania ciśnienia	Sprawdź krzywą ciśnienia pod kątem ostrego niedociśnienia, nadciśnienia i artefaktów związanych z ruchem
	Za wysokie ciśnienie skurczowe lub za niskie ciśnienie rozkurczowe Trwa przepłukiwanie linii płynów	Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu
	- F - F F 7 -	Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione
		Upewnij się, że czujnik do pomiaru CO firmy Edwards jest wyrównany z osią flebostatyczną pacjenta
		Wyzeruj czujnik do pomiaru CO firmy Edwards w zaawansowanym monitorze HemoSphere w celu wyzerowania przetwornika oraz potwierdź połączenie przewodu ciśnienia
		Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼
		Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową zestawu do ciągłego pomiaru CO firmy Edwards

14.7.3 Usterki/alerty SVR

Tabela 14-15 Usterki/alerty SVR przewo	odu ciśnienia HemoSphere
--	--------------------------

Komunikat	Możliwe przyczyny	Sugerowane działania
Alert: SVR — Utrata sygnału Port analo ciśnienia z podległego zaawanso monitora CVP nie został	Port analogowego sygnału wejściowego zaawansowanego monitora HemoSphere nie został skonfigurowany do odbioru	Sprawdź w zaawansowanym monitorze HemoSphere prawidłowy zakres napięć i wartości niskiego/wysokiego napięcia dla monitora zewnętrznego
	sygnału CVP Nie wykryto podłączenia przewodu interfejsu analogowego sygnału	Sprawdź, czy przewód łączący zaawansowany monitor HemoSphere i monitor przyłóżkowy jest odpowiednio podłączony
wejściowego Niedokładny sygnał wejściowy	wejściowego Niedokładny sygnał wejściowy	Sprawdź odpowiednie wartości wzrostu i wagi oraz jednostki miar BSA pacjenta
	Awaria monitora zewnętrznego	Sprawdź, obecność sygnału w urządzeniu analogowego sygnału wyjściowego monitora zewnętrznego
		Zmień moduł urządzenia zewnętrznego, jeśli jest używany
Alert: SVR — skonfiguruj analogowy sygnał wejściowy lub wprowadź CVP w celu monitorowania SVR	Port analogowego sygnału wejściowego zaawansowanego monitora HemoSphere nie został skonfigurowany do odbioru	Użyj ekranu ustawień analogowego sygnału wejściowego do skonfigurowania portów 1 lub 2 jako wyjść sygnału CVP monitora zewnętrznego
	sygnału CVP Wartość CVP nie została wprowadzona	Wprowadź wartość CVP

14.7.4 Usterki/alerty MAP

Tabela 14-16 Usterki/alerty	y MAP	przewodu	ciśnienia	HemoSphere

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: MAP — odłączono	Ciśnienie tętnicze jest niskie i nie	Sprawdź połączenie cewnika tętniczego
złącze ciśnienia tętniczego	wykazuje pulsacji Odłączony cewnik tętniczy	Sprawdź połączenie przewodu ciśnienia z czujnikiem oraz skontroluj pod kątem brakujących wtyków
	Nie wykryto połączeń przewodów	Wymień przewód ciśnienia
	Usterka przewodu ciśnienia firmy Edwards	Wymień czujnik ciśnienia
	lub czujnika TruWave Awaria wewnętrzna systemu	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: MAP — nieprawidłowa krzywa ciśnienia	Usterka przewodu ciśnienia lub czujnika firmy Edwards	Sprawdź zestaw do pomiaru CO firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę markietu siśpioniowogo
	Awaria wewnętrzna systemu	Sprowdź krzywa siśpionia pod katom ostrogo
	Stan pacjenta skutkuje niskim ciśnieniem tętna	niedociśnienia, nadciśnienia i artefaktów związanych z ruchem
	Naruszenie ciągłości linii monitorowania ciśnienia	Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu
	Czujnik do pomiaru CO nie jest wyrównany z osią flebostatyczną pacjenta	Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione
		Upewnij się, że czujnik do pomiaru CO firmy Edwards jest wyrównany z osią flebostatyczną pacjenta
		Wyzeruj czujnik do pomiaru CO firmy Edwards w zaawansowanym monitorze HemoSphere w celu wyzerowania przetwornika oraz potwierdź połączenie przewodu ciśnienia
		Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼
		Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową zestawu do pomiaru CO firmy Edwards
		Sprawdź przewód ciśnienia firmy Edwards i czujnik oraz skontroluj pod kątem brakujących wtyków
		Wymień przewód ciśnienia firmy Edwards
		Wymień czujnik do pomiaru CO firmy Edwards
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Alert: MAP — niestabilna krzywa ciśnienia	Krzywa tętnicza jest nieodpowiednia do dokładnego pomiaru ciśnienia krwi Naruszenie ciadłości linii monitorowania	Sprawdź zestaw do monitorowania ciśnienia firmy Edwards, rozpoczynając od strony pacjenta i kierując się w stronę mankietu ciśnieniowego
	ciśnienia Za wysokie ciśnienie skurczowe lub	Sprawdź krzywą tętniczą pod kątem ostrego niedociśnienia, nadciśnienia i artefaktów związanych z ruchem
	za niskie ciśnienie rozkurczowe	Upewnij się, że cewnik tętniczy nie jest zagięty i nie doszło w nim do zakrzepu
		Sprawdź, czy wszystkie przewody ciśnienia tętniczego są drożne, a kraniki są prawidłowo ustawione
		Upewnij się, że czujnik ciśnienia/przetwornik firmy Edwards jest wyrównany z osią flebostatyczną pacjenta
		Wyzeruj czujnik ciśnienia/przetwornik firmy Edwards w zaawansowanym monitorze HemoSphere oraz potwierdź połączenie przewodu ciśnienia
		Upewnij się, że mankiet ciśnieniowy jest napompowany, a worek z roztworem płuczącym jest wypełniony przynajmniej w ¼
		Wykonaj test fali kwadratowej, aby ocenić odpowiedź częstotliwościową systemu do monitorowania ciśnienia firmy Edwards

14.7.5 Rozwiązywanie problemów ogólnych

Komunikat	Możliwe przyczyny	Sugerowane działania
Podłącz przewód ciśnienia w celu monitorowania CO lub	Nie wykryto połączenia między zaawansowanym monitorem HemoSphere	Sprawdź połączenie między przewodem ciśnienia a monitorem
ciśnienia	a przewodem ciśnienia	Odłącz przewód ciśnienia i sprawdź pod kątem wygiętych/brakujących wtyków
		Wymień przewód ciśnienia
Podłącz czujnik ciśnienia CO w celu monitorowania CO	Skonfigurowano parametr kluczowy zależny od CO	Sprawdź połączenie między przewodem ciśnienia a cewnikiem
	Nie wykryto połączenia między	Sprawdź, czy podłączony czujnik ciśnienia monitoruje CO
	przewodem ciśnienia a czujnikiem ciśnienia CO	Odłącz przewód ciśnienia i sprawdź pod kątem brakujących wtyków
	Podłączono czujnik ciśnienia	Wymień czujnik do pomiaru CO firmy Edwards
		Wymień przewód ciśnienia
Podłącz czujnik ciśnienia w celu monitorowania ciśnienia	Skonfigurowano parametr kluczowy zależny od ciśnienia tętniczego	Sprawdź połączenie między przewodem ciśnienia a cewnikiem
tętniczego	Nie wykryto połączenia między przewodem ciśnienia a czujnikiem	Odłącz przewód ciśnienia i sprawdź pod kątem brakujących wtyków
	ciśnienia tętniczego	Wymień czujnik ciśnienia firmy Edwards
		Wymień przewód ciśnienia
Podłącz czujnik ciśnienia w celu monitorowania tętnicy płucnej	Jako parametr kluczowy skonfigurowano MPAP	Sprawdź połączenie między przewodem ciśnienia a cewnikiem
	Nie wykryto połączenia między przewodem ciśnienia a czujnikiem	Odłącz przewód ciśnienia i sprawdź pod kątem brakujących wtyków
	ciśnienia w tętnicy płucnej	Wymień czujnik ciśnienia firmy Edwards
		Wymień przewód ciśnienia
Podłącz czujnik ciśnienia w celu monitorowania CVP	Jako parametr kluczowy skonfigurowano CVP	Sprawdź połączenie między przewodem ciśnienia a cewnikiem
	Nie wykryto połączenia między przewodem ciśnienia a czujnikiem ośrodkowego ciśnienia żylnego	Odłącz przewód ciśnienia i sprawdź pod kątem brakujących wtyków
		Wymień czujnik ciśnienia firmy Edwards
		Wymień przewód ciśnienia
Wyzeruj ciśnienie tętnicze w celu monitorowania CO	Nie wyzerowano sygnału ciśnienia tętniczego przed monitorowaniem CO	Wyzeruj ciśnienie, dotykając ikony "Wyzeruj i krzywa" na pasku nawigacyjnym lub na ekranie Menu czynności klinicznych
Wyzeruj ciśnienie w celu monitorowania ciśnienia tętniczego	Nie wyzerowano sygnału ciśnienia tętniczego przed monitorowaniem	Wyzeruj ciśnienie, dotykając ikony "Wyzeruj i krzywa" na pasku nawigacyjnym lub na ekranie Menu czynności klinicznych
Wyzeruj ciśnienie w celu monitorowania tętnicy płucnej	Nie wyzerowano sygnału ciśnienia w tętnicy płucnej przed monitorowaniem	Wyzeruj ciśnienie, dotykając ikony "Wyzeruj i krzywa" na pasku nawigacyjnym lub na ekranie Menu czynności klinicznych
Wyzeruj ciśnienie w celu monitorowania CVP	Nie wyzerowano sygnału ośrodkowego ciśnienia żylnego przed monitorowaniem	Wyzeruj ciśnienie, dotykając ikony "Wyzeruj i krzywa" na pasku nawigacyjnym lub na ekranie Menu czynności klinicznych
Podłącz przewód analogowego sygnału wejściowego CVP lub wprowadź wartość CVP w celu	Nie wykryto połączenia przewodu CVP Wartość CVP nie została wprowadzona	Sprawdź, czy przewód łączący zaawansowany monitor HemoSphere i monitor przyłóżkowy jest odpowiednio podłączony
monitorowania SVR		Wymień przewód CVP
		Wprowadź wartość CVP

Tabela 14-17 Rozwiązywanie problemów ogólnych związanych z przewodem ciśnienia HemoSphere

Tabela 14-17 Rozwiązywanie problemów ogólnych związanych z przewodem ciśnienia HemoSphere (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Skonfiguruj analogowy sygnał wejściowy CVP lub wprowadź CVP w celu monitorowania SVR	Port analogowego sygnału wejściowego zaawansowanego monitora HemoSphere nie został skonfigurowany do odbioru sygnału CVP Wartość CVP nie została wprowadzona	Użyj ekranu ustawień analogowego sygnału wejściowego do skonfigurowania portów 1 lub 2 jako wyjść sygnału CVP monitora zewnętrznego Wprowadź wartość CVP
CI > CO	Nieprawidłowa BSA pacjenta BSA < 1	Sprawdź jednostki miary i wartości ciężaru ciała i wzrostu pacjenta
SVR > SVRI	Nieprawidłowa BSA pacjenta BSA < 1	Sprawdź jednostki miary i wartości ciężaru ciała i wzrostu pacjenta

14.8 Komunikaty o błędzie oksymetrii żylnej

14.8.1 Usterki/alerty oksymetrii żylnej

Tabela 14-18 Usterki/alerty oksymetrii żylnej

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Oksymetria żylna — zakres światła	Słabe połączenie przewodu do oksymetrii/ cewnika Zanieczyszczenie lub przytkanie fotoelementu przewodu do oksymetrii/ cewnika Usterka przewodu do oksymetrii Cewnik jest zagięty lub uszkodzony	Sprawdź podłączenie przewodu do oksymetrii/cewnika Oczyść złącza przewodu do oksymetrii/cewnika 70% alkoholem izopropylowym i przetrzyj, wysusz na powietrzu i skalibruj ponownie Wymień przewód do oksymetrii i skalibruj ponownie Wymień cewnik w razie podejrzenia uszkodzenia i skalibruj go ponownie
Usterka: Oksymetria żylna — transmisja czerwieni/ podczerwieni	Zanieczyszczenie lub przytkanie fotoelementu przewodu do oksymetrii/ cewnika Usterka przewodu do oksymetrii	Oczyść złącza przewodu do oksymetrii/cewnika 70% alkoholem izopropylowym i przetrzyj, wysusz na powietrzu i skalibruj ponownie Wyłącz monitor i włącz go ponownie, aby przywrócić sprawność platformy Wymień przewód do oksymetrii i skalibruj ponownie
Usterka: Oksymetria żylna — wartość poza zakresem	Nieprawidłowo wprowadzone wartości ScvO ₂ /SvO ₂ , HGB lub Hct Nieprawidłowa jednostka miary HGB Wyliczona wartość ScvO ₂ /SvO ₂ poza zakresem 0–99%	Sprawdź czy prawidłowo wprowadzono wartości ScvO ₂ / SvO ₂ , HGB i Hct Sprawdź, czy używana jest prawidłowa jednostka miary HGB Uzyskaj zaktualizowane wartości laboratoryjne ScvO ₂ / SvO ₂ i skalibruj ponownie
Usterka: Oksymetria żylna — niestabilny sygnał wejściowy	Słabe połączenie przewodu do oksymetrii/ cewnika Zanieczyszczenie lub przytkanie fotoelementu przewodu do oksymetrii/ cewnika Usterka przewodu do oksymetrii Cewnik jest zagięty lub uszkodzony	Sprawdź podłączenie przewodu do oksymetrii/cewnika Oczyść złącza przewodu do oksymetrii/cewnika 70% alkoholem izopropylowym i przetrzyj, wysusz na powietrzu i skalibruj ponownie Wymień przewód do oksymetrii i skalibruj ponownie Wymień cewnik w razie podejrzenia uszkodzenia i skalibruj go ponownie
Usterka: Oksymetria żylna — usterka przetwarzania sygnału	Usterka przewodu do oksymetrii	Wyłącz monitor i włącz go ponownie, aby przywrócić sprawność platformy Wymień przewód do oksymetrii i skalibruj ponownie Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Pamięć przewodu do oksymetrii	Usterka pamięci przewodu do oksymetrii	Odłącz i ponownie podłącz przewód Wymień przewód do oksymetrii i skalibruj ponownie

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Temperatura przewodu do oksymetrii	Jsterka: Temperatura przewodu Usterka przewodu do oksymetrii lo oksymetrii	Wyłącz monitor i włącz go ponownie, aby przywrócić sprawność platformy
		Wymień kabel pulsoksymetru monitora i skalibruj ponownie
		Jeżeli przewód jest owinięty materiałem lub znajduje się na izolującej powierzchni, np. poduszce, należy umieścić go na gładkiej powierzchni, która umożliwia łatwe oddawanie ciepła
		Jeżeli przewód jest nagrzany, przed dalszą obsługą należy pozostawić go, aby się schłodził
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: Usterka przewodu do oksymetrii	Awaria wewnętrzna systemu	Wyłącz monitor i włącz go ponownie, aby przywrócić sprawność platformy
		Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Alert: Oksymetria żylna — Słaba jakość sygnału	 Alert: Oksymetria żylna — Błaba jakość sygnału Przepływ krwi przed końcówką cewnika jest zbyt powolny bądź końcówka cewnika styka się ze ścianą naczynia Istotna zmiana wartości HGB/Hct Zakrzep na końcówce cewnika Cewnik jest zagięty lub uszkodzony Cewnik nie jest podłączony do przewodu do oksymetrii 	Jeżeli przewód jest owinięty materiałem lub znajduje się na izolującej powierzchni, np. poduszce, należy umieścić go na gładkiej powierzchni, która umożliwia łatwe oddawanie ciepła
		Jeżeli przewód jest nagrzany, przed dalszą obsługą należy pozostawić go, aby się schłodził
		Sprawdź prawidłowe ustawienie cewnika (w przypadku pomiaru SvO ₂ sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej):
		 sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml
		 sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia
		 rozważyć ocenę prawidłowości położenia cewnika na zdjęciu RTG klatki piersiowej
		Zaaspiruj, a następnie przepłucz dystalne światło zgodnie z protokołem szpitalnym
		Zaktualizuj wartości HGB/Hct za pomocą funkcji Aktualizuj
		Sprawdź, czy cewnik nie jest zagięty i skalibruj go ponownie
		Wymień cewnik w razie podejrzenia uszkodzenia i skalibruj go ponownie
		Upewnić się, że cewnik jest podłączony do przewodu do oksymetrii

Tabela 14-18 Usterki/alerty oksymetrii żylnej (ciąg dalszy)

14.8.2 Ostrzeżenia oksymetrii żylnej

Komunikat	Możliwe przyczyny	Sugerowane działania	
Błąd kalibracji in vitro	Słabe połączenie przewodu do oksymetrii	Sprawdź podłączenie przewodu do oksymetrii/cewnika	
	i cewnika wartości ScvO ₂ /SvO ₂ Wilgotna osłonka kalibracyjna	Wyprostuj widoczne zagięcia; wymień cewnik w razie podejrzenia uszkodzenia	
	Cewnik jest zagięty lub uszkodzony	Wymień przewód do oksymetrii i skalibruj ponownie	
	Usterka przewodu do oksymetrii	Sprawdź, czy końcówka cewnika jest dobrze osadzona	
	Końcówka cewnika nie znajduje się w	w osłonce kalibracyjnej	
	studzience kalibracji cewnika	Wykonaj kalibrację in vivo	
Ostrzeżenie: Niestabilny sygnał	Zmiana wartości parametru ScvO ₂ /SvO ₂ , HGB/Hct lub niezwykłe wartości hemodynamiczne	Ustabilizuj pacjenta zgodnie z protokołem szpitalnym i przeprowadź kalibrację in vivo	
Ostrzeżenie: Wykryto klin lub artefakt ściany	Przepływ krwi przed końcówką cewnika jest zbyt powolny	Zaaspiruj, a następnie przepłucz dystalne światło zgodnie z protokołem szpitalnym	
	Zakrzep na końcówce cewnika	Sprawdź prawidłowe ustawienie cewnika (w przypadku	
	Zaklinowanie końcówki cewnika w naczyniu lub przy ścianie naczynia	pomiaru SvO ₂ sprawdź prawidłowe ustawienie cewnika w tętnicy płucnej):	
		 sprawdzić, czy objętość wypełnienia balonu przy ciśnieniu zaklinowania wynosi 1,25–1,50 ml 	
		 sprawdzić, czy ustawienie cewnika jest prawidłowe w odniesieniu do ciężaru ciała i wzrostu pacjenta oraz do miejsca wprowadzenia 	
		 rozwazyc ocenę prawiołowosci położenia cewnika na zdjeciu RTG klatki piersiowej 	
		Wykonaj kalibrację in vivo	

Tabela 14-19 Ostrzeżenia oksymetrii żylnej

14.8.3 Rozwiązywanie problemów ogólnych dotyczących oksymetrii żylnej

Tabela 14-20 Rozwiązywanie problemów ogólnych dotyczących oksymetrii żylnej

Komunikat	Możliwe przyczyny	Sugerowane działania
Nieskalibrowany przewód do	Przewód do oksymetrii nie został	Uruchom kalibrację in vitro
oksymetria żylna, aby	skalibrowany (in vivo lub in vitro)	Uruchom kalibrację in vivo
skalibrować urządzenie	Polecenie przywołania danych oksymetrii żylnej nie zostało wykonane	Przywołaj wartości kalibracji
	Usterka przewodu do oksymetrii	
Dane pacjenta w przewodzie	Ostatnia kalibracja przewodu do	Wykonaj kalibrację in vivo
do oksymetrii są starsze niż	oksymetrii > 24 godziny temu	Zsynchronizuj datę i godzinę wszystkich monitorów firmy
24 godziny — skalibruj ponownie	Data i godzina monitorów firmy Edwards w danej placówce różni się	Edwards w danej placówce
Podłącz przewód do oksymetrii	Nie wykryto podłączenia przewodu do	Sprawdź prawidłowość podłączenia przewodu
oksymetrii żylnei	HemoSphere	
	Mugiata lub brakujaga utuki zlagza	Sprawaz złącze przewodu do oksymetrii pod kątem
	przewodu do oksymetrii	

14.9 Komunikaty o błędzie oksymetrii tkankowej

14.9.1 Usterki/alerty oksymetrii tkankowej

Tabela 14-21 Usterki/alerty oksymetrii tkankowej

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: Podłączony drugi moduł oksymetrii tkankowej	Podłączono kilka modułów oksymetrii tkankowej	Odłącz jeden z modułów oksymetrii tkankowej od monitora
Usterka: StO ₂ — moduł	Moduł oksymetrii tkankowej HemoSphere	Potwierdź, że moduł jest prawidłowo umieszczony
oksymetrii tkankowej odłączony	usunięty w trakcie monitorowania	Usuń moduł i włóż go ponownie
	Moduł oksymetrii tkankowej HemoSphere nie został wykryty	Sprawdź, czy nie ma wygiętych ani uszkodzonych wtyków
	Punkty połaczenia gniazda lub modułu sa	Spróbuj przełączyć do innego gniazda modułu
	uszkodzone	Jeżeli problem dalej występuje, skontaktuj się z działem pomocy technicznej firmy Edwards
Usterka: StO ₂ — moduł A ForeSight Elite odłączony	Odłączono moduł ForeSight Elite A	Podłącz moduł ForeSight Elite do złącza A wprowadzonego modułu oksymetrii tkankowej HemoSphere
Usterka: StO ₂ — moduł B ForeSight Elite odłączony	Odłączono moduł ForeSight Elite B	Podłącz moduł ForeSight Elite do złącza B wprowadzonego modułu oksymetrii tkankowej HemoSphere
Usterka: StO ₂ <k>* — czujnik odłączony</k>	Odłączono czujnik ForeSight Elite we wskazanym kanale	Podłącz czujnik do modułu ForeSight Elite
Usterka: StO ₂ — moduł	Awaria wewnętrzna systemu	Aby zresetować, wyjmij i ponownie włóż moduł
oksymetrii tkankowej		Jeżeli problem dalej występuje, skontaktuj się z serwisem firmy Edwards
Usterka: StO ₂ — moduł A ForeSight Elite	Moduł ForeSight Elite A jest niesprawny	Jeśli problem dalej występuje, skontaktuj się z firmą Edwards w celu wymiany modułu ForeSight Elite
Usterka: StO ₂ — moduł B ForeSight Elite	Moduł ForeSight Elite B jest niesprawny	Jeśli problem dalej występuje, skontaktuj się z firmą Edwards w celu wymiany modułu ForeSight Elite
Usterka: StO ₂ — moduł A	Moduł oksymetrii tkankowej stracił	Ponownie podłącz moduł
ForeSight Elite —	połączenie ze wskazanym modułem	Sprawdź, czy nie ma zagiętych lub złamanych wtyków
		Spróbuj podłączyć moduł ForeSight Elite do innego złącza modułu oksymetrii tkankowej
		Jeżeli problem dalej występuje, skontaktuj się z serwisem firmy Edwards
Usterka: StO ₂ — moduł B	Moduł oksymetrii tkankowej stracił	Ponownie podłącz moduł
ForeSight Elite —	połączenie ze wskazanym modułem	Sprawdź, czy nie ma zagiętych lub złamanych wtyków
		Spróbuj podłączyć moduł ForeSight Elite do innego złącza modułu oksymetrii tkankowej
		Jeżeli problem dalej występuje, skontaktuj się z serwisem firmy Edwards
Usterka: StO ₂ — moduł A ForeSight Elite — niezgodna	Wykryto aktualizację oprogramowania zakończoną niepowodzeniem lub niezodna wersie oprogramowania	Skontaktuj się z serwisem firmy Edwards
		Skontolitui sio z convicem firmu Educado
ForeSight Elite — niezgodna wersja oprogramowania	zakończoną niepowodzeniem lub niezgodną wersję oprogramowania	Skontaktuj się z serwisem nrmy Edwards
Usterka: StO ₂ <k>* — wadliwy czujnik</k>	Czujnik jest niesprawny lub niekompatybilny z ForeSight Elite	Wymień czujnik na kompatybilny z ForeSight Elite
Usterka: StO ₂ <k>* — zbyt wysokie światło otoczenia</k>	Czujnik nie jest prawidłowo podłączony do pacjenta	Sprawdź, czy czujnik pozostaje w bezpośrednim kontakcie ze skórą
		Owiń czujnik materiałem nieprzepuszczającym światła

Komunikat	Możliwe przyczyny	Sugerowane działania
Usterka: StO ₂ <k>* — wysoka temperatura czujnika</k>	Temperatura pod czujnikiem przekracza 45°C (tryb osoby dorosłej) lub 43°C (tryb dziecka/noworodka)	Może być wymagane obniżenie temperatury ciała pacjenta lub temperatury otoczenia
Usterka: StO ₂ <k>* — poziom sygnału poniżej dolnej granicy</k>	Wykryto niewystarczający sygnał światła u pacjenta	Sprawdź, czy czujnik poprawnie przylega do skóry pacjenta
	W tkance pod czujnikami mogą występować nadmierna pigmentacja skóry, przekrwienie,	Przenieś czujnik w miejsce, gdzie wartość SQI wynosi 3 lub 4
	znamiona, krwiak lub blizny U pacjenta pediatrycznego (<18 lat) użyto	W przypadku obrzęku zdejmij czujnik i nie zakładaj go do momentu ustąpienia obrzęku
	czujnika o rozmiarze dużym (dla osoby dorosłej)	U pacjentów pediatrycznych (<18 lat) zmień rozmiar czujnika z dużego na średni lub mały
Usterka: StO ₂ <k>* — poziom sygnału powyżej górnej granicy</k>	Bardzo rzadko zdarza się, że z powodu przejścia światła bocznym torem optycznym większość emitowanego światła trafia do detektorów	Sprawdź, czy czujnik ma bezpośredni kontakt ze skórą i czy zdjęto przezroczysty pasek ochronny
	Komunikat ten może wystąpić w przypadku niektórych materiałów niefizjologicznych, cech budowy anatomicznej lub obrzęku skóry głowy	
Usterka: StO ₂ <k>* — sprawdzić tkankę pod</k>	W tkance pod czujnikiem mogło nastąpić nagromadzenie płynów/obrzęk	Sprawdź, czy u pacjenta nie występuje obrzęk pod czujnikiem
czujnikiem		Kiedy stan tkanki wróci do normy (tj. obrzęk u pacjenta zaniknie), będzie można ponownie zastosować czujnik
Usterka: StO ₂ <k>* — wysoka interferencja stolca</k>	Dane uzyskiwane przez czujnik pochodzą głównie z kału, a nie ukrwionej tkanki, i nie można wykonać pomiaru StO ₂	Przenieś czujnik w miejsce, gdzie występuje mniejsza względna ilość tkanki jelitowej, na przykład bok
Usterka: StO ₂ <k>* — czujnik w pozycji off</k>	Obliczona wartość StO ₂ wykracza poza normalny zakres lub czujnik niewłaściwie umieszczony	Może istnieć potrzeba przemieszczenia czujnika
Usterka: StO ₂ <k>* — niefizjologiczny</k>	Zmierzona wartość wykracza poza zakres fizjologiczny	Sprawdź, czy czujnik umieszczono w odpowiednim miejscu
	Usterka czujnika	Sprawdź, czy czujnik jest podłączony
Usterka: StO ₂ <k>* — nieprawidłowy rozmiar czujnika</k>	Rozmiar czujnika jest niekompatybilny z trybem pacjenta lub umiejscowieniem	Użyj innego rozmiaru czujnika (tabela rozmiarów czujników znajduje się w instrukcji użycia czujników)
	ciała	Zmień tryb pacjenta lub umiejscowienie ciała w kafelkowym menu konfiguracyjnym
Usterka: StO ₂ <k>* — usterka</k>	Podczas obliczania wartości StO ₂ dla	Odłącz i ponownie podłącz wskazany kanał czujnika
algorytmu	wskazanego kanału wystąpił błąd	Wymień moduł ForeSight Elite
		Wymień moduł oksymetrii tkankowej
		Jeżeli problem dalej występuje, skontaktuj się z serwisem firmy Edwards
Alert: StO ₂ <k>* — niestabilny sygnał</k>	Zakłócenia pochodzące z zewnętrznego źródła	Odsuń czujnik od źródła zakłócenia
Alert: StO ₂ <k>* — zmniejszyć światło otoczenia</k>	Natężenie oświetlenia otoczenia zbliża się do wartości maksymalnej	Sprawdź, czy czujnik pozostaje w bezpośrednim kontakcie ze skórą
		Owiń czujnik materiałem nieprzepuszczającym światła

Tabela 14-21 Usterki/alerty oksymetrii tkankowej (ciąg dalszy)

Komunikat	Możliwe przyczyny	Sugerowane działania
Alert: StO ₂ <k>* — interferencja stolca</k>	Zakłócenia pochodzące od kału zbliżają się do maksymalnego dopuszczalnego poziomu	Rozważ przeniesienie czujnika w inną część jamy brzusznej z mniejszym stężeniem kału
	Czujnik zbiera dane z ukrwionej tkanki, aby dokonać pomiaru StO ₂ , ale w miejscu umieszczenia czujnika występuje także wysokie stężenie kału	
Alert: StO ₂ <k>* — niska temperatura czujnika</k>	Temperatura pod czujnikiem wynosi <-10°C	Może być konieczne podniesienie temperatury ciała pacjenta lub otoczenia
Alert: StO ₂ <k>* — Skonfiguruj położenie czujnika do oksymetrii tkankowej</k>	Nie skonfigurowano położenia anatomicznego podłączonego czujnika na ciele pacjenta	W menu konfiguracji oksymetrii tkankowej wybrać umiejscowienie wskazanego kanału czujnika na ciele pacjenta
*Uwaga: <k> oznacza kanał czujr ForeSight Elite B — B1 i B2.</k>	ika. Kanały dostępne w przypadku modułu Fo	breSight Elite A to A1 i A2, a w przypadku modułu

14.9.2 Rozwiązywanie problemów ogólnych dotyczących oksymetrii tkankowej

Tabela 14-22 Rozwiązywanie problemów ogólnych dotyczących oksymetrii tkankowej

Komunikat	Możliwe przyczyny	Sugerowane działania
Podłączyć moduł oksymetrii tkankowei do monitorowania	Nie wykryto połączenia pomiędzy zaawansowanym monitorem HemoSphere	Włożyć moduł oksymetrii tkankowej HemoSphere do gniazda 1 lub 2 w monitorze
parametru StO ₂	a modułem oksymetrii tkankowej	Wyjąć i ponownie włożyć moduł
Podłączyć moduł ForeSight Elite do	Nie wykryto połączenia pomiędzy modułem oksymetrii tkankowej HemoSphere a	Podłączyć moduł ForeSight Elite do wskazanego złącza modułu oksymetrii tkankowej HemoSphere
monitorowania parametru StO ₂	modułem ForeSight Elite we wskazanym złączu	Ponownie podłączyć moduł ForeSight Elite
Podłączyć czujnik oksymetrii tkankowej do monitorowania	Nie wykryto połączenia pomiędzy modułem ForeSight Elite a czujnikiem oksymetrii	Podłączyć czujnik oksymetrii tkankowej do wskazanego kanału
parametru StO ₂ — <k>*</k>	tkankowej w kanale, dla którego skonfigurowano StO ₂	Ponownie podłączyć czujnik oksymetrii tkankowej do wybranego kanału
*Uwaga: <k> oznacza kanał czujr modułu B ForeSight Elite.</k>	nika. Do wyboru są kanały A1 i A2 w przypadku	ı modułu A ForeSight Elite oraz kanały B1 i B2 w przypadku

Dodatek A

Dane techniczne

Spis treści

Charakterystyka funkcjonowania zasadniczego	.264
Dane techniczne zaawansowanego monitora HemoSphere	.266
Dane techniczne akumulatora HemoSphere	.269
Dane techniczne modulu HemoSphere Swan-Ganz	.269
Dane techniczne przewodu ciśnienia HemoSphere	.270
Dane techniczne przewodu do oksymetrii HemoSphere	.271
Dane techniczne oksymetrii tkankowej HemoSphere	.272

A.1 Charakterystyka funkcjonowania zasadniczego

W normalnych warunkach oraz w przypadku pojedynczej usterki zapewnione jest funkcjonowanie zasadnicze wyszczególnione poniżej (tabela A-1) lub brak możliwości tego funkcjonowania jest natychmiast sygnalizowane użytkownikowi (np. brak wyświetlania wartości parametrów, alarm techniczny, zniekształcone krzywe lub opóźnienie w aktualizacji wartości parametrów, usterka całkowita monitora itp.).

Tabela A-1 określa minimalny zakres funkcjonowania podczas działania w otoczeniu trwałych zjawisk elektromagnetycznych, takich jak promieniowana i przewodzona energia RF, zgodnie z normą IEC 60601-1-2. Tabela A-1 określa również minimalny zakres funkcjonowania podczas działania w otoczeniu przejściowych zjawisk elektromagnetycznych, takich jak nieustalone i przepięcia, zgodnie z normą IEC 60601-1-2.

Moduł lub Parametr przewód		Funkcjonowanie zasadnicze	
Ogólne: wszystkie tryby monitorowania i parametry		Brak przerwy w bieżącym trybie monitorowania. Brak nieoczekiwanych ponownych rozruchów lub wstrzymań działania. Brak samoistnego wyzwalania zdarzeń wymagających zainicjowania przez użytkownika.	
		Połączenia pacjenta zapewniają zabezpieczenie przed defibrylacją. Po ekspozycji na napięcia defibrylatora system powinien w ciągu 10 sekund powrócić do stanu umożliwiającego obsługę.	
		Po ekspozycji na działanie przejściowych zjawisk elektro- magnetycznych system powinien w ciągu 10 sekund powrócić do stanu umożliwiającego obsługę. Jeśli podczas zdarzenia było aktywne monitorowanie ciągłej pojemności minutowej serca (CO) za pomocą modułu Swan-Ganz, system automatycznie ponownie zainicjuje monitorowanie. Po wystąpieniu przejściowych zjawisk elektromagnetycznych system nie powinien utracić żadnych zapisanych danych.	
		W przypadku stosowania wraz z urządzeniem chirurgicznym o wysokiej częstotliwości monitor powróci do trybu działania bez utraty zapisanych danych w ciągu 10 sekund od narażenia na ekspozycję na pole wytwarzane przez urządzenie chirurgiczne o wysokiej częstotliwości.	
Moduł HemoSphere Swan-Ganz	ciągła pojemność minutowa serca (CO) z powiązanymi parametrami indeksowanymi i nieindeksowanymi (SV, SVR,	Monitoruje temperaturę powierzchni włókna oraz czas w danej temperaturze. W przypadku przekroczenia progu czasu i temperatury (powyżej 45°C) monitorowanie zostanie wstrzymane i zostanie wyzwolony alarm.	
	KVEF, EDV)	Pomiar temperatury krwi z określoną dokładnością (±0,3°C). Alarm w przypadku przekroczenia zakresu monitorowania przez temperaturę krwi.	
		Alarm w przypadku przekroczenia zakresów alarmowych przez CO i powiązane parametry. Opóźnienie alarmu zależne od zmiennego czasu uśredniania. Typowy czas uśredniania wynosi 57 sekund.	
	chwilowa pojemność minutowa serca (iCO) z powiązanymi parametrami indeksowanymi i nieindeksowanymi (SV, SVR)	Pomiar temperatury krwi z określoną dokładnością (±0,3°C). Alarm w przypadku przekroczenia zakresu monitorowania przez temperaturę krwi.	
Przewód ciśnienia HemoSphere	ciśnienie tętnicze (SYS, DIA, MAP), ośrodkowe ciśnienie żvlne (CVP), ciśnienie w tetnicy	Pomiar ciśnienia krwi z określoną dokładnością (±4% lub ±4 mmHg, większa z tych wartości).	
	płucnej (MPAP)	Alarm w przypadku przekroczenia zakresów alarmowych przez ciśnienie krwi. Opóźnienie alarmu zależne od czasu uśredniania wynosi 2 sekundy.	
		Urządzenie obsługuje wykrywanie usterek przetwornika do inwazyjnego pomiaru ciśnienia oraz przewodu przetwornika.	
		Urządzenie obsługuje wykrywanie odłączonego cewnika.	
Przewód do oksymetrii HemoSphere	wysycenie tlenem (krwi żylnej mieszanej SvO ₂ lub krwi żylnej ośrodkowej ScyO-)	Pomiar wysycenia tlenem z określoną dokładnością (±2% wysycenia tlenem).	
		Alarm w przypadku przekroczenia zakresów alarmowych przez wysycenie tlenem. Opóźnienie alarmu zależne od czasu uśredniania wynosi 2 sekundy.	

Tabela A-1 Funkcjonowanie zasadnicze zaawansowanego monitora HemoSphere — przejściowe i trwałe zjawiska elektromagnetyczne

Tabela A-1 Funkcjonowanie zasadnicze zaawansowanego monitora HemoSphere — przejściowe i trwałe zjawiska elektromagnetyczne (ciąg dalszy)

Moduł lub przewód	Parametr	Funkcjonowanie zasadnicze
Moduł do oksymetrii tkankowej HemoSphere z modułem oksymetru ForeSight Elite (FSM)	wysycenie tkanek tlenem (StO ₂)	Moduł FSM rozpozna podłączony czujnik, a jeśli będzie on odłączony lub nie będzie działał prawidłowo, poinformuje o jego stanie. Gdy czujnik jest prawidłowo umieszczony na ciele pacjenta i podłączony do modułu FSM, moduł FSM będzie mierzył wartości StO ₂ zgodnie z danymi technicznymi systemu (patrz tabela A-7 na stronie 269) i przekazywał zmierzone wartości do modułu do oksymetrii tkankowej HemoSphere. Moduł FSM nie ulegnie uszkodzeniom elektrycznym w wyniku defibrylacji. W razie wystąpienia zakłóceń z zewnątrz moduł może raportować wartości nieokreślone (kreski) lub takie same, jakie były przed pojawieniem się zakłóceń. Moduł FSM powinien automatycznie zacząć ponownie raportować prawidłowe wartości w ciągu 20 sekund od wystąpienia zakłóceń.

A.2 Dane techniczne zaawansowanego monitora HemoSphere

Zaawansowany monitor HemoSphere		
Waga	4,5 ±0,1 kg (10 ±0,2 funta)	
Wymiary	Wysokość	297 mm (11,7 cala)
	Szerokość	315 mm (12,4 cala)
	Głębokość	141 mm (5,56 cala)
Wymagana ilość	Szerokość	269 mm (10,6 cala)
miejsca	Głębokość	122 mm (4,8 cala)
Ochrona przed wnikaniem	IPX1	
Wyświetlacz	Obszar aktywny	307 mm (12,1 cala)
	Rozdzielczość	LCD 1024×768
System operacyjny	Windows 7, wbudowany	
Liczba głośników	1	

Tabela A-2 Fizyczne i mechaniczne dane techniczne zaawansowanego monitora HemoSphere

Środowiskowe dane techniczne		Wartość
Tomporatura	Robocza	Od 10°C do 32,5°C
Temperatura	Nierobocza/przechowywanie*	Od -18°C do 45°C
Wilgotność	Robocza	Od 20% do 90% bez kondensacji
względna	Nierobocza/przechowywanie	90% bez kondensacji w temperaturze 45°C
Wysokość n.p.m.	Robocza	Od 0 do 3048 m (10 000 stóp)
	Nierobocza/przechowywanie	Od 0 do 6096 m (20 000 stóp)

Tabela A-3 Środowiskowe dane techniczne zaawansowanego monitora HemoSphere

***UWAGA** Pojemność baterii zaczyna zmniejszać się przy dłuższym okresie pozostawania w temperaturze powyżej 35°C.

Tabela A-4 Środowiskowe dane techniczne dotyczące transportu zaawansowanego monitora HemoSphere

Środowiskowe dane techniczne	Wartość	
Temperatura*	Od -18°C do 45°C	
Wilgotność względna*	Od 20% do 90% wilgotności względnej, bez kondensacji	
Wysokość n.p.m.	Maksymalnie 6096 m (20 000 stóp) do 8 godzin	
Norma	ASTM D4169, DC13	
*Uwaga: Temperatura i wilgotność podczas wstępnego kondycjonowania		

Informacje dotyczące obrazowania metodą rezonansu magnetycznego. Nie używać

zaawansowanego monitora HemoSphere ani modułów platformy i przewodów w środowisku RM. Używanie zaawansowanej platformy monitorującej HemoSphere, w tym modułów i przewodów, w środowisku RM nie jest bezpieczne, ponieważ urządzenie zawiera metalowe elementy, które mogą nagrzewać się wskutek działania fal o częstotliwości radiowej.

Tabela A-5 Dane techniczne zaawansowanego monitora HemoSphere

Wejście/wyjście		
Ekran dotykowy	Pojemnościowy projekcyjny	
Port szeregowy RS-232 (1)	Własny protokół firmy Edwards; maks. szybkość transmisji danych = 57,6 kilobodów	
Porty USB (2)	Jeden port USB 2.0 (z tyłu) i jeden port USB 3.0 (z boku)	
Port Ethernet RJ-45	Jeden	
Port HDMI	Jeden	
Wejścia analogowe (2)	Zakres napięcia wejściowego: od 0 do 10 V; możliwość wyboru pełnego zakresu: od 0 V do 1 V, od 0 V do 5 V, od 0 V do 10 V; impedancja wejściowa >100 k Ω ; stereo jack 1/8 cala; szerokość pasma: od 0 do 5,2 Hz; rozdzielczość: 12 bitów ±1 LSB pełnej skali	
Wyjście ciśnienia (1)	Wyjściowy sygnał ciśnienia DPT jest kompatybilny z monitorami i akcesoriami przeznaczonymi do działania z przetwornikami do minimalnie inwazyjnego pomiaru ciśnienia firmy Edwards. Minimalny zakres wyświetlania monitora pacjenta po zerowaniu: od -20 mmHg do 270 mmHg	

Wejście/wyjście (ciąg dalszy)

Wejście monitora EKG	 Konwersja liniowa synchronizacji EKG z sygnału EKG: 1 V/mV; zakres napięcia wejściowego ±10 V (pełna skala); rozdzielczość = ±1 bpm; dokładność = ±10% lub 5 bpm, w zależności od tego, która wartość jest większa; zakres = od 30 do 200 bpm; stereo jack 1/4 cala, końcówka o dodatniej polaryzacji; przewód analogowy Funkcje odrzucania odczytu tętna ze stymulatora serca. Przyrząd odrzuca wszystkie odczyty tętna ze stymulatora serca o amplitudach od ±2 mV do ±5 mV (przy założeniu konwersji liniowej synchronizacji EKG o wartości 1 V/mV) oraz szerokości od 0,1 ms do 5,0 ms, zarówno przy prawidłowej, jak i nieskutecznej stymulacji. Odczyty tętna ze stymulatora z przeregulowaniem o ≤7% amplitudy impulsu (Metoda A normy EN 60601-2-27:2014, podpunkt 201.12.1.101.13) oraz stałe czasowe przeregulowania od 4 ms do 100 ms są odrzucane. Funkcja odrzucania odczytu maksymalnej amplitudy załamka T. Maksymalna amplituda załamka T odrzucana przez przyrząd: 1,0 mV (przy założeniu konwersji liniowej synchronizacji EKG o wartości 1 V/mV). Rytm nieregularny. Rysunek 201.101 normy EN 60601-2-27:2014. * Zespół A1: bigeminia komorowa; system wyświetla 80 bpm * Zespół A3: bigeminia komorowa przy szybkiej czynności akcji serca; system wyświetla 60 bpm * Zespół A4: zespoły QRS o różnym kierunku; system wyświetla 104 bpm 	
Wyświetlanie HR śr.	Monitorowanie CO wyłączone. Czas uśredniania: 57 sekund; częstość aktualizacji: na uderzenie; czas odpowiedzi: 40 sekund przy wzroście skokowym od 80 do 120 bpm, 29 sekund przy zmniejszeniu skokowym od 80 do 40 bpm.	
	Monitorowanie CO włączone. Czas uśredniania: czas między pomiarami CO (od 3 do 21 minut); częstość aktualizacji: około 1 minuty; czas odpowiedzi: 175 sekund przy wzroście skokowym od 80 do 120 bpm, 176 sekund przy zmniejszeniu skokowym od 80 do 40 bpm.	
Dane elektryczne		
Znamionowe napięcie zasilania	Od 100 V do 240 V (prąd przemienny); 50/60 Hz	
Znamionowa moc wejściowa	Od 1,5 do 2 A	
Bezpieczniki	T 2,5 AH, 250 V; duża zdolność wyłączania; ceramiczne	
Alarm		
Poziom ciśnienia akustycznego	Od 45 dB(A) do 85 dB(A)	
Komunikacja bezprzewo	dowa	
Тур	Połączenie z sieciami Wi-Fi zgodnymi ze standardem 802.11b/g/n (minimum)	

Tabela A-5 Dane techniczne zaawansowanego monitora HemoSphere (ciąg dalszy)

A.3 Dane techniczne akumulatora HemoSphere

Zestaw baterii HemoSphere			
Waga	0,5 kg (1,1 funta)		
Wymiary	Wysokość 35 mm (1,38 cala)		
	Szerokość	80 mm (3,15 cala)	
	Głębokość	126 mm (5,0 cala)	

Tabela A-6 Fizyczne dane techniczne akumulatora HemoSphere

Tabela A-7 Środowiskowe dane techniczne akumulatora HemoSphere	re
--	----

Środowiskowe dane techniczne		Wartość
	Robocza	Od 10°C do 37°C
	Zalecana temperatura przechowywania	21°C
Temperatura	Maksymalna temperatura długotrwałego przechowywania	35°C
	Minimalna temperatura długotrwałego przechowywania	0°C
Wilgotność względna	Robocza	Od 5% do 95% bez kondensacji w temperaturze 40°C

Tabela A-8 Dane techniczne akumulatora HemoSphere

Specyfikacja	Wartość
Napięcie wyjściowe (nominalne)	12,8 V
Maksymalny prąd rozładowania	5 A
Ogniwa	4 x LiFePO ₄ (litowo-żelazowo-fosforanowe)

A.4 Dane techniczne modułu HemoSphere Swan-Ganz

Tabela A-9 Fizyczne dane techniczne modułu HemoSphere Swan-Ganz

Moduł HemoSphere Swan-Ganz		
Waga	około 0,45 kg (1,0 funta)	
Wymiary	Wysokość	3,45 cm (1,36 cala)
	Szerokość	8,96 cm (3,53 cala)
	Głębokość	13,6 cm (5,36 cala)
Ochrona przed wnikaniem	IPX1	
Klasyfikacja części aplikacyjnej	Część typu CF odporna na defibrylację	

UWAGA Środowiskowe dane techniczne modulu HemoSphere Swan-Ganz przedstawia tabela A-3, *Środowiskowe dane techniczne zaawansowanego monitora HemoSphere* na stronie 267.

Parametr	Specyfikacja	
Ciągła pojemność minutowa serca (CO)	Zakres	Od 1 l/min do 20 l/min
	Powtarzalność ¹	±6% lub 0,1 l/min (większa z tych wartości)
	Średni czas reakcji ²	<10 minut (w przypadku cewników CCO)
	Maksymalna temperatura powierzchni włókna termicznego	48°C
Chwilowa pojemność	Zakres	Od 1 l/min do 20 l/min
minutowa serca (bolus) (iCO)	Powtarzalność ¹	±3% lub 0,1 l/min (większa z tych wartości)
Temperatura krwi (BT)	Zakres	Od 15°C do 45°C (od 59°F do 113°F)
	Dokładność	±0,3°C
Temperatura iniektatu (IT)	Zakres	Od 0°C do 30°C (od 32°F do 86°F)
	Dokładność	±1°C
Średnia wartość częstości akcji serca do określenia EDV/ RVEF (HR śr.)	Dopuszczalny zakres wejściowy	Od 30 bpm do 200 bpm
Ciągły pomiar frakcji	Zakres	Od 10% do 60%
wyrzutowej prawej komory (RVEF)	Powtarzalność ¹	±6% lub 3 efu (większa z tych wartości)
¹ Współczynnik zmienności — mierzony na podstawie danych zebranych elektronicznie		

Tabela A-10 Dane techniczne modułu HemoSphere Swan-Ganzdotyczące pomiaru parametrów

¹ Współczynnik zmienności — mierzony na podstawie danych zebranych elektronicznie ² Zmiana z 10% na 90% przy stałej temperaturze krwi

UWAGA Oczekiwany okres użytkowania modułu HemoSphere Swan-Ganz wynosi 5 lat od daty produkcji. Po tym czasie należy go wymienić i zwrócić do firmy Edwards Lifesciences. W celu uzyskania dalszej pomocy należy skontaktować się z działem pomocy technicznej lub lokalnym przedstawicielem firmy Edwards.

A.5 Dane techniczne przewodu ciśnienia HemoSphere

Przewód ciśnienia HemoSphere			
Waga	około 0,29 kg (0,64 funta)		
Wymiary	Długość	3,0 m (10 stóp)	
Ochrona przed wnikaniem	IPX4		
Klasyfikacja części aplikacyjnej	Część typu CF odporna na defibrylację		

Tabela A-11 Dane fizyczne przewodu ciśnienia HemoSphere

UWAGA Dane techniczne przewodu ciśnienia HemoSphere, patrz tabela A-3, Środowiskowe dane techniczne zaawansowanego monitora HemoSphere na stronie 267.

Tabela A-12 Dane techniczne przewodu ciśnienia HemoSphere
dotyczące pomiaru parametrów

Parametr	Specyfikacja	
Pojemność minutowa (CO) FloTrac	Zakres wyświetlania	Od 1,0 do 20 l/min
	Powtarzalność ¹	±6% lub 0,1 l/min (większa z tych wartości)
Ciśnienie krwi ²	Zakres wyświetlania ciśnienia w czasie rzeczywistym	Od -34 do 312 mmHg
	Zakres wyświetlania MAP/DIA/SYS	Od 0 do 300 mmHg
	Zakres wyświetlania CVP	Od 0 do 50 mmHg
	Zakres wyświetlania MPAP	Od 0 do 99 mmHg
	Dokładność	±4% lub ±4 mmHg (większa z tych wartości), od -30 do 300 mmHg
	Szerokość pasma	1–10 Hz
Częstość tętna (PR)	Dokładność ³	A _{rms} ≤ 3 bpm
¹ Współczynnik zmienności — mierzony na podstawie danych zebranych elektronicznie.		

 2 Specyfikacje parametrów zgodne z normą IEC 60601-2-34. Testy wykonano w warunkach laboratoryjnych.

³ Dokładność badano w warunkach laboratoryjnych.

UWAGA Oczekiwany okres użytkowania przewodu ciśnienia HemoSphere wynosi 5 lat od daty produkcji. Po tym czasie należy go wymienić i zwrócić do firmy Edwards Lifesciences. W celu uzyskania dalszej pomocy należy skontaktować się z działem pomocy technicznej lub lokalnym przedstawicielem firmy Edwards.

A.6 Dane techniczne przewodu do oksymetrii HemoSphere

Przewód do oksymetrii HemoSphere		
Waga	około 0,24 kg (0,54 funta)	
Wymiary	Długość	2,9 m (9,6 stopy)
Ochrona przed wnikaniem	IPX4	
Klasyfikacja części aplikacyjnej	Część typu CF odporna na defibrylację	

UWAGA Środowiskowe dane techniczne przewodu do oksymetrii HemoSphere, patrz tabela A-3, *Środowiskowe dane techniczne zaawansowanego monitora HemoSphere* na stronie 267.

Tabela A-14 Dane techniczne przewodu do oksymetrii HemoSpheredotyczące pomiaru parametrów

Parametr	Specyfikacja	
Oksymetria ScvO ₂ /SvO ₂ (wysycenie tlenem)	Zakres	Od 0% do 99%
	Precyzja ¹	±2% przy 30 do 99%
	Częstość aktualizacji	2 sekundy
¹ Precyzję badano w warunkach laboratoryjnych.		

UWAGA	Oczekiwany okres użytkowania przewodu do oksymetrii HemoSphere wynosi 1,5 roku
	od daty produkcji. Po tym czasie należy go wymienić i zwrócić do firmy
	Edwards Lifesciences. W celu uzyskania dalszej pomocy należy skontaktować się
	z działem pomocy technicznej lub lokalnym przedstawicielem firmy Edwards.

A.7 Dane techniczne oksymetrii tkankowej HemoSphere

Tabela A-15 Fizyczne dane techniczne modułu do oksymetrii tkankowej HemoSphere

Moduł do oksymetrii tkankowej HemoSphere		
Waga	około 0,4 kg (1,0 funta)	
Wymiary	Wysokość	3,5 cm (1,4 cala)
	Szerokość	9,0 cm (3,5 cala)
	Głębokość	13,6 cm (5,4 cala)
Ochrona przed wnikaniem	IPX1	
Klasyfikacja części aplikacyjnej	Część typu BF odporna na defibrylację	

UWAGA Środowiskowe dane techniczne modułu HemoSphere do oksymetrii tkankowej i modułu oksymetru tkankowego ForeSight Elite, patrz tabela A-3, *Środowiskowe dane techniczne zaawansowanego monitora HemoSphere* na stronie 267.

Dane techniczne modułu oksymetru tkankowego ForeSight Elite		
Masa	zacisk montażowy	0,05 kg (0,1 lb)
	obudowa, przewody i zacisk	1,0 kg (2,3 lb)
Wymiary	długość przewodu modułu do oksymetrii tkankowej	4,6 m (15 ft) ¹
	długość przewodu czujnika (2)	1,5 m (4,9 ft) ¹
	obudowa modułu (wys. × szer. × głęb.)	15,24 cm × 9,52 cm × 6,00 cm (6,0 cala × 3,75 cala × 2,75 cala)
	zacisk montażowy (wys. × szer. × głęb.)	6,2 cm × 4,47 cm × 8,14 cm (2,4 cala × 1,75 cala × 3,2 cala)
Ochrona przed wnikaniem	IPX4	·
Klasyfikacja części aplikacyjnej	Typu BF (odporna na defibrylację)	
¹ Podane długości przewodu modułu do oksymetrii tkankowej i przewodu czujnika są długościami nominalnymi		

Tabela A-16 Fizyczne dane techniczne modułu oksymetru tkankowego ForeSight Elite

Tabela A-17 Dane techniczne modułu do oksymetrii tkankowej HemoSphere dotyczące pomiaru parametrów

Parametr	Dane techniczne	niczne	
Wartość StO ₂	Zakres	od 1 do 99%	
w mózgu (wysycenie tkanek tlenem)	Dokładność ¹	duże czujniki	od 45% do 95%: -0,14 ±3,05% przy SD 1
		średnie czujniki	od 48% do 92%: 1,31 ±5,70% przy SD 1
		małe czujniki	od 50% do 90%: -1,21 ±5,91% przy SD 1
Wartość StO ₂ poza	Zakres	od 1 do 99%	
mózgiem (wysycenie tkanek tlenem)	Dokładność ¹	duże czujniki	od 45% do 95%: 0,04 ±4,22% przy SD 1
		średnie czujniki	od 53% do 88%: -1,55 ±5,82% przy SD 1
		małe czujniki	od 66% do 96%: 0,03 ±5,69% przy SD 1
¹ Dokładność (błąd poprawności wskazań ±precyzja) nie została ustalona dla wartości poza wymienionymi zakresami.			

UWAGAOczekiwany okres użytkowania modulu HemoSphere do oksymetrii tkankowej wynosi
5 lat od daty produkcji. Po tym czasie należy go wymienić i zwrócić do firmy
Edwards Lifesciences. W celu uzyskania dalszej pomocy należy skontaktować się
z działem pomocy technicznej lub lokalnym przedstawicielem firmy Edwards.

Dodatek **B**

Akcesoria

Spis treści

Lista akcesoriów
Opis dodatkowych akcesoriów

B.1 Lista akcesoriów

OSTRZEŻENIE

Stosować wyłącznie zatwierdzone akcesoria, przewody i elementy zaawansowanego monitora HemoSphere, które zostały dostarczone i oznakowane przez firmę Edwards. Używanie niezatwierdzonych akcesoriów, przewodów i elementów może wpłynąć na bezpieczeństwo pacjenta i dokładność pomiaru.

Tabela B-1 Elementy zaawansowanego monitora HemoSphere

Opis	Numer modelu
Zaawansowany monitor HemoSphere	
Zaawansowany monitor HemoSphere	HEM1
Akumulator (Zestaw baterii) HemoSphere	HEMBAT10
Moduł rozszerzający HemoSphere	HEMEXPM10
Moduł rozszerzający L-Tech HemoSphere	HEMLTECHM10
Stojak na kółkach do zaawansowanego monitora HemoSphere	HEMRLSTD1000
Monitorowanie za pomocą produktów HemoSphere Swan-Ganz	
Moduł HemoSphere Swan-Ganz	HEMSGM10
Przewód CCO pacjenta (Kabel pacjent CCO)	70CC2
Cewniki Swan-Ganz firmy Edwards	*
Sonda temperatury in-line (zamknięty system doprowadzania iniektatu CO-SET+)	93522
Sonda iniektatu do pomiaru temperatury w łaźni	9850A

Tabela B-1 Elementy zaawansowanego monitora HemoSphere (ciąg dalszy)

Opis	Numer modelu	
Monitorowanie za pomocą przewodu ciśnienia HemoSphere		
Przewód ciśnienia HemoSphere	HEMPSC100	
Czujnik FloTrac lub Acumen IQ firmy Edwards	*	
Przetwornik do monitorowania ciśnienia TruWave firmy Edwards	*	
Monitorowanie oksymetrii żylnej przy użyciu produktów HemoSphere		
Przewód do oksymetrii HemoSphere	HEMOXSC100	
Uchwyt do oksymetrii HemoSphere	HEMOXCR1000	
Cewnik oksymetryczny firmy Edwards	*	
Monitorowanie oksymetrii tkankowej przy użyciu produktów HemoSphere		
Moduł do oksymetrii tkankowej HemoSphere	HEMTOM10	
Moduł oksymetru tkankowego ForeSight Elite	HEMFSM10	
Zacisk montażowy modułu oksymetru tkankowego ForeSight Elite	01-06-1100	

Tabela B-1 Elementy zaawansowanego monitora HemoSphere (ciąg dalszy)

Opis	Numer modelu	
Czujniki do oksymetrii tkankowej ForeSight Elite (rozmiary: nieprzylepne małe, małe, średnie i duże)	*	
Przewody zaawansowanego monitora HemoSphere		
Przewód zasilania sieciowego	*	
Przewód podrzędny ciśnienia	**	
Przewody podrzędne monitora EKG	**	
Przewód wyjściowego sygnału ciśnienia	HEMDPT1000	

Tabela B-1 Elementy zaawansowanego monitora HemoSphere (ciąg dalszy)

Opis	Numer modelu		
Dodatkowe akcesoria HemoSphere			
Podręcznik operatora zaawansowanego monitora HemoSphere	***		
Podręcznik serwisowy zaawansowanego monitora HemoSphere	***		
Skrócony przewodnik do zaawansowanego monitora HemoSphere zawiera podręcznik operatora zaawansowanego monitora HemoSphere	HEMQG1000		
 W celu uzyskania informacji dotyczących modelu i zamawiania należy skontaktować się z przedstawicielem firmy Edwards. ** Przewody podrzędne firmy Edwards Lifesciences są przystosowane do poszczególnych monitorów przyłóżkowych. Dostępne są przewody do monitorów kilku firm, takich jak Philips (Agilent), GE (Marquette) i Spacelabs (OSI Systems). W celu uzyskania informacji dotyczących konkretnego modelu i zamawiania należy skontaktować się z przedstawicielem firmy Edwards. 			
się z przedstawicielem firmy Edwards.	ezy skoniaktowac		

B.2 Opis dodatkowych akcesoriów

B.2.1 Stojak na kółkach

Stojak na kółkach do zaawansowanego monitora HemoSphere jest przeznaczony do stosowania z monitorem HemoSphere. Należy postępować zgodnie z załączoną instrukcją montażu stojaka na kółkach i zwrócić uwagę na zawarte w niej ostrzeżenia. Ustawić złożony stojak na podłodze, tak aby wszystkie kółka się z nią stykały, a następnie bezpiecznie zamontować monitor na półce stojaka zgodnie z podaną instrukcją.

B.2.2 Uchwyt do oksymetrii

Uchwyt do oksymetrii HemoSphere to akcesorium wielokrotnego użytku umożliwiające zamocowanie przewodu do oksymetrii HemoSphere podczas monitorowana za pomocą zaawansowanej platformy do monitorowania HemoSphere. Informacje dotyczące prawidłowego sposobu montowania uchwytu znajdują się w załączonej instrukcji.

Dodatek C

Równania stosowane do obliczania parametrów pacjenta

Niniejsza część zawiera opis równań stosowanych do obliczania ciągłych i chwilowych parametrów pacjenta wyświetlanych na zaawansowanym monitorze HemoSphere.

UWAGA	Parametry pacjenta są obliczane z dokładnością do większej liczby miejsc dziesiętnych		
	niż wyświetlane na ekranie. Na przykład ekranowa wartość CO równa 2,4 może		
w rzeczywistości wynosić 2,4492. W związku z tym próba weryfikacji d			
	danych wyświetlanych na monitorze za pomocą poniższych równań może prowadzić		
	do uzyskania wyników nieco odmiennych niż te wyliczone przez monitor.		

W przypadku wszystkich obliczeń zawierających SvO₂, gdy użytkownik wybierze parametr ScvO₂, zostanie on zastąpiony.

Parametr	Opis i wzór	Jednostki
BSA	Pole powierzchni ciała (wzór DuBois)	
	BSA = 71,84 × (WT ^{0,425}) × (HT ^{0,725})/10 000	m ²
	gdzie:	
	WT — ciężar ciała pacjenta, kg	
	HT — wzrost pacjenta, cm	
CaO ₂	Zawartość tlenu we krwi tętniczej	
	CaO ₂ = (0,0138 × HGB × SpO ₂) + (0,0031 × PaO ₂) (ml/dl)	ml/dl
	CaO ₂ = [0,0138 × (HGB _{SI} × 1,611) × SpO ₂] + [0,0031 × (PaO _{2SI} × 7,5)] (ml/dl)	
	gdzie:	
	HGB — hemoglobina całkowita, g/dl	
	HGB _{SI} — hemoglobina całkowita w jednostkach międzynarodowych, mmol/l	
	SpO ₂ — wysycenie krwi tętniczej tlenem, %	
	PaO ₂ — ciśnienie cząstkowe tlenu we krwi tętniczej, mmHg	
	PaO _{2SI} — ciśnienie cząstkowe tlenu we krwi w jednostkach	
	międzynarodowych, kPa	

Tabela C-1 Równania dotyczące badań serca i natleniania

Parametr	Opis i wzór	Jednostki	
CvO ₂	Zawartość tlenu we krwi żylnej $CvO_2 = (0,0138 \times HGB \times SvO_2) + (0,0031 \times PvO_2) (ml/dl)$ $CvO_2 = [0,0138 \times (HGB_{SI} \times 1,611) \times SvO_2] + [0,0031 \times (PvO_{2SI} \times 7,5)] (ml/dl)$ gdzie: HGB - hemoglobina całkowita, g/dl $HGB_{SI} - hemoglobina całkowita w jednostkach międzynarodowych, mmol/l SvO_2 - wysycenie O_2 krwi żylnej, %PvO_2 - ciśnienie cząstkowe tlenu we krwi żylnej w jednostkach międzynarodowych, kPa oraz PvO_2 może być wprowadzone przez użytkownika w trybie monitorowania inwazyjnego i przyjmuje się, że wynosi 0 we wszystkich innych trybach monitorowania$	ml/dl	
Ca-vO ₂	Różnica zawartości tlenu we krwi tętniczej i żylnej Ca-vO ₂ = CaO ₂ — CvO ₂ (ml/dl) gdzie: CaO_2 — zawartość tlenu we krwi tętniczej, ml/dl CvO_2 — zawartość tlenu we krwi żylnej, ml/dl	ml/dl	
CI	Wskaźnik sercowy CI = CO/BSA gdzie: CO — pojemność minutowa serca, I/min BSA — pole powierzchni ciała, m ²	l/min/m ²	
CPI	Indeks wydajności serca CPI = MAP × CI × 0,0022	W/m ²	
СРО	Moc pojemności minutowej CPO = CO × MAP × <i>K</i> gdzie: Moc pojemności minutowej (CPO) (W) została obliczona na podstawie równania MAP × CO/451 <i>K</i> jest współczynnikiem konwersji (2,22 × 10 ⁻³) na waty MAP w mmHg CO L/min	W	
DO ₂	Podaż tlenu DO ₂ = CaO ₂ × CO × 10 gdzie: CaO ₂ — zawartość tlenu we krwi tętniczej, ml/dl CO — pojemność minutowa serca, l/min	ml O ₂ /min	
DO ₂ I	Wskaźnik podaży tlenu DO ₂ I = CaO ₂ × CI × 10 gdzie: CaO ₂ — zawartość tlenu we krwi tętniczej, ml/dl CI — pojemność minutowa serca, l/min/m ²	ml O ₂ /min/m ²	

Parametr	Opis i wzór	Jednostki
dP/dt	Maksymalna wartość pierwszej pochodnej krzywej ciśnienia tętniczego względem czasu dP/dt = maks.(P[n+1]–P[n])/ts, dla n=0 do N=1 gdzie: P[n] — aktualna próbka sygnału ciśnienia tętniczego, mmHg ts — odstęp czasu próbkowania, sekundy N — całkowita liczba próbek w danym cyklu pracy serca	mmHg/s
Ea _{dyn}	Dynamiczna sprężystość tętnic Ea _{dyn} = PPV/SVV gdzie: SVV — zmienna objętości wyrzutowej, % PPV — wahanie ciśnienia tętniczego, %	Brak
EDV	Objętość późnorozkurczowa EDV = SV/EF gdzie: SV — objętość wyrzutowa, ml EF — frakcja wyrzutowa, % (efu)	ml
EDVI	Wskaźnik objętości późnorozkurczowej EDVI = SVI/EF gdzie: SVI — wskaźnik objętości wyrzutowej, ml/m ² EF — frakcja wyrzutowa, % (efu)	ml/m ²
ESV	Objętość późnoskurczowa ESV = EDV – SV gdzie: EDV — objętość późnorozkurczowa, ml SV — objętość wyrzutowa, ml	ml
ESVI	Wskaźnik objętości późnorozkurczowej ESVI = EDVI – SVI gdzie: EDVI — wskaźnik objętości późnorozkurczowej, ml/m ² SVI — wskaźnik objętości wyrzutowej, ml/m ²	ml/m ²
LVSWI	Wskaźnik pracy wyrzutowej lewej komory LVSWI = SVI × (MAP – PAWP) × 0,0136 LVSWI = SVI × (MAP _{SI} – PAWP _{SI}) × 0,0136 × 7,5 gdzie: SVI — wskaźnik objętości wyrzutowej, ml/uderzenie/m ² MAP — średnie ciśnienie tętnicze, mmHg MAP _{SI} — średnie ciśnienie tętnicze w jednostkach międzynarodowych, kPa PAWP — ciśnienie zaklinowania tętnicy płucnej, mmHg PAWP _{SI} — ciśnienie zaklinowania tętnicy płucnej w jednostkach międzynarodowych, kPa	g-m/m ² /uderzenie
O ₂ EI	Wskaźnik ekstrakcji tlenu O ₂ EI = {(SaO ₂ – SvO ₂)/SaO ₂ } × 100 (%) gdzie: SaO ₂ — wysycenie O2 krwi tętniczej, % SvO ₂ — wysycenie O2 krwi żylnej mieszanej, %	%

Tabela C-1 Równania dotyczące badań serca i natleniania (ciąg dalszy)

Parametr	Opis i wzór	Jednostki
O ₂ ER	Współczynnik ekstrakcji tlenu O ₂ ER = (Ca-vO ₂ /CaO ₂) × 100 (%)	%
PPV	gdzie: CaO ₂ — zawartość tlenu we krwi tętniczej, ml/dl Ca-vO ₂ — różnica zawartości tlenu we krwi tętniczej i żylnej, ml/dl Wahanie ciśnienia tetniczego	%
	PPV = 100 x (PPmaks – PPmin) / średnia (PP) gdzie: PP — ciśnienie tętna, mmHg, wyliczone jako:	
	PP = SYS – DIA SYS — ciśnienie skurczowe DIA — ciśnienie rozkurczowe	
PVR	Opór naczyń płucnych PVR = {(MPAP – PAWP) × 80}/CO PVR = {(MPAP _{SI} – PAWP _{SI}) × 60}/CO gdzie: MPAP — średnie ciśnienie w tętnicy płucnej, mmHg MPAP _{SI} — średnie ciśnienie w tętnicy płucnej w jednostkach międzynarodowych, kPa PAWP — ciśnienie zaklinowania tętnicy płucnej, mmHg PAWP _{SI} — ciśnienie zaklinowania tętnicy płucnej w jednostkach międzynarodowych, kPa CO — pojemność minutowa serca, I/min	dyn-s/cm ⁵ kPa-s/l
PVRI	Wskaźnik oporu naczyń płucnych PVRI = {(MPAP – PAWP) × 80}/CI PVRI = {(MPAP _{SI} – PAWP _{SI}) × 60}/CI gdzie: MPAP — średnie ciśnienie w tętnicy płucnej, mmHg MPAP _{SI} — średnie ciśnienie w tętnicy płucnej w jednostkach międzynarodowych, kPa PAWP — ciśnienie zaklinowania tętnicy płucnej w jednostkach międzynarodowych, kPa CI — wskaźnik sercowy, I/min/m ²	dyn-s-m ² /cm ⁵ kPa-s-m ² /l
RVSWI	Wskaźnik pracy wyrzutowej prawej komory RVSWI = SVI × (MPAP – CVP) × 0,0136 RVSWI = SVI × (MPAP _{SI} – CVP _{SI}) × 0,0136 × 7,5 gdzie: SVI — wskaźnik objętości wyrzutowej, ml/uderzenie/m ² MPAP — średnie ciśnienie w tętnicy płucnej, mmHg MPAP _{SI} — średnie ciśnienie w tętnicy płucnej w jednostkach międzynarodowych, kPa CVP — ośrodkowe ciśnienie żylne, mmHg CVP _{SI} — ośrodkowe ciśnienie żylne w jednostkach międzynarodowych, kPa	g-m/m ² /uderzenie
StO ₂	Wysycenie tkanek tlenem StO ₂ = [HbO ₂ /(HbO ₂ + Hb)] × 100 gdzie: HbO ₂ — utlenowana hemoglobina Hb — odtlenowana hemoglobina	%

Tabela C-1 Równania dotyczące badań serca i natleniania (ciąg dalszy)

Parametr	Opis i wzór	Jednostki
SV	Objętość wyrzutowa SV = (CO/PR) × 1000 gdzie: CO — pojemność minutowa serca, I/min PR — częstość tętna, uderzenia/min	ml/uderzenie
SVI	Wskaźnik objętości wyrzutowej SVI = (CI/PR) × 1000 gdzie: CI — wskaźnik sercowy, I/min/m ² PR — częstość tętna, uderzenia/min	ml/uderzenie/m ²
SVR	Systemowy opór naczyniowy SVR = {(MAP – CVP) × 80}/CO, dyn-s/cm ⁵ SVR = {(MAP _{SI} – CVP _{SI}) × 60}/CO gdzie: MAP — średnie ciśnienie tętnicze, mmHg MAP _{SI} — średnie ciśnienie tętnicze w jednostkach międzynarodowych, kPa CVP — ośrodkowe ciśnienie żylne, mmHg CVP _{SI} — ośrodkowe ciśnienie żylne w jednostkach międzynarodowych, kPa CO — pojemność minutowa serca, I/min	dyn-s/cm ⁵ (kPa-s/l) _{Sl}
SVRI	Wskaźnik systemowego oporu naczyniowego SVRI = {(MAP – CVP) × 80}/CI gdzie: MAP — średnie ciśnienie tętnicze, mmHg MAP _{SI} — średnie ciśnienie tętnicze w jednostkach międzynarodowych, kPa CVP — ośrodkowe ciśnienie żylne, mmHg CVP _{SI} — ośrodkowe ciśnienie żylne w jednostkach międzynarodowych, kPa CI — wskaźnik sercowy, I/min/m ²	dyn-s-m ² /cm ⁵ (kPa-s-m ² /l) _{Sl}
SVV	Zmienna objętości wyrzutowej SVV = 100 × (SV _{maks.} – SV _{min.}) / śr.(SV)	%
VO ₂	Zużycie tlenu VO ₂ = Ca-vO ₂ × CO × 10, ml O ₂ /min gdzie: Ca-vO ₂ — różnica zawartości tlenu we krwi tętniczej i żylnej, ml/dl CO — pojemność minutowa serca, l/min	ml O ₂ /min
VO ₂ e	Wskaźnik szacowanego zużycia tlenu podczas monitorowania ScvO2 VO2e = Ca-vO2 × CO × 10, mL O2/min gdzie: Ca-vO2 — różnica zawartości tlenu we krwi tętniczej i żylnej, ml/dl CO — pojemność minutowa serca, l/min	ml O ₂ /min
VO ₂ I	Wskaźnik zużycia tlenu VO ₂ /BSA	ml O ₂ /min/m ²

Tabela C-1 Równania dotyczące badań serca i natleniania (ciąg dalszy)

Parametr	Opis i wzór	Jednostki
VO ₂ le	Wskaźnik szacowanego zużycia tlenu	
	VO ₂ e/BSA	ml O ₂ /min/m ²
VQI	$VQI = \frac{\{1,38 \times HGB \times (1,0 - (SaO_2/100)) + (0,0031 \times PAO_2)\}}{\{1,38 \times HGB \times (1,0 - (SvO_2/100)) + (0,0031 \times PAO_2)\}} \times 100$ $VQI = \frac{\{1,38 \times HGB_{SI} \times 1,611344 \times (1,0 - (SaO_2/100)) + (0,0031 \times PAO_2)\}}{\{1,38 \times HGB_{SI} \times 1,611344 \times (1,0 - (SvO_2/100)) + (0,0031 \times PAO_2)\}} \times 100$ $gdzie:$ $HGB - hemoglobina całkowita, g/dI$ $HGB_{SI} - hemoglobina całkowita w jednostkach międzynarodowych,$ mmol/I $SaO_2 - wysycenie O_2 krwi tętniczej, %$ $SvO_2 - wysycenie O_2 krwi żylnej mieszanej, %$ $PAO_2 - pęcherzykowa prężność O_2, mmHg$ oraz: $PAO_2 = ((PBAR - PH_20) \times FiO_2) - PaCO_2 \times (FiO_2 + (1,0 - FiO_2)/0,8))$ $gdzie:$ $FiO_2 - frakcja wdychanego tlenu$ $PBAR - 760 mmHg$ $PH_2O - 47 mmHg$	%
	$PaCO_2 - 40 \text{ mmHg}$	

Tabela C-1 Równania dotyczące badań serca i natleniania (ciąg dalszy)

Dodatek D

Konfiguracja monitora i ustawienia domyślne

D.1 Zakres danych wejściowych pacjenta

Tabela D-1 Informacje dla pacjenta

Parametr	Minimum	Maksimum	Dostępne jednostki
Płeć	M (Mężczyzna)/ F (Kobieta)	Nie dotyczy	Nie dotyczy
Wiek	2	120	lat
Wzrost	12 cali/30 cm	98 cali/250 cm	cale lub cm
Waga	2 funty/1,0 kg	881 funty/400,0 kg	funty lub kg
BSA	0,08	5,02	m ²
ID	0 cyfr	40 znaków	Brak

D.2 Domyślne wartości graniczne skali trendu

Parametr	Jednostki	Minimalna wartość domyślna	Maksymalna wartość domyślna	Przyrost ustawienia
CO/iCO/sCO	l/min	0,0	12,0	1,0
CI/iCI/sCI	l/min/m ²	0,0	12,0	1,0
SV	ml/b	0	160	20
SVI	ml/b/m ²	0	80	20
SVV	%	0	50	10
ScvO ₂ /SvO ₂	%	0	99	10
StO ₂	%	1	99	10
SVR/iSVR	dyn-s/cm ⁵	500	1500	100
SVRI/iSVRI	dyn-s-m ² /cm ⁵	500	3000	200
EDV/sEDV	ml	0	800	25
EDVI/sEDVI	ml/m ²	0	400	25

Tabela D-2 Wartości domyślne parametrów trendu graficznego

Parametr	Jednostki	Minimalna wartość domyślna	Maksymalna wartość domyślna	Przyrost ustawienia
RVEF/sRVEF	%	0	100	10
SYS _{ART}	mmHg	80	160	5
SYS _{PAP}	mmHg	0	55	5
DIA _{ART}	mmHg	50	110	5
DIA _{PAP}	mmHg	0	35	5
MAP	mmHg	50	130	5
MPAP	mmHg	0	45	5
PPV	%	0	50	10
PR	bpm	40	130	5
dP/dt	mmHg/s	0	2000	100
Ea _{dyn}	Brak	0,2	1,5	0,1
HPI	Brak	0	100	10

Tabela D-2 Wartości domyślne parametrów trendu graficznego (ciąg dalszy)

D.3 Zakresy wyświetlania parametrów oraz konfigurowalne zakresy alarmów/wartości docelowych

Parametr	Jednostki	Zakres wyświetlania	Konfigurowalny zakres	
СО	l/min	Od 1,0 do 20,0	Od 1,0 do 20,0	
iCO	l/min	Od 0,0 do 20,0	Od 0,0 do 20,0	
sCO	l/min	Od 1,0 do 20,0	Od 1,0 do 20,0	
CI	l/min/m ²	Od 0,0 do 20,0	Od 0,0 do 20,0	
iCl	l/min/m ²	Od 0,0 do 20,0	Od 0,0 do 20,0	
sCl	l/min/m ²	Od 0,0 do 20,0	Od 0,0 do 20,0	
SV	ml/b	Od 0 do 300	Od 0 do 300	
SVI	ml/b/m ²	Od 0 do 200	Od 0 do 200	
SVR	dyn-s/cm ⁵	Od 0 do 5000	Od 0 do 5000	
SVRI	dyn-s-m ² /cm ⁵	Od 0 do 9950	Od 0 do 9950	
iSVR	dyn-s/cm ⁵	Od 0 do 5000	Od 0 do 5000	
iSVRI	dyn-s-m ² /cm ⁵	Od 0 do 9950	Od 0 do 9950	

Tabela D-3 Konfigurowalne alarmy parametrów i zakresy wyświetlania

UWAGA Zaawansowany monitor HemoSphere nie przyjmie ustawienia górnej skali, które jest niższe od ustawienia dolnej skali. Podobnie jak nie przyjmie ustawienia dolnej skali wyższego od ustawienia górnej skali.

Parametr	Jednostki	Zakres wyświetlania	Konfigurowalny zakres			
SVV	%	Od 0 do 99	Od 0 do 99			
Oksymetria (ScvO ₂ /SvO ₂ /StO ₂)	%	Od 0 do 99	Od 0 do 99			
EDV	ml	Od 0 do 800	Od 0 do 800			
sEDV	ml	Od 0 do 800	Od 0 do 800			
EDVI	ml/m ²	Od 0 do 400	Od 0 do 400			
sEDVI	ml/m ²	Od 0 do 400	Od 0 do 400			
RVEF	%	Od 0 do 100	Od 0 do 100			
sRVEF	%	Od 0 do 100	Od 0 do 100			
CVP	mmHg	Od 0 do 50	Od 0 do 50			
MAP	mmHg	Od 0 do 300	Od 0 do 300			
MAP (wyświetlacz krzywej ciśnienia tętniczego w czasie rzeczywistym)	mmHg	od -34 do 312	Od 0 do 300			
MPAP	mmHg	Od 0 do 99	Od 0 do 99			
SYS _{ART}	mmHg	Od 0 do 300	od 10 do 300			
SYS _{PAP}	mmHg	Od 0 do 99	Od 0 do 99			
DIA _{ART}	mmHg	Od 0 do 300	od 10 do 300			
DIA _{PAP}	mmHg	Od 0 do 99	Od 0 do 99			
PPV	%	Od 0 do 99	Od 0 do 99			
PR	bpm	Od 0 do 220	Od 0 do 220			
HPI	Brak	Od 0 do 100	Nie dotyczy ¹			
dP/dt	mmHg/s	Od 0 do 3000	Od 0 do 3000			
Ea _{dyn}	Brak	Od 0,0 do 3,0	Nie dotyczy ²			
HRśr.	bpm	Od 0 do 220	Od 0 do 220			
¹ Zakres wartości alarmowych parametru HPI nie iest konfigurowalny.						

Tabela D-3 Konfigurowalne alarmy parametrów i zakresy wyświetlania (ciąg dalszy)

² Ea_{dyn} nie jest parametrem wartości alarmowej. Przedstawiony zakres służy wyłącznie do celów poglądowych.

D.4 Ustawienia domyślne alarmów i wartości docelowych

Parametr	Jednostki	Ustawienie domyślne dolnego alarmu EW (strefa czerwona)	Ustawienie domyślne dolnej wartości docelowej EW	Ustawienie domyślne górnej wartości docelowej EW	Ustawienie domyślne górnego alarmu EW (strefa czerwona)
CI/iCI/sCI	l/min/m ²	1,0	2,0	4,0	6,0
SVI	ml/b/m ²	20	30	50	70
SVRI/iSVRI	dyn-s-m ² /cm ⁵	1000	1970	2390	3000
SVV	%	0	0	13	20
ScvO ₂ /SvO ₂	%	50	65	75	85
StO ₂	%	50	60	90	100
EDVI/sEDVI	ml/m ²	40	60	100	200
RVEF/sRVEF	%	20	40	60	60
DO ₂ I	ml O ₂ /min/m ²	300	500	600	800
VO ₂ I/VO ₂ Ie	ml O ₂ /min/m ²	80	120	160	250
CVP	mmHg	2	2	8	10
SYS _{ART}	mmHg	90	100	130	150
SYS _{PAP}	mmHg	10	14	23	34
DIA _{ART}	mmHg	60	70	90	100
DIA _{PAP}	mmHg	0	4	13	16
MAP	mmHg	60	70	100	120
MPAP	mmHg	5	9	18	25
HRśr.	bpm	60	70	100	120
HGB	g/dl	7,0	11,0	17,0	19,0
	mmol/l	4,3	6,8	10,6	11,8
SpO ₂	%	90	94	100	100
PPV	%	0	0	13	20
PR	bmp	60	70	100	120
HPI	Brak	0	Nie dotyczy	Nie dotyczy	85
dP/dt	mmHg/s	380	480	1300	1800

Tabela D-4 Ustawienia domyślne wartości docelowych i czerwonej strefy alarmowej parametrów

UWAGA

Nieindeksowane zakresy są ustalane na podstawie zakresów indeksowanych i wprowadzonych wartości BSA.

D.5 Priorytety alarmów

Parametr fizjologiczny (alarmy)/ typ komunikatu	Priorytet dolnego alarmu fizjologicznego (strefa czerwona)	Priorytet górnego alarmu fizjologicznego (strefa czerwona)	Priorytet typu komunikatu	
CO/CI/sCO/sCI	Wysoki	Średni		
SV/SVI	Wysoki	Średni		
SVR/SVRI	Średni	Średni		
SVV	Średni	Średni		
ScvO ₂ /SvO ₂	Wysoki	Średni		
StO ₂	Wysoki	Nie dotyczy		
EDV/EDVI/sEDV/sEDVI	Średni	Średni		
RVEF/sRVEF	Średni	Średni		
SYS _{ART} /SYS _{PAP}	Wysoki	Wysoki		
DIA _{ART} /DIA _{PAP}	Wysoki	Wysoki		
MAP	Wysoki	Wysoki		
MPAP	Średni	Średni		
CVP	Średni	Średni		
PPV	Średni	Średni		
Usterka			Średni/wysoki	
Alert			Niski	

Tabela D-5 Priorytety alertów, usterek i alarmów parametrów

UWAGA

Opóźnienie generowania sygnału alarmowego zależy od parametru. W przypadku parametrów związanych z oksymetrią opóźnienie wynosi poniżej 2 sekund od momentu, gdy parametr był poza zakresem przez 5 sekund lub dłużej. W przypadku ciągłego pomiaru CO i powiązanych parametrów za pomocą modułu HemoSphere Swan-Ganz opóźnienie jest krótsze niż 360 sekund, jednak typowe opóźnienie z powodu obliczania parametru wynosi 57 sekund. W przypadku ciągłego pomiaru CO za pomocą przewodu ciśnienia HemoSphere i powiązanych parametrów z systemu FloTrac opóźnienie wynosi 2 sekundy przy 5-sekundowym uśrednianiu parametrów (po tym, gdy wartość parametru znajdowała się poza zakresem przez co najmniej 5 sekund) oraz 20 sekund przy 20-sekundowym i 5-minutowym uśrednianiu parametrów (patrz tabela 6-4 na stronie 122). W przypadku parametrów mierzonych za pomocą przewodu ciśnienia HemoSphere z przetwornikiem DPT TruWave opóźnienie wynosi 2 sekundy po tym, gdy wartość parametru znajdowała się poza zakresem przez co najmniej 5 sekund.

Wartość parametru będzie migać z większą częstotliwością w przypadku alarmu fizjologicznego o wysokim priorytecie w porównaniu do alarmu fizjologicznego o średnim priorytecie. Jeśli w tym samym czasie zostanie włączony sygnał dźwiękowy alarmu o średnim i wysokim priorytecie, słyszalny będzie dźwięk alarmu fizjologicznego o wysokim priorytecie. Jeżeli aktywny jest alarm o niskim priorytecie i wygenerowane zostaną alarmy o średnim lub wyższym priorytecie, wizualny wskaźnik alarmu o niskim priorytecie zostanie zastąpiony wskaźnikiem wizualnym alarmu o wysokim priorytecie.

Większość usterek technicznych ma średni priorytet. Natomiast priorytet alertów i innych komunikatów systemowych jest niski.

D.6 Domyślne ustawienia języka*

	Domyślne jednostki wyświetlania			Francis		Czas		
Język	PaO ₂	HGB	Wzrost	Waga	Format czasu	Format daty	trendu CO	
English (US)	mmHg	g/dl	cale	funty	12 godzin	MM/DD/RRRR	20 sekund	
English (UK)	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Français	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Deutsch	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Italiano	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Español	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Svenska	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Nederlands	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Ελληνικά	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Português	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
日本語	mmHg	g/dl	cm	kg	24 godziny	MM/DD/RRRR	20 sekund	
中文	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Čeština	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Polski	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Suomi	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Norsk	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Dansk	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Eesti	mmHg	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Lietuvių	mmHg	g/dl	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Latviešu	kPa	mmol/l	cm	kg	24 godziny	DD.MM.RRRR	20 sekund	
Uwaga: We wszystkich językach temperatura jest domyślnie wyświetlana w stopniach Celsjusza.								

Tabela D-6 Domyślne ustawienia języka

UWAGA

Języki na powyższej liście wymieniono jedynie informacyjnie, w związku z czym niektóre z nich mogą nie być dostępne.

Dodatek E

Stałe obliczeniowe

E.1 Wartości stałej obliczeniowej

W trybie iCO moduł HemoSphere Swan-Ganz oblicza pojemność minutową serca, stosując albo konfigurację z sondą do pomiaru temperatury w laźni, albo sondę temperatury in-line oraz stale obliczeniowe wymienione w poniższych tabelach. Moduł HemoSphere Swan-Ganz automatycznie wykrywa rodzaj zastosowanej sondy do pomiaru temperatury iniektatu, natomiast temperatura danego iniektatu, rozmiar cewnika oraz objętość iniektatu definiują stałą obliczeniową, która ma zostać użyta.

UWAGA Stale obliczeniowe podane poniżej są wartościami nominalnymi i zasadniczo mają zastosowanie do określonych rozmiarów cewnika. Wartości stałych obliczeniowych dla faktycznie zastosowanego cewnika należy sprawdzić w jego instrukcji.

Stałe obliczeniowe dotyczące określonego modelu wprowadza się ręcznie w menu konfiguracyjnym trybu iCO.

Zakres	Objętość	Rozmiar cewnika (F)					
temperatury iniektatu* (°C)	iniektatu (ml)	8	7,5	7	6	5,5	
Temp, pokojowa	10	0,612	0,594	0,595	0,607	0,616	
22,5–27°C	5	0,301	0,283	0,287	0,304	0,304	
	3	0,177	0,159	0,165	0,180	0,180	
Temp, pokojowa	10	0,588	0,582	0,578	0,597	0,606	
18–22,5°C	5	0,283	0,277	0,274	0,297	0,298	
	3	0,158	0,156	0,154	0,174	0,175	
Schłodzony (mrożony) 5–18°C	10	0,563	0,575	0,562	0,573	0,581	
	5	0,267	0,267	0,262	0,278	0,281	
	3	0,148	0,150	0,144	0,159	0,161	
Schłodzony (mrożony) 0–5°C	10	0,564	0,564	0,542	0,547	0,555	
	5	0,262	0,257	0,247	0,259	0,264	
	3	0,139	0,143	0,132	0,144	0,148	

Tabela E-1 Stałe obliczeniowe dlasondy do pomiaru temperatury w łaźni

* Aby zoptymalizować pomiar pracy serca, zaleca się, aby temperatura iniektatu znajdowała się w jednym z zakresów podanych w instrukcji obsługi cewnika.

Zakres	Objętość	Rozmiar cewnika (F)				
temperatury iniektatu* (°C)	iniektatu (ml)	8	7,5	7	6	5,5
Temp, pokojowa 22,5–27°C	10 5	0,601 0,294	0,599 0,301	0,616 0,311	0,616 0,307	0,624 0,310
Temp, pokojowa 18–22,5°C	10 5	0,593 0,288	0,593 0,297	0,603 0,295	0,602 0,298	0,612 0,304
Schłodzony (mrożony) 5–18°C	10 5	0,578 0,272	0,578 0,286	0,570 0,257	0,568 0,276	0,581 0,288
Schłodzony (mrożony) 0–5°C	10 5	0,562 0,267	0,563 0,276	0,537 0,217	0,533 0,253	0,549 0,272

Tabela E-2 Stałe obliczeniowe dla sondy temperatury in-line

* Aby zoptymalizować pomiar pracy serca, zaleca się, aby temperatura iniektatu znajdowała się w jednym z zakresów podanych w instrukcji obsługi cewnika.

Dodatek **F**

Konserwacja systemu, serwis i pomoc

Spis treści

Konserwacja — informacje ogólne	
Czyszczenie monitora i modułów	
Czyszczenie przewodów platformy	292
Serwis i pomoc	294
Lokalizacje oddziałów firmy Edwards Lifesciences	295
Utylizacja monitora	
Konserwacja zapobiegawcza	
Testowanie sygnałów alarmowych	
Gwarancja	

F.1 Konserwacja — informacje ogólne

Zaawansowany monitor HemoSphere nie zawiera żadnych części przeznaczonych do serwisowania przez użytkownika i powinien być naprawiany wyłącznie przez wykwalifikowany personel serwisowy. Informacje na temat konserwacji i powtarzających się badań pracownik biomedyczny lub serwisowy szpitala może znaleźć w podręczniku serwisowym zaawansowanego monitora HemoSphere. W niniejszym załączniku podano instrukcję czyszczenia monitora oraz jego akcesoriów, a także informację o tym, jak skontaktować się z lokalnym przedstawicielem firmy Edwards w sprawie uzyskania pomocy oraz informacji o naprawie i/lub wymianie.

OSTRZEŻENIE	Zaawansowany monitor HemoSphere nie zawiera części przeznaczonych do serwisowania przez użytkownika. Zdjęcie osłony lub demontaż jakichkolwiek elementów spowoduje narażenie na działanie niebezpiecznego napięcia.	
PRZESTROGA	Po każdym użyciu wyczyścić przyrządy i akcesoria, a następnie odłożyć na swoje miejsce.	

PRZESTROGA Zaawansowane moduły monitorowania HemoSphere i przewody platformy są wrażliwe na wyładowania elektrostatyczne (ang. electrostatic discharge, ESD). Nie podejmować prób otwierania obudowy modułu i kabla ani nie korzystać z niego, jeśli obudowa jest uszkodzona.

F.2 Czyszczenie monitora i modułów

OSTRZEŻENIE	Ryzyko porażenia prądem elektrycznym lub pożaru! Nie zanurzać		
	zaawansowanego monitora HemoSphere, modułów ani przewodów platformy		
	w jakimkolwiek ciekłym roztworze. Nie dopuszczać do przedostania się		
	jakiegokolwiek płynu do wnętrza przyrządu.		

Zaawansowany monitor HemoSphere oraz moduły można czyścić za pomocą niestrzępiącej się ściereczki nasączonej środkami czyszczącymi na bazie następujących związków chemicznych:

- 70% alkohol izopropylowy,
- 2% aldehyd glutarowy,
- 10% roztwór wybielacza (podchloryn sodu),
- roztwór czwartorzędowego związku amoniowego.

Nie stosować żadnych innych środków czyszczących. O ile nie zostanie określone inaczej, podane środki zostały zatwierdzone do stosowania ze wszystkimi akcesoriami, przewodami i modułami zaawansowanego systemu monitorowania HemoSphere.

UWAGA	Po wprowadzeniu modułu nie ma potrzeby wyjmowania go, chyba że konieczna jest konserwacja lub czyszczenie. Jeśli konieczne jest wyjęcie modułów platformy, należy je umieścić w chłodnym, suchym miejscu w oryginalnym opakowaniu, aby zapobiec ich uszkodzeniom.
PRZESTROGA	Nie wylewać ani nie rozpylać cieczy na żadną część zaawansowanego monitora HemoSphere, jego akcesoriów, modułów ani przewodów. Nie stosować żadnych innych roztworów dezynfekcyjnych niż określono. NIE NALEŻY: Dopuszczać do kontaktu jakiejkolwiek cieczy ze zlączem zasilania Dopuszczać do przedostania się jakiejkolwiek cieczy do zlączy lub otworów w obudowie monitora i modułach Jeśli dojdzie do kontaktu jakiejkolwiek cieczy z jednym z powyższych elementów, NIE NALEŻY podejmować prób korzystania z monitora. Natychmiast odłączyć zasilanie i wezwać pracownika oddziału biomedycznego placówki lub lokalnego przedstawiciela firmy Edwards.

F.3 Czyszczenie przewodów platformy

Przewody platformy, takie jak przewód wyjściowego sygnału ciśnienia, można czyścić przy użyciu środków czyszczących wymienionych powyżej w częśći F.2 oraz poniższych metod.

PRZESTROGA Należy okresowo kontrolować wszystkie przewody pod kątem ewentualnych uszkodzeń. Nie zwijać mocno przewodów na czas przechowywania.

- 1 Nasączyć niestrzępiącą się ściereczkę środkiem dezynfekcyjnym i przetrzeć powierzchnie.
- 2 Po przetarciu środkiem dezynfekcyjnym należy go zmyć za pomocą gazy bawelnianej nasączonej jalową wodą. Zmywać tak długo, aż całość środka dezynfekcyjnego zostanie usunięta.
- 3 Osuszyć powierzchnię czystą suchą ściereczką.

Przewody platformy należy przechowywać w chłodnym, suchym miejscu w oryginalnym opakowaniu, aby zapobiec ich uszkodzeniom. Dodatkowe instrukcje właściwe dla określonych przewodów podano w podpunktach poniżej.

PRZESTROGA	Nie stosować żadnych innych środków czyszczących, nie rozpylać ani nie wylewać roztworów czyszczących bezpośrednio na przewody platformy.
	Przewodów platformy nie należy sterylizować parą wodną, przez napromienianie
	Nie wolno zanurzać przewodów platformy w plynach.

F.3.1 Czyszczenie przewodu do oksymetrii HemoSphere

Obudowę przewodu do oksymetrii oraz przewód połączeniowy należy czyścić za pomocą środków czyszczących wymienionych w częśći F.2. Wymagane jest zachowanie czystości złącza światłowodowego przewodu do oksymetrii. Włókna optyczne w złączu światłowodowym cewnika do oksymetrii łączą się z włóknami optycznymi w przewodzie do oksymetrii. Nasączyć niestrzępiącą się bawelnianą końcówkę aplikatora jałowym alkoholem i, delikatnie dociskając, oczyścić włókna optyczne zagłębione w przedniej części osłony przewodu do oksymetrii.

PRZESTROGA Przewodu do oksymetrii HemoSphere nie należy sterylizować parą wodną, przez napromienianie ani za pomocą tlenku etylenu. Nie zanurzać przewodu do oksymetrii HemoSphere.

F.3.2 Czyszczenie przewodu CCO i złącza pacjenta

Przewód CCO pacjenta zawiera elementy elektryczne i mechaniczne, w związku z czym podlega typowemu zużyciu i uszkodzeniom. Przed każdym użyciem sprawdzić wzrokowo izolację przewodu, część odciążającą i złącza. W przypadku wystąpienia którejkolwiek z poniższych sytuacji, należy zaprzestać używania przewodu.

- Przerwanie izolacji
- Postrzępienie
- Cofnięcie lub zagięcie styków złącza
- Oderwanie i/lub odłamanie złącza

- Przewód CCO pacjenta nie jest zabezpieczony przed wniknięciem płynu. Przewód należy zgodnie z potrzebami przecierać wilgotną, miękką ściereczką zwilżoną roztworem składającym się w 10% z wybielacza i w 90% z wody.
- 2 Pozostawić złącze do wyschnięcia na powietrzu.

PRZESTROGA Jeśli jakikolwiek roztwór elektrolitowy, np. mleczan Ringera, przedostanie się do złączy przewodu, gdy są podłączone do monitora, a monitor jest włączony, napięcie wzbudzenia może spowodować korozję elektrolityczną oraz szybkie zużycie styków elektrycznych.
 Nie zanurzać żadnych złączy przewodów w środkach czyszczących, alkoholu

izopropylowym ani aldehydzie glutarowym.

Nie suszyć złączy przewodów pistoletem do suszenia gorącym powietrzem.

3 W celu uzyskania dalszej pomocy należy skontaktować się z działem pomocy technicznej lub lokalnym przedstawicielem firmy Edwards.

F.3.3 Czyszczenie przewodu ciśnienia

Przewód ciśnienia HemoSphere można czyścić przy użyciu środków czyszczących wymienionych w punkcie F.2 i metod określonych dla przewodów platformy na początku tej części (punkt F.3). Odłączyć przewód ciśnienia od monitora, aby wysuszyć złącze przetwornika na powietrzu. Złącze przetwornika należy suszyć czystym, suchym powietrzem z czerpni ściennej, sprężonym powietrzem lub CO₂ w aerozolu przez co najmniej dwie minuty. W przypadku pozostawienia do wyschnięcia w warunkach pokojowych złącze powinno schnąć przez dwa dni przed użyciem.

PRZESTROGA	Jeśli jakikolwiek roztwór elektrolitowy, np. mleczan Ringera, przedostanie się do złączy przewodu, gdy są podłączone do monitora, a monitor jest włączony, napięcie wzbudzenia może spowodować korozję elektrolityczną oraz szybkie zużycie styków elektrycznych.
	Nie zanurzać żadnych złączy przewodów w środkach czyszczących, alkoholu izopropylowym ani aldehydzie glutarowym.
Nie suszyć złączy przew	Nie suszyć złączy przewodów pistoletem do suszenia gorącym powietrzem.
	Urządzenie zawiera części elektroniczne. Należy obchodzić się ostrożnie.

F.3.4 Czyszczenie modułu oksymetru tkankowego ForeSight Elite

Regularne czyszczenie i konserwacja zapobiegawcza modułu ForeSight Elite (FSM) są bardzo ważne i należy je przeprowadzać rutynowo, aby zapewnić jego bezpieczną i efektywną pracę. Moduł nie wymaga kalibracji, ale zaleca się przeprowadzanie konserwacji z następującą częstotliwością:

 Moduł powinien być testowany podczas instalacji, a następnie co sześć (6) miesięcy. Aby uzyskać więcej informacji, należy skontaktować się z działem pomocy technicznej firmy Edwards.

OSTRZEŻENIE	W żadnym wypadku nie wolno czyścić ani przeprowadzać prac konserwacyjnych modulu FSM, kiedy jest on używany do monitorowania pacjenta. Modul musi być wyłączony, a przewód zasilający zaawansowanego monitora HemoSphere odlączony, lub modul musi być odlączony od monitora, a czujniki wyjęte z ciała pacjenta.
OSTRZEŻENIE	Przed rozpoczęciem czyszczenia lub konserwacji sprawdzić moduł FSM, przewody, czujniki i inne akcesoria pod kątem uszkodzeń. Sprawdzić przewody pod kątem pęknięć oraz wystrzępień, a także wygiętych lub złamanych wtyków. W przypadku zauważenia jakichkolwiek uszkodzeń nie wolno używać modułu do czasu przeprowadzenia jego przeglądu, naprawy lub wymiany. Skontaktować się z działem pomocy technicznej firmy Edwards.
	Nieprzestrzeganie tej procedury grozi poważnymi obrażeniami ciała lub zgonem.

Do konserwacji modułu FSM zaleca się następujące środki:

- Aspeti-WipeTM
- 3MTM Quat #25
- Metrix CaviCide®
- Bakteriobójczy roztwór detergentu na bazie fenolu (zgodnie z zaleceniami producenta)
- Bakteriobójczy roztwór detergentu na bazie amin czwartorzędowych (zgodnie z zaleceniami producenta)

Szczególowe informacje na temat składników aktywnych i wszelkich oświadczeń o dezynfekcji znajdują się w instrukcjach użytkowania i oznakowaniu produktu.

Moduł FSM należy czyścić ściereczkami lub chusteczkami przeznaczonymi do tego celu. Po oczyszczeniu wszystkich powierzchni modułu należy przetrzeć go miękką ściereczką zwilżoną świeżą wodą, aby usunąć wszelkie osady.

Przewody czujnika należy czyścić ściereczkami lub chusteczkami przeznaczonymi do tego celu. Można je przecierać ruchem od modułu FSM w kierunku połączeń czujników.

F.4 Serwis i pomoc

Informacje o diagnozowaniu i środkach zaradczych — patrz Patrz rozdział 14: Rozwiązywanie problemów. Jeśli nie pomogą one w rozwiązaniu problemu, należy skontaktować się z firmą Edwards Lifesciences.

Firma Edwards zapewnia pomoc w zakresie działania zaawansowanych monitorów HemoSphere:

- Na terenie Stanów Zjednoczonych i Kanady należy dzwonić pod numer 1 800 822 9837.
- Poza terenem Stanów Zjednoczonych i Kanady należy skontaktować się z lokalnym przedstawicielem firmy Edwards Lifesciences.
- Pytania dotyczące pomocy w zakresie działania sprzętu należy wysyłać na adres: tech_support@edwards.com.

Przed skontaktowaniem się z nami należy przygotować następujące dane:

- numer servjny zaawansowanego monitora HemoSphere (umieszczony na tylnej części obudowy);
- treść komunikatu o błędzie oraz szczegółowe informacje na temat istoty problemu.

F.5 Lokalizacje oddziałów firmy Edwards Lifesciences

Stany Zjednoczone:	Edwards Lifesciences LLC One Edwards Way Irvine, CA 92614 Stany Zjednoczone 949.250.2500 800.424.3278 www.edwards.com	Chiny:	Edwards (Shanghai) Medical Products Co., Ltd. Unit 2602-2608, 2 Grand Gateway, 3 Hong Qiao Road, Xu Hui District Shanghai, 200030 Chiny Tel.: 86 21 5389 1888
Szwajcaria:	Edwards Lifesciences S.A. Route de l'Etraz 70 1260 Nyon, Szwajcaria Tel.: 41 22 787 4300	Indie:	Edwards Lifesciences (India) Pvt. Ltd. Techniplex II, 7th floor, Unit no 1 & 2, off. S.V.Road Goregaon west-Mumbai 400062 Indie Tel.: +91 022 66935701 04
Japonia:	Edwards Lifesciences Ltd. Nittochi Nishi-Shinjuku Bldg. 6-10-1, Nishi-Shinjuku, Shinjuku-ku, Tokio 160-0023 Japonia Tel.: 81 3 6894 0500	Australia:	Edwards Lifesciences Pty Ltd Unit 2 40 Talavera Road North Ryde NSW 2113 PO Box 137, North Ryde BC NSW 1670 Australia Tel.: +61(2)8899 6300
Brazylia:	Edwards Lifesciences Comércio de Produtos Médico- Cirúrgicos Ltda. Rua Verbo Divino, 1547 - 1º andar - Chácara Santo Antônio São Paulo - SP - Brazylia CEP 04719-002 Tel.: 55 11 5567 5337		

F.6 Utylizacja monitora

Aby uniknąć zakażenia personelu, skażenia odzieży, środowiska bądź innych urządzeń, należy dopilnować, aby przed utylizacją zaawansowany monitor HemoSphere i/lub jego przewody zostały odpowiednio zdezynfekowane i odkażone zgodnie z przepisami obowiązującymi w danym kraju odnośnie urządzeń zawierających elementy elektryczne i elektroniczne.

W przypadku elementów i akcesoriów do jednorazowego użytku, jeśli nie zostanie określone inaczej, należy postępować zgodnie z lokalnymi przepisami odnośnie utylizacji odpadów szpitalnych.

F.6.1 Recykling baterii

Gdy zestaw baterii monitora HemoSphere przestanie zachowywać ładunek, należy go wymienić. Po wyjęciu z urządzenia należy postępować zgodnie z lokalnymi wytycznymi odnośnie recyklingu.

PRZESTROGA Baterię litowo-jonową należy przekazać do recyklingu lub zutylizować, przestrzegając wszystkich przepisów krajowych i lokalnych.

F.7 Konserwacja zapobiegawcza

Należy okresowo kontrolować ogólny stan zewnętrzny zaawansowanego monitora HemoSphere. Należy sprawdzać, czy obudowa nie jest pęknięta, złamana ani wgnieciona i czy wszystkie elementy są na swoim miejscu. Poza tym należy sprawdzać, czy nie ma śladów rozlania cieczy lub oznak zużycia.

Rutynowo kontrolować przewody pod kątem postrzępienia i pęknięć, upewniając się, że nie ma odkrytych żył. Oprócz tego należy sprawdzić, czy drzwiczki obudowy w miejscu połączenia z cewnikiem przewodu do oksymetrii swobodnie się poruszają i właściwie zatrzaskują.

F.7.1 Konserwacja baterii

F.7.1.1 Formatowanie baterii

Zastosowany zestaw baterii może wymagać okresowego formatowania. Tę czynność może wykonywać jedynie przeszkolony personel szpitala lub wykwalifikowani technicy. Instrukcja dotycząca formowania została zamieszczona w podręczniku serwisowym zaawansowanego monitora HemoSphere.

OSTRZEŻENIE Zagrożenie wybuchem! Nie otwierać baterii, nie wrzucać jej do ognia, nie przechowywać w wysokiej temperaturze ani nie powodować zwarcia. Mogłoby to doprowadzić do zapłonu baterii, eksplozji, wycieku elektrolitu lub silnego nagrzania, powodując poważne obrażenia ciała lub zgon.

F.7.1.2 Przechowywanie baterii

Zestaw baterii może być przechowywany we wnętrzu zaawansowanego monitora HemoSphere. Informacje środowiskowe dotyczące przechowywania — patrz "Dane techniczne zaawansowanego monitora HemoSphere" na stronie 266.

UWAGA Długotrwale przechowywanie w wysokiej temperaturze może obniżać żywotność zestawu baterii.

F.8 Testowanie sygnałów alarmowych

Po każdym włączeniu zasilania zaawansowanego monitora HemoSphere zostanie automatycznie przeprowadzony autotest. W ramach autotestu włączany jest alarm dźwiękowy. Wskazuje to, że wskaźniki alarmu dźwiękowego działają prawidłowo. W celu dalszego przetestowania alarmów dla poszczególnych pomiarów należy okresowo dostosowywać progi alarmów i sprawdzać prawidłowość funkcjonowania alarmów.

F.9 Gwarancja

Firma Edwards Lifesciences (Edwards) gwarantuje, że zaawansowany monitor HemoSphere będzie nadawał się do zastosowań zgodnych z celami i wskazaniami podanymi na etykiecie przez okres jednego (1) roku od daty zakupu, pod warunkiem używania go zgodnie z instrukcją obsługi. W przypadku używania urządzenia niezgodnie z tą instrukcją niniejsza gwarancja traci ważność. Nie udziela się żadnej innej gwarancji, wyraźnej ani dorozumianej, w tym również gwarancji pokupności i przydatności do określonego celu. Niniejsza gwarancja nie obejmuje przewodów, baterii, sond ani przewodów do oksymetrii stosowanych wraz z zaawansowanym monitorem HemoSphere. Jedynym obowiązkiem firmy Edwards oraz wyłącznym środkiem przysługującym kupującemu w przypadku naruszenia postanowień jakiejkolwiek gwarancji jest naprawa lub wymiana, według uznania firmy Edwards, zaawansowanego monitora HemoSphere.

Firma Edwards nie ponosi odpowiedzialności za szkody bezpośrednie, uboczne ani wynikowe. Firma Edwards nie ma w związku z niniejszą gwarancją obowiązku naprawy ani wymiany uszkodzonego bądź nieprawidłowo działającego zaawansowanego monitora HemoSphere, jeśli szkoda lub nieprawidłowe działanie jest wynikiem zastosowania przez klienta cewników producentów innych niż firma Edwards.

Dodatek G

Wytyczne i deklaracja producenta

Spis treści

Zgodność elektromagnetyczna	298
Instrukcja obsługi	299
Informacja o technologii bezprzewodowej	306

G.1 Zgodność elektromagnetyczna

```
Stosowna norma: IEC/EN 60601-1-2:2007 oraz IEC 60601-2-49:2011-02
IEC/EN 60601-1-2:2014-02 oraz IEC 60601-2-49:2011-02
```

Zaawansowany monitor HemoSphere jest przeznaczony do stosowania w środowisku elektromagnetycznym określonym w tym załączniku. Klient lub użytkownik zaawansowanego monitora HemoSphere powinien dopilnować, aby był on używany w takim środowisku. Po podłączeniu do zaawansowanego monitora HemoSphere wszystkie przewody akcesoriów, które zawiera tabela B-1 na stronie 274, spełniają normy EMC wymienione powyżej.

G.2 Instrukcja obsługi

Elektryczny sprzęt medyczny wymaga zastosowania szczególnych środków ostrożności w zakresie zgodności elektromagnetycznej (ang. electromagnetic compatibility, EMC), a także zainstalowania i uruchamiania zgodnie z poniższym opisem i tabelami dotyczącymi EMC.

OSTRZEŻENIE	Zastosowanie akcesoriów, czujników lub przewodów innych niż podano może skutkować zwiększeniem poziomu emisji elektromagnetycznej lub obniżeniem odporności elektromagnetycznej. Zabronione są jakiekolwiek modyfikacje zaawansowanego monitora		
	Przenośne i mobilne urządzenia do komunikacji radiowej oraz inne źródła zakłóceń elektromagnetycznych, takie jak wykrywacze metalu, urządzenia do diatermii, litotrypsji i identyfikacji radiowej, a także elektromagnetyczne systemy przeciwkradzieżowe, mogą potencjalnie wpływać na cały elektroniczny sprzęt medyczny, w tym na zaawansowany monitor HemoSphere. Wytyczne odnośnie do odpowiedniej odległości urządzeń do komunikacji od zaawansowanego monitora HemoSphere zawiera tabela G-3. Oddziaływanie innych nadajników RF nie jest znane i może zakłócać funkcjonowanie i zmniejszać bezpieczeństwo platformy do monitorowania HemoSphere.		
PRZESTROGA	Przyrząd został zbadany zgodnie z normą IEC 60601-1-2 i spełnia określone w niej wymagania odnośnie do wartości granicznych. Ma to zapewnić racjonalną ochronę przeciwko szkodliwym zakłóceniom w typowej lokalizacji medycznej. Niniejszy sprzęt generuje, wykorzystuje i może emitować energię o częstotliwości radiowej, a także, jeśli zostanie zainstalowany i będzie używany niezgodnie z niniejszym podręcznikiem, może powodować szkodliwe zakłócenia pracy innych urządzeń znajdujących się w pobliżu. Nie ma jednak gwarancji, że w przypadku określonej lokalizacji zakłócenia nie wystąpią. Jeżeli niniejszy sprzęt spowoduje szkodliwe zakłócenia pracy innych urządzeń, co można ustalić poprzez wyłączenie i ponowne włączenie sprzętu, zalecane jest, aby użytkownik		

· Zmienić ustawienie urządzenia odbiorczego lub przestawić je w inne miejsce.

spróbował usunąć zakłócenia, stosując jeden lub kilka z poniższych środków

- · Zwiększyć odległość pomiędzy sprzętem a urządzeniem.
- · Zwrócić się do producenta o pomoc.

zaradczych:

Tabela G-1 Emisje elektromagnetyczne

Wytyczne i deklaracja producenta — emisje elektromagnetyczne

Zaawansowany monitor HemoSphere jest przeznaczony do stosowania w środowisku elektromagnetycznym określonym poniżej. Klient lub użytkownik zaawansowanego monitora HemoSphere powinien dopilnować, aby był on używany w takim środowisku.

Emisje	Zgodność	Opis	
Emisje RF CISPR 11	Grupa 1	Zaawansowany monitor HemoSphere wykorzystuje energię RF wyłącznie do funkcji wewnętrznych. Dlatego jego poziom emisji RF jest bardzo niski, a prawdopodobieństwo zakłócenia pracy sprzętu elektronicznego znajdującego się w pobliżu jest małe.	
Emisje RF CISPR 11	Klasa A	Zaawansowany monitor HemoSphere nadaje się do zastosowania we wszystkich lokalizacjach poza budynkami	
Emisje harmonicznych IEC 61000-3-2	Klasa A	 mieszkalnymi oraz bezpośrednio podłączonymi do publicznej sieci zasilającej niskiego napięcia doprowadzającej epergie do budynków wykorzystywanych 	
Wahania napięcia/emisje migotania IEC 61000-3-3	Zgodny	do celów mieszkalnych.	

Tabela G-2 Wytyczne i deklaracja producenta — odporność na działanie bezprzewodowych urządzeń do komunikacji radiowej

Częstotli- wość testowa	Pasmo ¹	Usługa ¹ Modulacja ²		Maksymalna moc	Odle- głość	Poziom testowy odpor- ności	
MHz	MHz			w	Metry	(V/m)	
Zaawansowany monitor HemoSphere jest przeznaczony do stosowania w środowisku elektromagnetycznym określonym poniżej. Nabywca lub użytkownik zaawansowanego monitora HemoSphere powinien dopilnować, aby był on używany w takim środowisku.							
385	380–390	TETRA 400	Modulacja tętna² 18 Hz	1,8	0,3	27	
450	430–470	GMRS 460, FRS 460	Modulacja MRS 460, częstotliwości ³ FRS 460 ±5 kHz odchylenie 1 kHz sinusoida		0,3	28	
710 745 780	704–787	Pasmo LTE 13, 17	Modulacja tętna² 217 Hz	0,2	0,3	9	
810 870 930	800–960	GSM 800/900, TETRA 800, iDEN 820, CDMA 850, Pasmo LTE 5	Modulacja tętna² 18 Hz	2	0,3	28	
1720 1845 1970	1700– 1900	GSM 1800; CDMA 1900; GSM 1900; DECT; Pasmo LTE 1, 3, 4, 25; UMTS	Modulacja tętna² 217 Hz	2	0,3	28	
2450	2400– 2570	Bluetooth, WLAN, 802.11 b/g/n, RFID 2450, pasmo LTE 7	Modulacja tętna² 217 Hz	2	0,3	28	
5240 5500 5785	5100– 5800	WLAN 802.11a/n	Modulacja tętna² 217 Hz	0,2	0,3	9	
UWAGA: Jeżeli konieczne jest uzyskanie POZIOMU TESTOWEGO ODPORNOŚCI, odległość między anteną przekaźnikową a MEDYCZNYM URZĄDZENIEM ELEKTRYCZNYM lub MEDYCZNYM SYSTEMEM ELEKTRYCZNYM może być zmniejszona do 1 m. Odległość testowa 1 m jest dozwolona w normie IEC 61000-4-3.							
¹ W pr.	¹ W przypadku niektórych usług uwzględnione zostały tylko częstotliwości łącza nadawczego.						
⁴ Kanał będz	³ Jako alternativwa dla modulaciji częstotliwości może być stosowana 50% modulacija tetna przy 18 Hz, ponieważ						
— mimo że nie przedstawia aktualnej modulacji — byłby to najgorszy przypadek.							

Tabela G-3 Zalecane odległości pomiędzy przenośnymi i mobilnymi urządzeniami do komunikacji radiowej a zaawansowanym monitorem HemoSphere

Zaawansowany monitor HemoSphere jest przeznaczony do stosowania w środowisku elektromagnetycznym, w którym zakłócenia powodowane przez fale radiowe są kontrolowane. Aby pomóc w zapobieganiu zakłóceniom elektromagnetycznym, należy utrzymywać minimalną odległość pomiędzy przenośnymi i mobilnymi urządzeniami do komunikacji radiowej (nadajnikami) a zaawansowanym monitorem HemoSphere zgodnie z poniższymi zaleceniami, biorąc pod uwagę maksymalną moc wyjściową urządzenia do komunikacji.

Częstotliwość nadajnika	Od 150 kHz do 80 MHz	Od 80 MHz do 800 MHz	Od 800 MHz do 2500 MHz	Od 2,5 do 5,0 GHz
Równanie	$d = 1,2\sqrt{P}$	$d = 1,2\sqrt{P}$	$d = 2,3\sqrt{P}$	$d = 2,3\sqrt{P}$
Znamionowa maksymalna moc wyjściowa nadajnika (w watach)	Odległość (w metrach)	Odległość (w metrach)	Odległość (w metrach)	Odległość (w metrach)
0,01	0,12	0,12	0,24	0,24
0,1	0,37	0,37	0,74	0,74
1	1,2	1,2	2,3	2,3
10	3,7	3,8	7,4	7,4
100	12	12	23	23

W przypadku nadajników o nominalnej maksymalnej mocy wyjściowej innej niż wymienione powyżej zalecaną odległość "d" można oszacować na podstawie równania podanego w odpowiedniej kolumnie, gdzie "P" to maksymalna moc znamionowa nadajnika (w watach) podana przez producenta.

UWAGA 1: Przy częstotliwościach 80 MHz i 800 MHz ma zastosowanie odległość dla wyższych zakresów częstotliwości. UWAGA 2: Podane wytyczne mogą nie obowiązywać we wszystkich sytuacjach. Propagacja fal elektromagnetycznych jest uzależniona od absorpcji oraz odbicia od konstrukcji, obiektów i ludzi.

Tabela G-4 Koegzystencja w tym samym paśmie bezprzewodowym — próg zakłóceń (ang. threshold of interference, Tol) i próg komunikacji (ang. threshold of communication, ToC) między zaawansowanym monitorem HemoSphere, będącym testowanym sprzętem (ang. equipment-under-test, EUT), a urządzeniami zewnętrznymi

	Wyniki progu zakłóceń (Tol) lub progu komunikacji (ToC)					Ekstrapolowane progi interferencji oparte na zamierzonym sygnale wykrytym w odległości 3 m od zaawansowanego monitora HemoSphere							
Specyfikacja testu*	Niezamierzony typ i poziom minimalny	Zamierzony sprzęt EUT Częstotliwość (EUT)	Częstotliwość Niezamierzony sygnał (MHz)	Niezamierzony sygnał Poziom w miejscu ustawienia sprzętu EUT (dBm)	Stosunek I/U (Tol lub ToC)	EIRP (W)	Odległość (m)	EIRP (W)	Odległość (m)	EIRP (W)	Odległość (m)	EIRP (W)	Odległość (m)
A (Tol)	Poziom 3 /	2437	2412	20,06	6,96	10	24,19	1	7,65	0,1	2,42	0,01	0,76
A (ToC)	802.11n 64 gam	2437	2412	20,06	6,96	10	1,40	1	0,44	0,1	0,14	0,01	0,04
B (Tol)	20 MHz	5200	5180	23,30	-12,37	10	16,35	1	5,17	0,1	1,63	0,01	0,52
B (ToC)	kanał sasiadu	5200	5180	23,30	-12,37	10	2,49	1	0,79	0,1	0,25	0,01	0,08
C (Tol)	jący	5765	5745	20,06	-15,37	10	7,50	1	2,37	0,1	0,75	0,01	0,24
C (ToC)	20 dBm (TRP/ EIRP)	5765	5745	20,46	-15,37	10	6,66	1	2,10	0,1	0,67	0,01	0,21
Specyfik A. 2.4 GH	[] Specyfikacja testu [wyniki progu zakłóceń (Tol) lub progu komunikacji (ToC)]: A. 2,4 GHz; kanał 6; 2437 MHz												

B. 5 GHz; 20 MHz; kanał 40; (5190–5210 MHz)

C. 5 GHz; 20 MHz; kanał 153; (5755–5775 MHz)

Tabela G-5 Odporność elektromagnetyczna (ESD, EFT, przepięcie, spadki napięcia i pole magnetyczne)

Test odporności	Poziom testowy wg IEC 60601-1-2	Poziom zgodności	Środowisko elektromagnetyczne — wytyczne
Zaawansow elektromagnety HemoS	vany monitor HemoSphere jest p vcznym określonym poniżej. Klie phere powinien dopilnować, aby	orzeznaczony do s ent lub użytkowni y był on używany	stosowania w środowisku k zaawansowanego monitora w takim środowisku.
Wyładowanie	±8 kV stykowe	±8 kV	Podłogi powinny być drewniane,
elektrostatyczne (ang. electrostatic discharge, ESD) IEC 61000-4-2	±15 kV powietrzne	±15 kV	betonowe lub pokryte płytkami ceramicznymi. Jeśli podłogi są pokryte materiałem syntetycznym, wilgotność względna musi wynosić co najmniej 30%.
Szybkozmienne zakłócenia przejściowe/impulsowe IEC 61000-4-4	±2 kV w przypadku linii zasilających	±2 kV w przypadku linii zasilających	Jakość zasilania sieciowego powinna być na poziomie standardowo stosowanym w środowisku komercyjnym i/lub szpitalnym.
	±1 kV na 1 kV w przypadku linii wej./wyj. > 3 metrów	±1 kV na 1 kV w przypadku linii wej./wyj. > 3 metrów	
Przepięcie	±1 kV linia do linii	±1 kV linia do linii	
IEC 61000-4-5	±2 kV linia do masy	±2 kV linia do masy	
Spadki napięcia, krótkie przerwy i zmiany napięcia	0% <i>U</i> _T (100% spadek <i>U</i> _T) przez 0,5 cyklu (0°, 45°, 90°, 135°, 180°, 225°, 270° oraz 315°)	0% <i>U</i> T	Jakość zasilania sieciowego powinna być na poziomie standardowo stosowanym w środowisku komercyjnym
zasilania prądem przemiennym	0% <i>U</i> _T (100% spadek <i>U</i> _T) przez 1 cykl (jedna faza 0°)	0% <i>U</i> T	zaawansowanego monitora HemoSphere wymaga, aby działał
IEC 61000-4-11	70% <i>U</i> _T (30% spadek <i>U</i> _T) przez 25/30 cykli (jedna faza 0°)	70% <i>U</i> T	on nieprzerwanie podczas przerw zasilania sieciowego, zaleca się zasilanie zazwansowanego monitora
	Przerwa: 0% <i>U</i> _T (100% spadek <i>U</i> _T) przez 250/300 cykli	0% <i>U</i> T	HemoSphere z bezprzerwowego zasilacza awaryjnego lub baterii.
Pole magnetyczne o częstotliwości sieci zasilającej (50/60 Hz) IEC 61000-4-8	30 A (wart. skut.)/m	30 A/m	Natężenie pola magnetycznego o częstotliwości sieci zasilającej powinno być na poziomie odpowiadającym standardowej lokalizacji w typowym środowisku komercyjnym lub szpitalnym.
UWAGA: <i>U</i> _T to napięcie	sieciowe prądu przemiennego przed z	zastosowaniem pozic	omu testowego.

Tabela G-6 O	Tabela G-6 Odporność elektromagnetyczna (promieniowana i przewodzona energia RF)					
Test odporności	IEC 60601-1-2 Poziom testowy	Poziom zgodności	Środowisko elektromagnetyczne — wytyczne			
Zaawansowany monitor HemoSphere jest przeznaczony do stosowania w środowisku elektromagnetycznym określonym poniżej. Klient lub użytkownik zaawansowanego monitora HemoSphere powinien dopilnować, aby był on używany w takim środowisku.						
			Przenośnych i mobilnych urządzeń do komunikacji radiowej nie należy używać bliżej którejkolwiek części zaawansowanego monitora HemoSphere, w tym jego przewodów, niż zalecana odległość, obliczona na podstawie równania odpowiedniego dla częstotliwości nadajnika.			
Przewodzona energia RF IEC 61000-4-6	3 V (wart. skut.); od 150 kHz do 80 MHz	3 V (wart. skut.)	Zalecana odległość			
Przewodzona energia RF IEC 61000-4-6	6 V (wart. skut.) (pasmo ISM) Od 150 kHz do 80 MHz	6 V (wart. skut.)	$d = [1,2] \times \sqrt{P}$; od 150 kHz do 80 MHz $d = [1,2] \times \sqrt{P}$; od 80 MHz do 800 MHz			
		3 V/m	d = [2,3] × \sqrt{P} ; od 800 MHz do 2500 MHz			
Promieniowana energia RF IEC 61000-4-3	3 V/m; od 80 MHz do 2700 MHz		Gdzie "P" to maksymalna moc wyjściowa nadajnika w watach (W) podana przez producenta, a "d" to zalecana odległość w metrach (m). Natężenie pola generowanego przez stacjonarne nadajniki radiowe, ustalone na podstawie pomiaru poziomu zakłóceń elektromagnetycznych w miejscu montażu, ^a powinno być niższe niż poziom zgodności w każdym z zakresów częstotliwości. ^b Zakłócenia mogą występować w pobliżu sprzętu oznaczonego następującym symbolem:			

^a Nie można dokładnie przewidzieć w sposób teoretyczny natężeń pól generowanych przez nadajniki stacjonarne, takie jak stacje bazowe radiotelefonów (komórkowych/bezprzewodowych), krótkofalówki, radia amatorskie, nadajniki radiowe AM i FM czy nadajniki telewizyjne. Aby ocenić środowisko elektromagnetyczne, w którym działają stacjonarne nadajniki fal radiowych, należy rozważyć przeprowadzenie pomiaru poziomu zakłóceń elektromagnetycznych w miejscu montażu. Jeśli zmierzone natężenie pola w miejscu, w którym używany jest zaawansowany monitor HemoSphere, przekracza odpowiedni poziom zgodności podany w powyższej tabeli dotyczącej fal radiowych, należy obserwować, czy zaawansowany monitor HemoSphere działa prawidłowo. W razie zauważenia nieprawidłowego działania może być konieczne podjęcie dodatkowych środków zaradczych, takich jak zmiana ustawienia lub przeniesienie zaawansowanego monitora HemoSphere w inne miejsce.

^b Powyżej zakresu od 150 kHz do 80 MHz natężenie pola powinno wynosić poniżej 3 V/m.

UWAGA 1: Przy częstotliwościach 80 MHz i 800 MHz ma zastosowanie wyższy zakres częstotliwości.

UWAGA 2: Podane wytyczne mogą nie obowiązywać we wszystkich sytuacjach. Propagacja fal elektromagnetycznych jest uzależniona od absorpcji oraz odbicia od konstrukcji, obiektów i ludzi.

G.3 Informacja o technologii bezprzewodowej

Zaawansowany monitor HemoSphere korzysta z technologii komunikacji bezprzewodowej, która zapewnia łączność Wi-Fi. Bezprzewodowa technologia zaawansowanego monitora HemoSphere działa w standardzie IEEE 802.11a/b/g/n poprzez całkowicie zintegrowany suplikant zabezpieczający, realizujący uwierzytelnianie i szyfrowanie danych w standardzie 802.11i/WPA2.

Dane techniczne technologii bezprzewodowej zastosowanej w zaawansowanym monitorze HemoSphere są przedstawione w poniższej tabeli.

Funkcja	Opis				
Standardy Wi-Fi	IEEE 802.11a, 802.11b, 802.11g, 802.11n				
Media Wi-Fi	Bezpośrednia modulacja nośnej sekwencją kodową (ang. Direct Sequence-Spread Spectrum, DSSS) Kluczowanie kodem komplementarnym (ang. Complementary Code Keying, CCK) Ortogonalne zwielokrotnianie w dziedzinie częstotliwości (ang. Orthogonal Frequency Divisional Multiplexing, OFDM)				
Protokół dostępu do mediów Wi-Fi	Protokół wielodostępu CSMA z badaniem stanu kanału i wykrywaniem kolizji (ang. Carrier sense multiple access with collision avoidance, CSMA/CA)				
Szybkości transmisji danych obsługiwane przez Wi-Fi	802.11a (OFDM): 6; 9; 12; 18; 24; 36; 48; 54 Mb/s 802.11b (DSSS, CCK): 1; 2; 5,5; 11 Mb/s 802.11g (OFDM): 6; 9; 12; 18; 24; 36; 48; 54 Mb/s 802.11n (OFDM, HT20, MCS 0–7): 6,5; 13; 19,5; 26; 39,52; 58,5; 72,2 Mb/s 7,2; 14,4; 21,7; 28,9; 43,3; 57,8; 65 Mb/s				
Modulacja	BPSK z szybkościami: 1; 6; 6,5; 7,2 i 9 Mb/s QPSK z szybkościami: 2; 12; 13; 14,4; 18; 19,5 i 21,7 Mb/s; CCK z szybkościami: 5,5 i 11 Mb/s 16-QAM z szybkościami: 24; 26; 28,9; 36; 39 i 43,3 Mb/s 64-QAM z szybkościami: 48; 52; 54; 57,8; 58,5; 65 i 72,2 Mb/s				
Strumienie przestrzenne 802.11n	1 × 1 jedno wejście/jedno wyjście (ang. Single Input, Single Output, SISO)				
Obsługiwane domeny regulacyjne	Federalna Komisja Łączności (ang. Federal Communications Commission, FCC) (obie Ameryki, niektóre rejony Azji i Bliski Wschód) Europejski Instytut Norm Telekomunikacyjnych (ang. European Telecommunications Standards Institute, ETSI) (Europa, Bliski Wschód, Afryka, niektóre rejony Azji) Japońskie Ministerstwo Spraw Wewnętrznych i Komunikacji (ang. Ministry of Internal Affairs and Communications, MIC) (Japonia) (wcześniej TELEC) Certyfikacja koreańska (ang. Korea Certification, KC) (Korea) (wcześniej KCC)				
Pasma częstotliwości 2,4 GHz	ETSI: od 2,4 GHz do 2,483 GHz FCC: od 2,4 GHz do 2,483 GHz MIC: od 2,4 GHz do 2,495 GHz KC: od 2,4 GHz do 2,483 GHz				
Kanały robocze 2,4 GHz	ETSI: 13 (3 niepokrywające się)FCC: 11 (3 niepokrywające się)MIC: 14 (4 niepokrywające się)KC: 13 (3 niepokrywające się)				
Pasma częstotliwości 5 GHz	ETSI: od 5,15 GHz do 5,35 GHz od 5,47 GHz do 5,725 GHz FCC: od 5,15 GHz do 5,35 GHz od 5,47 GHz do 5,725 GHz MIC: od 5,15 GHz do 5,35 GHz od 5,47 GHz do 5,35 GHz rCC: od 5,15 GHz do 5,725 GHz od 5,725 GHz do 5,825 GHz MIC: od 5,15 GHz do 5,35 GHz od 5,47 GHz do 5,725 GHz rCC: od 5,15 GHz do 5,825 GHz MIC: od 5,47 GHz do 5,725 GHz rCC: od 5,15 GHz do 5,825 GHz				
Kanały robocze 5 GHz	ETSI: 19 niepokrywających sięFCC: 24 niepokrywające sięMIC: 19 niepokrywających sięKC: 19 niepokrywających się				

Tabela G-7 Dane łączności bezprzewodowej zaawansowanegomonitora HemoSphere

Funkcja	Opis			
Maksymalna moc	802.11a			
transmisji	6 Mb/s	15 dBm (31,623 mW)		
	54 Mb/s	12 dBm (19,953 mW)		
Uwaga: Maksymalna	802.11b			
moc transmisji różni	1 Mb/s	16 dBm (39,81 mW)		
się w zależności	11 Mb/s 16 dBm (39,81mW)			
od przepisów	802.11g			
obowiązujących	6 Mb/s	16 dBm (39,81 mW)		
w poszczególnych	54 Mb/s	12 dBm (25,12 mW)		
państwach.	802.11n (2,4 GHz)			
Wszystkie wartości	6,5 Mb/s (MCS0)	16 dBm (39,81 mW)		
są znamionowe,	65 Mb/s (MCS7)	12 dBm (15,85 mW)		
±2 dBm. Przy	802.11n (5 GHz HT2	0)		
szybkości 2,4 GHz	6,5 Mb/s (MCS0)	15 dBm (31,62 mW)		
obsługiwany jest	65 Mb/s (MCS7)	12 dBm (15,85 mW)		
pojedynczy strumień				
przestrzenny i pasmo				
częstotliwości kanału				
20 MHz.				
Typowa czułość	802.11a			
odbiornika	6 Mb/s	-90 dBm		
	54 Mb/s	-73 dBm (PER <= 10%)		
Uwaga: Wszystkie	802.11b			
wartości są	1 Mb/s	-89 dBm		
znamionowe.	11 Mb/s	-82 dBm (PER <= 8%)		
±3 dBm. Różnie dla	802.11g			
różnych kanałów.	6 Mb/s	-85 dBm		
	54 Mb/s	-68 dBm (PER <= 10%)		
	802.11n (2,4 GHz)			
	MCS0 Mb/s	-86 dBm		
	MCS7 Mb/s	-65 dBm		
	802.11n (5 GHz HT2	0)		
	MCS0 Mb/s	-90 dBm		
	MCS7 Mb/s	-70 dBm		
Bezpieczeństwo	Standardy			
	IEEE 802.11i (WP/	42)		
	Szyfrowanie	,		
	Zaawansowany sta	andard szyfrowania (ang. Advanced Encryption Standard,		
	AES; algorytm Rijr	ndael)		
	Podawanie klucza szyfrowania			
	Klucz wstępny (an	g. Pre-Shared Key, PSK)		
	Dynamiczne			
	Typy rozszerzalnyci	h protokołów uwierzytelniania 802.1X		
	EAP-FAST, EAP-T	LS, EAP-TTLS		
	PEAP-GTC, PEAP	P-MSCHAPv2, PEAP-TLS		
	LEAP			
	Tryb FIPS 140-2			
	Zastosowanie ograniczone do standardów WPA2-AES z protokołem EAP-TLS oraz WPA2-PSK/AES			

Tabela G-7 Dane łączności bezprzewodowej zaawansowanego monitora HemoSphere (ciąg dalszy)

Funkcja	Opis			
Zgodność	Domena regulacyjna ETSI EN 300 328 EN 55022:2006 Klasa B EN 300 328 v1.8.1 (BT 2.1) EN 55024:1998 +A1:2001, A2:2003 EN 301 489-1 EN 61000-3-2:2006 EN 301 489-17 EN 61000-3-3:1995 +A1:2001, A2:2005 EN 301 893 UE 2002/95/WE (RoHS) EN 60950-1 Domena regulacyjna FCC (identyfikator certyfikatu: SQG-WB45NBT) Domena FCC 15.247 DTS — 802.11b/g (Wi-Fi): 2,4 GHz i 5,8 GHz FCC 15.407 pasmo U-NII — 802.11a (Wi-Fi): 2,4 GHz i 5,4 GHz FCC część 15 klasa B UL 60950 Ministerstwo Przemysłu Kanady (ang. Industry Canada; identyfikator certyfikatu: 3147A-WB45NBT) RSS-210 – 802.11a/b/g/n (Wi-Fi) – 2,4 GHz, 5,8 GHz, 5,2 GHz i 5,4 GHz ICES-003, Klasa B			
	 MIC (Japonia) (identyfikator certyfikatu: Reference Reference			
Certyfikaty	Stowarzyszenie Wi-Fi Alliance 802.11a, 802.11b, 802.11g, 802.11n Uwierzytelnianie WPA Uwierzytelnianie WPA2 Rozszerzenia zgodne z Cisco (wersja 4) Federalny Standard Przetwarzania Informacji (ang. Federal Information Processing Standard, FIPS) 140-2 poziom 1 System Linux 3.8 działający na module Wi-Fi serii 45 z procesorem ARM926 (ARMv5TEJ) — Moduł obiektowy OpenSSL FIPS wer. 2.0 (certyfikat walidacji nr 1747)			
Typ anteny	Dipolowa z obwodem drukowanym			
Wymiary anteny	36 mm × 12 mm × 0,1 mm			

Tabela G-7 Dane łączności bezprzewodowej zaawansowanegomonitora HemoSphere (ciąg dalszy)

G.3.1 Jakość obsługi technologii bezprzewodowej

Technologia bezprzewodowa zaawansowanego monitora HemoSphere umożliwia przesył danych fizjologicznych, alarmów i powiadomień urządzenia do obsługiwanych szpitalnych systemów informacyjnych (ang. Hospital Information System, HIS) wyłącznie w celu elektronicznego dokumentowania i archiwizowania. Dane przesyłane bezprzewodowo nie są przeznaczone do zdalnego zarządzania alarmami ani do systemów wizualizacji danych zdalnych w czasie rzeczywistym. Jakość obsługi (ang. Quality of Service, QoS) określa się w kategoriach całkowitej utraty danych na zwykłym połączeniu, podczas którego zaawansowany monitor HemoSphere pracuje w warunkach średniej lub wyższej siły sygnału bezprzewodowego (tabela 8-1) i dobrego połączenia z systemem HIS (tabela 8-2). Bezprzewodowy przesył danych zaawansowanego monitora HemoSphere cechuje się całkowitą utratą danych na poziomie poniżej 5% potwierdzoną w podanych warunkach. Technologia bezprzewodowa zaawansowanego monitora HemoSphere cechuje się efektywnym zasięgiem działania wynoszącym 150 stóp w linii wzroku oraz 75 stóp poza linią wzroku. Obecność innych nadajników bezprzewodowych może mieć negatywny wpływ na efektywny zasięg działania. Zaawansowany monitor HemoSphere obsługuje przesył danych w standardzie wymiany informacji w środowiskach medycznych na poziomie siódmym (ang. Health Level 7, HL7). Przewiduje się, że system odbierający będzie potwierdzać odbiór wszystkich przesyłanych danych. W razie braku pomyślnego przesyłu danych będą one przesyłane powtórnie. Zaawansowany monitor HemoSphere automatycznie podejmuje próbę ponownego nawiązania wszelkich zerwanych połączeń z systemem HIS. Jeżeli nie można ponownie nawiązać wcześniejszego połączenia (wcześniejszych połączeń) z systemem HIS, zaawansowany monitor HemoSphere ostrzega użytkownika za pomocą alertu dźwiękowego i komunikatu (**Alert: Utrata łączności z systemem HIS**, patrz tabela 14-5).

G.3.2 Środki bezpieczeństwa w sieciach bezprzewodowych

Sygnaly bezprzewodowe są zabezpieczane za pomocą standardowych branżowych protokołów bezpieczeństwa sieci bezprzewodowych (tabela G-7). Udowodniono, że standardy bezpieczeństwa bezprzewodowego WEP i WPA są podatne na wtargnięcia, w związku z czym nie są zalecane. Firma Edwards zaleca zabezpieczanie bezprzewodowego przesyłu danych poprzez włączenie zabezpieczenia IEEE 802.11i (WPA2) oraz trybu FIPS. Ponadto firma Edwards zaleca wdrożenie środków bezpieczeństwa sieciowego takich jak wirtualne sieci LAN z zaporami sieciowymi w celu dodatkowego zabezpieczenia danych zaawansowanej platformy do monitorowania HemoSphere podczas przesyłu danych do systemu HIS.

G.3.3 Rozwiązywanie problemów dotyczących zgodności w sieciach bezprzewodowych

Przyrząd został zbadany zgodnie z normą IEC 60601-1-2 i spełnia określone w niej wymagania odnośnie do wartości granicznych. W razie problemów dotyczących komunikacji zaawansowanego monitora HemoSphere w technologii bezprzewodowej należy zachować minimalną odległość pomiędzy przenośnymi i mobilnymi urządzeniami do komunikacji radiowej (nadajnikami) a zaawansowanym monitorem HemoSphere. Więcej informacji na temat odległości separacji zawiera tabela G-3.

G.3.4 Oświadczenie o spełnieniu wymogów Federalnej Komisji Łączności (FCC) odnośnie do zakłóceń

WAŻNA INFORMACJA Aby zapewnić zgodność z wymogami FCC dotyczącymi ekspozycji na promieniowanie radiowe, antenę używaną z niniejszym nadajnikiem należy zainstalować w odległości przynajmniej 20 cm od wszystkich osób i nie wolno jej umieszczać ani używać łącznie z innym przekaźnikiem ani anteną.

Oświadczenie o spełnieniu wymogów Federalnej Komisji Łączności odnośnie do zakłóceń

Niniejsze urządzenie zostało przebadane i zaklasyfikowane jako zgodne z ograniczeniami dla urządzeń cyfrowych klasy B zgodnie z częścią 15 wytycznych FCC. Ma to zapewnić racjonalną ochronę przeciwko szkodliwym zakłóceniom w lokalizacji mieszkalnej. Niniejszy sprzęt generuje, wykorzystuje i może emitować energię o częstotliwości radiowej, a także, jeśli nie zostanie zainstalowany i nie będzie używany zgodnie z niniejszą instrukcją, może powodować szkodliwe zakłócenia pracy urządzeń do komunikacji radiowej. Nie ma jednak gwarancji, że w przypadku określonej lokalizacji zakłócenia nie wystąpią. Jeżeli niniejszy sprzęt spowoduje szkodliwe zakłócenia pracy odbiorników radiowych lub telewizyjnych, co można ustalić poprzez wyłączenie i ponowne włączenie sprzętu, zalecane jest, aby użytkownik spróbował usunąć zakłócenia, stosując jeden lub kilka z poniższych środków zaradczych:

- 1 Zmienić ustawienie anteny odbiorczej lub przestawić ją w inne miejsce.
- 2 Zwiększyć odległość pomiędzy sprzętem a odbiornikiem.

- 3 Podłączyć sprzęt do gniazdka w obwodzie innym niż ten, do którego podłączony jest odbiornik.
- 4 Skonsultować się ze sprzedawcą lub doświadczonym technikiem RTV w celu uzyskania pomocy.

PRZESTROGA FCC Jakiekolwiek zmiany lub modyfikacje niezatwierdzone wyraźnie przez stronę odpowiedzialną za zgodność mogą unieważnić autoryzację użytkownika do obsługi tego sprzętu.

To urządzenie jest zgodne z częścią 15 wytycznych FCC. Działanie podlega następującym dwóm warunkom: (1) Urządzenie nie może powodować szkodliwych zakłóceń oraz (2) urządzenie musi akceptować wszelkie odbierane zakłócenia, w tym zakłócenia mogące spowodować niepożądane działanie.

Korzystanie z urządzenia jest ograniczone do użycia *wewnątrz budynku* w zakresie częstotliwości od 5,15 GHz do 5,25 GHz.

Przepisy FCC wymagają, aby ten produkt był używany wewnątrz budynku w zakresie częstotliwości od 5,15 GHz do 5,25 GHz w celu zmniejszenia ryzyka szkodliwych zakłóceń działania mobilnych systemów satelitarnych w tym zakresie częstotliwości.

Urządzenie nie ma zezwolenia na działanie na kanałach 116–128 (5580–5640 MHz) w trybie 11na oraz kanałach 120–128 (5600–5640 MHz) w trybie 11a, które nakładają się na pasmo 5600–5650 MHz.

WAŻNA INFORMACJA	Oświadczenie o spełnieniu wymogów FCC odnośnie do ekspozycji
	na promieniowanie:
	Ten sprzęt jest zgodny z limitami ekspozycji na promieniowanie
	określonymi w wytycznych FCC ustalonymi dla niekontrolowanego
	środowiska. Sprzęt należy zainstalować i używać z zachowaniem
	odległości przynajmniej 20 cm pomiędzy źródłem promieniowania
	a użytkownikiem.

G.3.5 Oświadczenia o spełnieniu wymogów Ministerstwa Przemysłu Kanady

Ostrzeżenie przed promieniowaniem jonizującym o częstotliwości radiowej

Aby zapewnić zgodność z wymogami FCC i Ministerstwa Przemysłu Kanady odnośnie do ekspozycji na promieniowanie radiowe, urządzenie to należy zainstalować w miejscu, gdzie jego anteny będą znajdować się w odległości przynajmniej 20 cm od wszystkich osób. Niedozwolone jest stosowanie anten o większym wzmocnieniu oraz anten niezatwierdzonych do użycia z tym produktem. Urządzenia nie może dzielić lokalizacji z innym przekaźnikiem.

Maksymalne wzmocnienie anteny — integrator konfiguruje urządzenie w taki sposób, aby antena była wykrywalna przez host.

Ten przekaźnik radiowy (identyfikator Ministerstwa Przemysłu Kanady: 3147A-WB45NBT) został zatwierdzony przez Ministerstwo Przemysłu Kanady do działania z typami anten wymienionymi poniżej z maksymalnym dopuszczalnym wzmocnieniem i wymaganą impedancją anteny dla każdego z wskazanych typów. Użycie z urządzeniem typów anten niewymienionych na tej liście, charakteryzujących się wzmocnieniem przekraczającym wartość dopuszczalną dla danego typu, jest surowo zabronione.

"Aby zmniejszyć ryzyko zakłóceń radiowych urządzeń innych użytkowników, typ anteny i jej wzmocnienie należy dobrać tak, aby równoważna moc wypromieniowana izotropowo (ang. equivalent isotropically radiated power, EIRP) była nie większa, niż niezbędna dla pomyślnej komunikacji".

"Urządzenie zostało zaprojektowane do współpracy z anteną o maksymalnym wzmocnieniu [4] dBi. Stosowanie anteny o większym wzmocnieniu jest surowo zabronione na mocy przepisów Ministerstwa Przemysłu Kanady. Wymagana impedancja anteny wynosi 50 omów".

Urządzenie jest zgodne z standardami Ministerstwa Przemysłu Kanady nieobjętymi obowiązkiem uzyskania pozwolenia radiowego. Działanie podlega następującym dwóm warunkom: (1) Urządzenie nie może powodować zakłóceń oraz (2) urządzenie musi akceptować wszelkie zakłócenia, w tym zakłócenia mogące spowodować niepożądane działanie.

G.3.6 Dyrektywa R&TTE Unii Europejskiej

Urządzenie to jest zgodne z zasadniczymi wymogami dyrektywy R&TTE 1999/5/WE. W celu potwierdzenia zgodności z zasadniczymi wymogami dyrektywy R&TTE 1999/5/WE zastosowano następujące testy:

• EN 60950-1:2001 A11:2004

Bezpieczeństwo sprzętu technologii informacyjnej

• EN 300 328 V1.8.1: (2006-10)

Zgodność elektromagnetyczna i zagadnienia widma radiowego (ang. Radio Spectrum Matter, ERM); Systemy transmisji szerokopasmowej; Sprzęt do transmisji danych działający w paśmie 2,4 GHz ISM i wykorzystujący techniki modulacji szerokopasmowej; Zharmonizowane normy EN zawierające zasadnicze wymogi (artykuł 3.2 dyrektywy R&TTE)

• EN 301 489-1 V1.6.1: (2005-09)

Zgodność elektromagnetyczna i zagadnienia widma radiowego (ERM); Norma zgodności elektromagnetycznej (ang. ElectroMagnetic Compatibility, EMC) dla sprzętu radiowego i usług; Część 1: Typowe wymogi techniczne

• EN 301 489-17 V1.2.1 (2002-08)

Zgodność elektromagnetyczna i zagadnienia widma radiowego (ERM); Norma zgodności elektromagnetycznej (EMC) dla sprzętu radiowego i usług; Część 17: Szczególne warunki dla systemów transmisji szerokopasmowej 2,4 GHz i sprzętu radiowej sieci lokalnej (ang. Radio Local Area Network, RLAN) 5 GHz wysokiej przepustowości

• EN 301 893 V1.5.1 (2008-12)

Zgodność elektromagnetyczna i zagadnienia widma radiowego (ERM); Sieci radiowego dostępu szerokopasmowego (ang. Broadband Radio Access Network, BRAN); Szczególne warunki dla sprzętu RLAN 5 GHz wysokiej przepustowości

• UE 2002/95/WE (RoHS)

Deklaracja zgodności — Dyrektywa UE 2003/95/WE; Ograniczenie stosowania substancji niebezpiecznych (ang. Reduction of Hazardous Substances, RoHS)

Urządzenie to jest systemem (odbiornikiem) transmisji szerokopasmowej 2,4 GHz przeznaczonym do stosowania w krajach członkowskich UE i krajach EFTA, z wyjątkiem Francji i Włoch, gdzie obowiązuje ograniczenie stosowania.

We Włoszech użytkownik końcowy powinien starać się o licencję w krajowych organach ds. częstotliwości radiowych w celu uzyskania zgody na korzystanie z urządzenia do konfiguracji zewnętrznych połączeń radiowych, a także zgody na umożliwienie dostępu publicznego do usług telekomunikacyjnych i/lub sieciowych.

Urządzenia nie można stosować do konfiguracji zewnętrznych połączeń radiowych we Francji i na pewnych obszarach moc wyjściowa RF może być ograniczona do 10 mW EIRP w zakresie częstotliwości 2454–2483,5 MHz. Szczególowe informacje użytkownik końcowy może uzyskać we francuskim organie ds. częstotliwości radiowych.

Niniejszym firma Edwards Lifesciences deklaruje, że ten monitor spełnia zasadnicze wymogi i inne odnośne postanowienia dyrektywy 1999/5/WE.

Dodatek **H**

Słownik

Alarmy

Wskaźniki dźwiękowe i wizualne, które powiadamiają operatora, że mierzony parametr pacjenta wykracza poza progi alarmu.

Chwilowa pojemność minutowa serca (iCO)

Wykonywany metodą termodylucji chwilowy pomiar krwi wyrzucanej w ciągu minuty przez serce do krążenia obwodowego.

Chwilowy wskaźnik sercowy (ang. Intermittent Cardiac Index, iCI)

Chwilowa pojemność minutowa serca uwzględniająca rozmiar ciała.

Ciśnienie krwi (BP)

Ciśnienie krwi mierzone za pomocą przewodu ciśnienia HemoSphere.

Częstość akcji serca (ang. Heart Rate, HR)

Liczba skurczów komór serca na minutę. Dane dotyczące HR uzyskane z monitora zewnętrznego są uśredniane w czasie i wyświetlane jako HR śr.

Częstość tętna (PR)

Liczba impulsów ciśnienia tętniczego krwi na minutę.

Czułość

Możliwość sprawdzenia prawidłowej identyfikacji wartości z warunkiem (wyniku prawdziwie dodatniego). Matematycznie zdefiniowana jako:

(liczba wyników prawdziwie dodatnich/[liczba wyników prawdziwie dodatnich + liczba wyników falszywie ujemnych]) x 100.

Dynamiczna elastancja tętnic (Ea_{dyn})

Dynamiczna elastancja tętnic to wahania ciśnienia tętniczego do zmiennej objętości wyrzutowej (PPV/SVV). Jest to szacowana elastancji tętnic.

Frakcja wyrzutowa prawej komory (ang. Right Ventricular Ejection Fraction, RVEF)

Procent objętości krwi wyrzucanej z prawej komory podczas skurczu.

Hematokryt (ang. hematocrit, Hct)

Procent objętości krwi zawierającej krwinki czerwone.

Hemoglobina (ang. hemoglobin, HGB)

Składnik krwinek czerwonych, który przenosi tlen. Objętość krwinek czerwonych mierzona w gramach na decylitr.

Ikona

Obiekt na ekranie przedstawiający konkretny ekran, stan platformy lub element menu. Po uruchomieniu i dotknięciu ikona rozpoczyna działanie lub umożliwia dostęp do menu.

Iniektat

Plyn używany do pomiarów iCO (pomiarów pojemności minutowej serca metodą termodylucji z bolusem).

Interwencja

Kroki podjęte w celu zmiany stanu pacjenta.

Krzywa wypłukiwania

Wskaźnik w postaci krzywej dylucji utworzonej przez wstrzyknięcie bolusa. Pojemność minutowa serca jest odwrotnie proporcjonalna do obszaru pod tą krzywą.

Nachylenie fali skurczowej (dP/dt)

Miara zdolności kurczenia się lewej komory serca, przedstawiana za pomocą parametru dP/dt maksymalna wartość pierwszej pochodnej krzywej ciśnienia tętniczego względem czasu.

Objętość późnorozkurczowa (ang. End-Diastolic Volume, EDV)

Objętość krwi znajdującej się w prawej komorze pod koniec fazy rozkurczowej.

Objętość wyrzutowa (ang. Stroke Volume, SV)

Objętość krwi wyrzucana z komór przy każdym skurczu.

Oksymetria (wysycenie tlenem, ScvO₂/SvO₂)

Procent hemoglobiny wysyconej tlenem we krwi.

Ośrodkowe ciśnienie żylne (ang. Central Venous Pressure, CVP)

Średnie ciśnienie w żyle głównej górnej (w prawym przedsionku) mierzone przez monitor zewnętrzny. Wskazuje powrót krwi żylnej do prawej części serca.

Podaż tlenu (ang. Oxygen Delivery, DO₂)

Ilość tlenu w mililitrach na minutę (ml/min), która jest dostarczana do tkanek.

Pojemność minutowa serca (ang. Cardiac Output, CO)

Objętość krwi wyrzucana w ciągu minuty przez serce do krążenia obwodowego mierzona w litrach na minutę.

Pojemność minutowa serca automatycznie skalibrowana w oparciu o pomiar ciśnienia tętniczego przy użyciu czujnika FloTrac (FT-CO)

Pojemność minutowa serca (CO) stale obliczana na podstawie krzywej ciśnienia tętniczego krwi.

Pole powierzchni ciała

(ang. Body Surface Area, BSA) Obliczone pole powierzchni ludzkiego ciała.

Progi alarmu

Maksymalne i minimalne wartości parametrów monitorowanych u pacjenta.

Przewód podrzędny

Przewód przekazujący dane z innego monitora do zaawansowanego monitora HemoSphere.

Przycisk

Obiekt z tekstem na ekranie, który po dotknięciu rozpoczyna jakieś działanie lub umożliwia dostęp do menu.

Średnie ciśnienie tętnicze (ang. Mean Arterial Pressure, MAP)

Średnie ciśnienie krwi tętniczej mierzone przez monitor zewnętrzny.

Stała obliczeniowa

Stała używana w równaniu pojemności minutowej serca odnosząca się do gęstości krwi i iniektatu, objętości iniektatu oraz utraty wskaźnika w cewniku

Swoistość

Możliwość sprawdzenia prawidłowej identyfikacji wartości bez warunku (wyniku fałszywie ujemnego). Matematycznie zdefiniowana jako: (liczba wyników prawdziwie ujemnych/[liczba wyników prawdziwie ujemnych + liczba wyników fałszywie dodatnich]) x 100.

Systemowy opór naczyniowy

(ang. Systemic Vascular Resistance, SVR) Pochodna miara oporu przepływu krwi z lewej komory serca (obciążenie następcze).

Szacowane zużycie tlenu (VO₂e)

Wyrażenie szacunkowej szybkości zużywania tlenu przez tkanki, na ogół podawane w ml/min tlenu zużywanego w ciągu 1 godziny przez 1 miligram suchej masy tkanek. Wyliczane przy użyciu parametru ScvO₂.

Temperatura krwi (ang. Blood Temperature, BT)

Temperatura krwi w tętnicy płucnej przy właściwym umieszczeniu cewnika.

Termistor

Czujnik temperatury w pobliżu końcówki cewnika w tętnicy plucnej.

Termodylucja (ang. thermodilution, TD)

Rodzaj techniki dylucji wykorzystującej jako wskaźnik zmianę temperatury.

Test przewodu CCO pacjenta

Test służący do sprawdzenia integralności przewodu CCO pacjenta.

Tryb bolusa (iCO)

Funkcjonalny stan modułu HemoSphere Swan-Ganz, w którym pojemność minutowa serca jest mierzona metodą termodylucji z bolusem.

USB (ang. Universal Serial Bus)

Uniwersalna magistrala szeregowa.

Ustawienia domyślne

Początkowe warunki pracy założone przez system.

Wartość STAT

Szybkie oszacowanie wartości CO/CI, EDV/EDVI i RVEF.

Włókno termiczne

Obszar na cewniku do termodylucji CCO, który przekazuje niewielką ilość energii do krwi, służąc jako wskaźnik dla stałego śledzenia trendów pojemności minutowej serca.

Wskaźnik jakości sygnału (ang. Signal Quality Indicator, SQI)

Jakość sygnału oksymetrycznego na podstawie stanu cewnika i jego umieszczenia w naczyniu.

Wskaźnik objętości późnorozkurczowej (ang. End-Diastolic Volume Index, EDVI)

Objętość krwi znajdującej się w prawej komorze pod koniec fazy rozkurczowej z uwzględnieniem rozmiaru ciała.

Wskaźnik objętości wyrzutowej (ang. Stroke Volume Index, SVI)

Objętość wyrzutowa z uwzględnieniem rozmiaru ciała.

Wskaźnik podaży tlenu (ang. Oxygen Delivery Index, DO₂I)

llość tlenu w mililitrach na minutę $(ml/min/m^2)$, która jest dostarczana do tkanek, z uwzględnieniem rozmiaru ciała.

Wskaźnik predykcji niedociśnienia (Acumen HPI)

Prawdopodobieństwo wystąpienia zdarzenia niedociśnienia u pacjenta (MAP < 65 mmHg przez co najmniej minutę).

Wskaźnik sercowy (ang. Cardiac Index, CI)

Pojemność minutowa serca w odniesieniu do rozmiaru ciała.

Wskaźnik systemowego oporu naczyniowego (ang. Systemic Vascular Resistance Index, SVRI)

Systemowy opór naczyniowy z uwzględnieniem rozmiaru ciała.

Wstrzyknięcie bolusa

Znana objętość płynu (mrożonego lub o temperaturze pokojowej), który jest wstrzykiwany do portu cewnika w tętnicy plucnej i służy jako wskaźnik pomiaru pojemności minutowej serca.

Wyjściowa temperatura krwi

Temperatura krwi służąca jako baza pomiarów pojemności minutowej serca.

Wysycenie tlenem krwi żylnej mieszanej

(ang. Mixed Venous Oxygen Saturation, SvO₂) Procent hemoglobiny wysyconej tlenem we krwi żylnej mierzony w tętnicy plucnej. Wyświetlany jako SvO₂.

Wysycenie krwi tlenem w żyłach centralnych

(ang. Central Venous Oxygen Saturation, ScvO₂) Procent hemoglobiny wysyconej tlenem we krwi żylnej mierzony w żyle głównej górnej (ang. Superior Vena Cava, SVC). Wyświetlane jako ScvO₂.

Zmienna objętości wyrzutowej (SVV)

Zmienna objętości wyrzutowej to procentowa różnica pomiędzy pomiarami skurczowymi (minimum i maksimum).

Zużycie tlenu (ang. Oxygen Consumption, VO₂)

Wyrażenie szybkości zużywania tlenu przez tkanki, na ogół podawane w ml/min tlenu zużywanego w ciągu 1 godziny przez 1 miligram suchej masy tkanek. Wyliczane przy użyciu parametru SvO₂.

Indeks

Α

A/D def. 33 akcesoria modułu 55 akcesoria przewodów 55 akronimy 33 Aktualizuj HGB 106 Alarm/wartość docelowa zmiana 83 alarm/wartości docelowa ustawienia domyślne 285 alarmy def. 127 ekran podręczny 83 głośność 129 konfiguracja dla jednego parametru 132 priorytety 286 testowanie svgnału 297 ustawienie dla indywidualnego parametru 83 wyciszanie 80 alert oksymetrii, lista alertów 259 analogowy sygnał wejściowy 122

В

bateria instalacja 60 konserwacja 296 przechowywanie 296 stan na pasku informacji 108 bezpieczeństwo 144 błąd kalibracji in vitro 260 bolus krzywa wypłukiwania 157 BSA obliczane 117 równanie 276 BT 33 def. 33

С

CaO₂ def. 33 równanie 276 Ca-vO₂ równanie 277 CCO def. 33 CI def. 33 równanie 277 ciągła zmiana (%) ustawianie 121 CISPR 11 300 CO 33 czasomierz 152 monitorowanie za pomocą modułu HemoSphere Swan-Ganz 149 wymagane akcesoria 55 conducted RF IEC 61000-4-6 305 CPI równanie 277 CPO równanie 277 CvO_2 równanie 277 CVP def. 33 czas zmiana 119 czas graficznych trendów 135 czerwony wskaźnik 231 wskaźnik stanu wartości docelowych 130 czyszczenie monitor 291 przewód do oksymetrii 292 przewód i złącza 292

D

przewody 292

dane bezpieczeństwo 144 eksportowanie 138 pobieranie 138 dane pacjenta wiek 117 wprowadzanie 115 wyświetlanie 118 dane pacjenta w przewodzie do oksymetrii są starsze niż 24

godziny — skalibruj ponownie 260 dane techniczne fizyczne 266 mechaniczne 266 dane techniczne wyświetlacza monitor 266 data zmiana 119 def. 33 Diody Moduł ciśnieniowy 239 diody LED 238 diody LED monitora 238 długość przewodu oksymetria 270, 271 DO_2 def. 33 równanie 277 DO₂I def. 33 równanie 277 Dotknięcie def. 34 dP/dt równanie 278 DPT def. 33

Ε

EDV def. 33 monitorowanie za pomocą modułu HemoSphere Swan-Ganz 158 wymagane akcesoria 55 EDVI def. 33 efu def. 33 ekran dotykowy, dane techniczne 267 ekran kokpitu 93 ekran monitorowania fizjologicznego 92 ekran monitorowania tabeli trendów 90 ekran monitorowania trendu graficznego 85 ekran monitorowania zależności fizjologicznych 94

Ekran

Ustawienia 214, 215, 216, 2 17, 218, 219, 229, 230 eksportowanie danych 138 electromagnetic emisje 300 elektromagnetyczne emisje 301 elektromagnetyczność compatybilność 298 emisje harmoniczne IEC 61000-3-2 300 Emisje RF 300 etykiety na opakowaniu 52 porty 51 produkt 51 etykiety identyfikacyjne złączy 51 etykiety na opakowaniu 52

F

fizyczne dane techniczne 266 format czasu 119 format daty 119 funkcjonowanie zasadnicze 53

G

glębokość moduł HemoSphere Swan-Ganz 269 monitor 266 gniazdo modułu 27 Grupa 1 emisji RF 300 gwarancja 297

Н

Hasla 113 Hct def. 33 HGB def. 33 HIS def. 33 HR def. 33 HRśr. def. 33

I

iCO def. 33 monitorowanie za pomocą modułu HemoSphere Swan-Ganz 152 wymagane akcesoria 55 IEC def. 33 IEC 60601-1-2 2007 298 IEC 60601-2-34 2011 52 IEC 60601-2-49 2011 53 IEC 61000-3-2 emisje harmoniczne 300 IEC 61000-3-3 300 IEC 61000-4-11 304 IEC 61000-4-2 304 IEC 61000-4-3 305 IEC 61000-4-4 304 IEC 61000-4-5 304 IEC 61000-4-6 305 IEC 61000-4-8 304 IEC 60601-1 2005/A1 2012 52 IEC 60601-1-2 2014 52 IEC/EN 60601-1-2 2007 298 IEEE 802.11 b/g/n 53 ikona anulowania 111 ikona ekranu głównego 111 ikona powrotu 111 ikona ustawień 79 ikona zatrzymania monitorowania CO 78,79 interwał ciągłej zmiany wskaźnik 84 ľΤ def. 33

J

język ustawienia domyślne 287 zmiana 119

Κ

kafelek parametru 84 kafelki parametrów 82 kalibracja in vitro 179 kalibracja in vivo 180 Kalkulator wartości wyliczanej 104 Klasa A emisji harmonicznych 300 Klasa A emisji RF 300 klawiatura numeryczna, korzystanie 112 klawiatura, korzystanie 112 Kody dostępu 113 komunikacja bezprzewodowa 141 dane techniczne 268 konfiguracja 141 komunikaty HL7 141 komunikaty o błędzie 241 konserwacja 296 konserwacja zapobiegawcza 296 kontynuacja monitorowania dotychczasowego pacjenta 118 korzystanie z monitora 76 krzywa wypłukiwania 157

L

łączność HIS 141 Lampki Moduł ciśnieniowy 240 lista akcesoriów 274 lokalizacje oddziałów firmy Edwards Lifesciences 295 LVSWI def. 33

Μ

MAP def. 33 mechaniczne dane techniczne 266 Moduł ciśnieniowy lampki komunikacji 240 światło komunikacji 239 moduł HemoSphere Swan-Ganz algorytm CO 149 dane techniczne 269 dostępne parametry 28, 29, 31 komunikaty o błędzie 245 monitorowanie CO 149 monitorowanie iCO 152 przegląd 28 przegląd połączeń 74, 146, 192 skrócony przewodnik 66 warunki dotyczące sygnału termicznego 151 moduł rozszerzający 27

monitor

czyszczenie 291 dane techniczne wyświetlacza 266 ikona wyboru ekranu 79 korzystanie 76 środowiskowe dane techniczne 267, 269 światła zasilania i komunikacji 238 utylizacja 296 waga 266 wymiary 266 monitor przyłóżkowy wejście EKG 159 monitorowanie bolusa (iCO) 152 monitorowanie RVEF 158 Monitorowanie wznowienia 107 MPAP def. 33

Ν

napięcie monitor 268 nawigacja 76, 111 nawigacja w obrębie ekranu 111 nawigacja w obrębie ekranu monitora 111 Nowy pacjent 116 numery modeli 274

0

Obciążenie płynem 88 objętość iniektatu 154 obszar komunikatów 110 odległość zalecana odległość od sprzętu 302 odległości 302 ogólne, ustawienia monitora 129 oksymetria konfiguracja 176 Ostrzeżenia 260 rozwiązywanie problemów 260, 263 SQI 181 OM (monitorowanie oksymetrii) odłączone 107 Ostrzeżenia oksymetria 260 ostrzeżenia, lista 36 ostrzeżenie definicja 35 niestabilny sygnał 260 wykryto klin lub artefakt ściany 260

Ρ

PA def. 33 pacjent dane 116 ID 117 kontynuacja monitorowania dotychczasowego 118 nowy 116 parametry danych 282 panel tylny 56 porty przyłączeniowe 57 PaO₂ def. 33 parametr kluczowy zmiana 82 parametry zakresy wyświetlania i alarmów 283 zmiana 82 pasek informacji 107, 112 czasomierz CO 152 pasek nawigacji 78 pasek stanu 110 PAWP def. 33 płeć, wprowadzanie 117 Pobieranie danych 231 Pobierz krew 105 pogrubienie definicja 31 pomoc techniczna 294 pomoc, techniczna 294 port HDMI 267 port szeregowy RS-232 267 porty przyłączeniowe 56 porty USB, dane techniczne 267 POST def. 33 patrz również Test poprawności działania systemu priorytety alarmów fizjologicznych 286 promieniowana energia RF IEC 61000-4-3 305 przedział czasowy 135 Przegląd zdarzeń 105 przerwa w monitorowaniu 107 przerwa w monitorowaniu 81 przerwa, monitorowanie 81 przestroga definicja 35 przestrogi, lista 43 przewijanie 111

przewód do oksymetrii HemoSphere czyszczenie 292 dane techniczne 271 dostępne parametry 30 komunikaty o błędzie 258 konfiguracja 176 przywoływanie danych 182 resetowanie 184 skrócony przewodnik 69,71 przewód EKG 159 przewody czyszczenie 292 przycisk lista 111 przycisk czynności klinicznych 79,80 Przycisk ekranu głównego 103 przycisk listy 111 przycisk uruchamiania monitorowania CO 78 Przycisk Zrzut ekranu 79 PvO₂ def. 33 PVPI równanie 279 **PVR** def. 33 PVRI def. 33

R

sCO

def. 33

regulacja skal 134 równania badania serca 276 równania dotyczące badań serca 276 równanie PVPI 279 równanie SV 280 równanie SVI 280 równanie SVR 280 równanie SVRI 280 rozmiar wyświetlacza 266 rozwiązywanie problemów oksymetria 260, 263 RVEF def. 33 wymagane akcesoria 55 RVSWI def. 33 S sCI def. 33

przewijanie w pionie 111

ScvO₂ def. 33 wymagane akcesoria 56 **s**EDV def. 33 serwis 294 Sesja GDT Wstrzymano 105 Wznowiono 105 Zaktualizowano wartości docelowe 105 skala trendu domyślne wartości graniczne 282 skale regulacja 134 skróty 33 SpO_2 def. 33 SOI def. 33 środowiskowe dane techniczne 267, 269 sRVEF def. 33 ST def. 33 stała obliczeniowa wybór 155 stałe obliczeniowe sonda do pomiaru temperatury w łaźni 288 sonda temperatury in-line 289 tabele 288 STAT def. 33 stojak na kółkach 275 surge IEC 61000-4-5 304 SV def. 33 równanie 280 wymagane akcesoria 55 SVI def. 33 równanie 280 SvO_2 def. 33 wymagane akcesoria 56 SVR def. 33 monitorowanie za pomocą modułu HemoSphere Swan-Ganz 163 równanie 280 wymagane akcesoria 55

SVRI def. 33 równanie 280 SVV równanie 280 światła monitor 238 symbole na ekranie 48 na opakowaniu 51 symbole interfejsu użytkownika 48 system operacyjny 266 szary wskaźnik 231 wskaźnik stanu wartości docelowych 130 szerokość modul HemoSphere Swan-Ganz 269 monitor 266 szpitalny system informacyjny 141 szybkości przewijania tabela trendów 91 trend graficzny 87 szybkości przewijania tabeli trendów 91 szybkości przewijania trendów graficznych 87 szybkozmienne zakłócenia przejściowe/ impulsowe 304

T TD

def. 34 technologie monitorowania hemodynamicznego 27 temperatura środowiskowe dane techniczne 267 test integralności przewodu 147 test oporności częstotliwości sieci zasilającej 304 test poprawności działania systemu 63 test przewodu CCO pacjenta 147 tryb ciągły, zależności fizjologiczne 94 tryb historyczny 94 tryb historyczny, zależności fizjologiczne 94

U

USB def. 34 ustawienia 141 przegląd 79, 80 ustawienia monitora 118 ogólne 129 Usterka oksymetrii, lista usterek 258 utylizacja, monitor 296

V

 VO_2 def. 34 równanie 280 VO_2e def. 34 równanie 280 VO_2I def. 34 równanie 280 VO_2Ie def. 34 równanie 281

W

waga moduł HemoSphere Swan-Ganz 269 monitor 266 waga, dane pacjenta 117 wahania napięcia/emisje migotania 300 Wartość ma być mniejsza niż 244 Wartość ma być większa niż 244 Wartość poza zakresem 244 wartość, wprowadzanie 111 wartości docelowe konfiguracja dla jednego parametru 132 wskaźniki stanu 85 zmiana 83 warunki dotyczące sygnału termicznego monitorowanie CO 151 wilgotność względna środowiskowe dane techniczne 267 Windows 7, wbudowany 266 Wprowadź prawidłową datę 244 Wprowadź prawidłową godzinę 244 wprowadzanie wartości 111 wskazania do stosowania 20 wskaźnik jakości sygnału (SQI) 181 wyciszanie alarmów dźwiękowych 80 wyjście wyświetlacza, HDMI 267 wyładowanie elektrostatyczne 304 wymiary akumulator 269 moduł HemoSphere Swan-Ganz 269 monitor 266

wysokość moduł HemoSphere Swan-Ganz 269 monitor 266 wysokość n.p.m. środowiskowe dane techniczne 267 wyświetlanie danych pacjenta 118 Wyzeruj i krzywa 175 wzrost, dane pacjenta 117

Ζ

Zaawansowany monitor HemoSphere dokumentacja i materiały szkoleniowe 31 funkcjonowanie zasadnicze 53 światła stanu 238 zaawansowany monitor HemoSphere dane techniczne 267, 269 etykiety 51 porty przyłączeniowe 56 środowiskowe dane techniczne 267, 269 wymagane akcesoria 55 zestaw podstawowy 54 zależności fizjologiczne 94 tryb ciągły 94 ustawianie alarmów i wartości docelowych 96 zielone światło stanu mankietu modułu ciśnieniowego 239 zielony wskaźnik 231 wskaźnik stanu wartości docelowych 130 złącza czyszczenie 292 złącze Ethernet RJ-45 (monitor) 267 zmiana alarmu/wartości docelowej 83 Zmiana czasu 107 zmiana parametrów 82 żółty wskaźnik stanu wartości docelowych 130 żółty wskaźnik 231 Strona celowo pozostawiona pusta

Strona celowo pozostawiona pusta

Strona celowo pozostawiona pusta

Przestroga: prawo federalne (USA) zezwala na sprzedaż niniejszego wyrobu tylko przez lekarzy lub na ich zlecenie. Pełne informacje dotyczące przepisywania zawiera instrukcja obsługi.

Urządzenia firmy Edwards Lifesciences wprowadzane na rynek europejski spełniają niezbędne wymagania opisane w artykule 3 Dyrektywy 93/42/EWG dotyczącej wyrobów medycznych i są oznaczone symbolem CE oznaczającym zgodność z wymaganiami normatywnymi.

Edwards, Edwards Lifesciences, logo w postaci stylizowanej litery E, Acumen, Acumen HPI, Acumen IQ, CCOmbo, CCOmbo V, CO-Set, CO-Set+, FloTrac, ForeSight, FORE-SIGHT, ForeSight Elite, FORE-SIGHT ELITE, HemoSphere, HemoSphere Swan-Ganz, Hypotension Prediction Index, HPI, PediaSat, Swan, Swan-Ganz, Time-In-Target oraz TruWave są znakami towarowymi firmy Edwards Lifesciences Corporation lub jej podmiotów stowarzyszonych. Wszystkie pozostałe znaki towarowe należą do odpowiednich właścicieli.

Edwards

© 2021 Edwards Lifesciences Corporation. Wszelkie prawa zastrzeżone. A/W Nr kat. 10027227003/A

Edwards Lifesciences • One Edwards Way, Irvine CA 92614 USA • edwards.com